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Abstract

Modeling studies of household transmission data have helped characterize the role of children in influenza and coronavirus disease
2019 (COVID-19) epidemics. However, estimates from these studies may be biased since they do not account for the heterogeneous
nature of household contacts. Here, we quantified the impact of contact heterogeneity between household members on the estimation
of child relative susceptibility and infectivity. We simulated epidemics of severe acute respiratory syndrome coronavirus 2 (SARS-
CoV-2)-like and influenza virus-like infections in a synthetic population of 1000 households, assuming heterogeneous contact levels.
Relative contact frequencies were derived from a household contact study according to which contacts are more frequent in the father–
mother pair, followed by the child–mother, child–child, and finally child–father pairs. Child susceptibility and infectivity were then
estimated while accounting for heterogeneous contacts or not. When ignoring contact heterogeneity, child relative susceptibility was
underestimated by approximately 20% in the two disease scenarios. Child relative infectivity was underestimated by 20% when children
and adults had different infectivity levels. These results are sensitive to our assumptions of European-style household contact patterns;
but they highlight that household studies collecting both disease and contact data are needed to assess the role of complex household
contact behavior on disease transmission and improve estimation of key biological parameters.
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Introduction
Households constitute an ideal setting for the study of respira-
tory disease transmission. Respiratory diseases generally transmit
through infectious respiratory particles, with the risk of trans-
mission generally increasing with time spent indoors in close
proximity to a contagious case.1 Within-household transmission
represents a substantial fraction of disease transmission for a
number of respiratory diseases.2,3 In addition, the study of respi-
ratory disease transmission is simplified in households because
case contacts are well-defined, which facilitates their follow-up
after exposure and the estimation of the secondary infection risk,
often referred to as the secondary attack rate (SAR), and defined
as the proportion of household contacts that are infected after the
index case is detected.

Household studies have helped characterize the transmission
of respiratory diseases caused by influenza viruses,4 the respira-
tory syncytial virus,5 and the severe acute respiratory syndrome

coronavirus 2 (SARS-CoV-2).6,7 These studies allowed the estima-
tion of the serial interval, the SAR, and the identification of factors
affecting individual infectivity and susceptibility. Mathematical
models can improve inference by explicitly accounting for the
possibility of community-acquired and tertiary infections. They
have helped to quantify the role of children4,8-11 by estimating
their relative susceptibility and infectivity compared with adults.
For example, child susceptibility was shown to be about half
adult susceptibility for SARS-CoV-2 infections,11,12 while children
are about twice as susceptible to influenza virus infections as
adults,9,13,14 with differences also identified between newborns,
children, and teenagers.15,16 Mathematical models have also
quantified the impact of direct 12,17 and indirect vaccination12,14,17

on household transmission dynamics.18

The relative infectivity and susceptibility estimated in house-
hold studies can be caused by biological factors (eg, different
levels of viral shedding when infected or different propensity
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to get infected when exposed) but also by the level of physi-
cal contact in the household.19 So far, household transmission
models have ignored this second source of heterogeneity, implic-
itly assuming that estimated values were indicative of different
biological parameters between children and adults, essentially
related to the maturity of the immune system. By doing so, models
have allowed the estimation of the overall contribution of chil-
dren to household transmission dynamics and have shown their
epidemiologic importance; however, at the same time, their esti-
mates of susceptibility and infectivity might not reflect biological
factors.

To date, only one study has quantified mixing between house-
hold members according to their individual characteristics and
relationship to one another.20 Based on a contact survey adminis-
tered from 2010 to 2011 to 318 Belgian households with at least
1 child under 12 and representative of the geographical area,
day/weekend distribution, and age and gender of the youngest
children, it concluded that, (1) the vast majority of contacts
that occur in households are physical; (2) on average, children
have less contact with their fathers than with other siblings;
(3) the overall rate of household physical contact between children
decreases with age; and (4) the magnitude of contacts decreases
with household size. The study shows that the assumption of
homogeneous mixing does not hold in the household environ-
ment, a finding supported by other studies using close-proximity
electronic sensors.21-23 As a result, part of the estimated differ-
ences between children and adults in households might be due
to different mixing patterns in the household. It is important to
determine by how much mixing patterns in households might
bias estimates of biological susceptibility/infectivity estimated
in household studies because these estimates are essential in
pandemic contexts to guide recommendations on interventions
such as testing protocols in schools and school closure.18

Here, we argue that contact patterns should be integrated in
the collection and analysis of household transmission studies
for respiratory diseases to ensure robust estimation. We thus
investigate how heterogeneous contact patterns in households
might bias estimates of respiratory diseases transmission, notably
the transmission rate between household members, the relative
susceptibility of children (defined as individuals aged ≤ 18 years
old) compared with adults, and their relative infectivity. To this
end, we simulated epidemics in households using realistic contact
patterns from Belgium,20 and we estimated key transmission
parameters (considering the case of SARS-CoV-2 and influenza)
while accounting or not for the heterogeneous nature of contact
patterns.

Methods
Household composition in the simulated data set
We constituted a synthetic population of 1000 households.
We derived the demographic structure and the index cases
of the synthetic population from the multicenter household
study RECOVER16 by randomly sampling with replacement 1000
households from a subset of the households (n = 225) of the
RECOVER study. From the RECOVER study, we retained households
with 2 to 5 household members that correspond either to father–
mother pairs, or to single-parent or hetero-parental 2-generation
families. We excluded same-sex couples (n = 2) and homo-
parental families (n = 2) because of the lack of estimates in the
study by Goeyvaerts et al20 on contact levels between partners
of same-sex couples, and more specifically, between same-sex
parents and their children. From the original household study

RECOVER, we kept 2 types of information for each household
member: (1) whether the individual is the index case, and (2) the
role of the individual in the household (ie, mother, father, or child).

Simulation of household epidemics
In silico follow-up protocol
We assumed that the 1000 households from the synthetic popu-
lation were recruited and followed up starting from the symptom
onset of the index case, and for up to 20 days. Since our aim
was to ascertain how the misspecification of contact intensity
may influence the estimation of transmission rates, we decided
to consider a simple inference context, assuming that all cases
exhibit symptoms and testing is perfect.

Relative contact rates between household members
Given that the vast majority of contacts that occur in households
are physical contacts, we used the odds ratios of physical contacts
between pairs estimated during weekdays by Goeyvaerts et al.20

For brevity, we refer to physical contacts as contacts in the rest of
the manuscript. We used the father–mother pair as the reference,
which means that for this type of pair the relative contact rate
between the infector l and their recipient k is κk,l = 1. For the
mother–child pairs, we assumed they were 10% less in contact
compared with the father–mother pairs (κk,l = 0.90), father-child
pairs were 58% less in contact (κk,l = 0.42), and pairs of children
were 24% less in contact (κk,l = 0.76).

Force of infection within households
In the simulations, the probability that an individual k in house-
hold h gets infected between time t and time t + dt with dt > 0
small is:

Λk
(
t, t + dt

) = α × dt +
∑

l∈Ih{ξj<t}
β

n/2
κk,lμs,kμi,l

∫ t+dt

t
f (u − ξl|sl) du

where α is the instantaneous hazard of infection in the commu-
nity; ξl is the infection date of case l that belongs to Ih

{
ξj < t

}
the

infected individuals in household h that were infected before time
t; β

n/2 models the dependency between the baseline transmission
rate β in the father–mother pair, and the household size n; κk,l is the
relative contact rate between recipient k and infector l according
to the type of the pair; μs,k is the relative susceptibility of recipient
k according to their age with adults as reference (μs,adult = 1);
μi,l is the relative infectivity of infector l according to their age
with adults as reference (μi,adult = 1); and f (t − ξl|sl) is the density
probability function of the generation time conditioned on the
incubation period sl of infector l. Here, the generation time is
defined as the distribution of the interval between the infection
time of the infector and the infection time of the recipient. We
used the distribution estimated by Ferretti et al24 for SARS-CoV-2
infections.

If k gets infected between t and t + dt, its exact time of infec-
tion ξk is drawn uniformly between t and t + dt, and its incu-
bation period sk is drawn from a log-normal distribution with
log-mean = 1.63 and log-standard deviation = 0.5, previously esti-
mated by McAloon et al25 for SARS-CoV-2 infections. If symptom
onset occurs after the end of the follow-up, the individual is
not detected. We simulated continuous times of infection and
symptom onset. For realistic reasons, we discretized the time
of symptom onset and kept only the day of symptom onset to
perform the inference.

We tested two scenarios. The first corresponds to a SARS-CoV-
2–like infection scenario, with children being 50% less susceptible
than adults and 20% less infectious than adults (Table 1).6,11,12,15
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Table 1. Parameter values used in the simulations for an analysis of the impact of household contact
heterogeneity on the estimation of respiratory infections transmission dynamics

Parameter SARS-CoV-2–like infection Influenza virus–like infection

Hazard of infection in the community α 0.001 0.001
Secondary attack rate in father–mother

pairs 1 − exp (−β)

29% 13%

Relative susceptibility of children μs,child 0.5 2
Relative infectivity of children μi,child 0.8 1

Abbreviation: SARS-CoV-2, severe acute respiratory syndrome coronavirus 2.

The second corresponds to an influenza-like infection scenario
with children being twice as susceptible as adults and as infec-
tious as adults.4,9,13,14,26 For each scenario, we assumed similar
generation times but different transmission rates. The value of the
baseline transmission rate in father–mother pairs β was chosen so
that the overall SAR was approximately 33%7,16 (Table 1). Finally,
we simulated epidemics in the synthetic household database 1000
times for each scenario.

Statistical inference
Statistical inference was performed in a Bayesian framework with
data augmentation.8 In the section above, we detailed the model
by using adults as the reference. In the inference model, we
used children as the reference because pairs of children were
more numerous than pairs of adults, which provides more stable
inference. We estimated the hazard of infection in the community
α, the transmission rate between 2 children in a household of size
4 β′child−child,4 = (β/ (4/2)) κchild,childμs,childμi,child, the relative suscep-
tibility of adults compared with children μ′s,adult = 1/μs,child, and
the relative infectivity of adults compared with children μ′i,adult =
1/μi,child using a simple Metropolis-Hastings algorithm. For α, we
assumed an exponential prior distribution with parameter equal
to 500, which means that the instantaneous incidence rate is
200/100000 inhabitants in the population, and for β′child−child,4, we
assumed a uniform prior distribution between 0 and 10. We used
a log-normal distribution with log-mean = 0 and log-standard
deviation = 1 for μ′s,adult and μ′i,adult.

Infection dates and symptom onset dates were augmented
after each parameter iteration. Infection dates were sampled from
the incubation period distribution estimated by McAloon et al,25

and the exact time of symptom onset was sampled uniformly over
the observed day of symptom onset.

For each simulation, we launched two Markov chain Monte
Carlo (MCMC) chains assuming homogeneous mixing between
household members (incorrect inference model) or heteroge-
neous mixing (correct inference model) using the parameter
values of contact rates from the simulations. Each chain was
run for 70 000 iterations. We discarded a burn-in of 7000
steps and applied a thinning of 40 for the estimation of the
posterior distributions. Convergence was assessed visually and by
calculating the effective sample size (ESS) using the effectiveSize
function in the coda R package for every parameter of every MCMC
chain. ESS values exceeded 500 for all parameters in all chains.

Comparison of simulated and estimated
parameters
The estimates of β, μs,child, and μi,child were compared with the
values used in the simulations using 2 metrics: the mean rel-
ative bias in percentage defined as MRB = 1

n

∑n
i=1

1
θi

(
θ̂i − θi

) ×
100; and the coverage in percentage defined as coverage95% =
1
n

∑n
i=11{θi∈CrI95%(Di)} × 100.

We denote n the number of simulations, θi the true value of the
parameter, Di the parameter posterior distribution, θ̂i the median
posterior estimate, and CrI95% the 95% credible interval.

Results
We explore two inference scenarios: a scenario where the
heterogeneous contact patterns are accounted for in the inference
model, and a scenario where contacts are assumed to occur
at the same levels between all pairs of household members. In
the coronavirus disease 2019 (COVID-19) scenario depicted in
Figure 1, the 3 parameters of within household transmission
are well estimated when the inference model accounts for
heterogeneous contact patterns between household members
(“correct” inference model in Figure 1). The transmission rate in
father–mother pairs is relatively well estimated with a mean
relative bias lower than 2% (Figure 1D) and a coverage of
94% (Figure 1G). The estimation of child relative susceptibility
is also satisfying with a mean relative bias around −2%
(Figure 1E) and a coverage of 94% (Figure 1H). Finally, the 20%
reduction of child infectivity is correctly estimated with a mean
relative bias of about 8% (Figure 1F) and a coverage of 89%
(Figure 1I). The slight overestimation of the transmission rate
in father–mother pairs mirrors the slight underestimation of
child relative susceptibility as the 2 parameters are negatively
correlated.

When the inference model does not account for contact
heterogeneity (“incorrect” inference model in Figure 1), the
estimation of the parameters of within household transmission
is largely biased. The transmission rate is overestimated by
27% and the 95% credible interval contains the true value in
only 1.7% of the simulations (Figure 1D and 1G). Child relative
susceptibility and child relative infectivity are underestimated by
around 20% (Figure 1E-F), and their coverage does not exceed 35%
(Figure 1H-I). Given that father–mother pairs have the strongest
level of contact in the simulations, their net transmission rate
is higher than the net transmission rate in pairs of children
or between parents and children. When the inference model
assumes that all household members have the same level of
contact, it has to compensate by a larger transmission rate in pairs
of adults and a lower transmission rate between children and in
parent–child pairs by increasing the transmission rate in father–
mother pairs and reducing the susceptibility and infectivity
of children. The extent of the bias that we observed results
from the values used to model contact heterogeneity in the
simulations.

We obtained similar results for the influenza scenario pre-
sented in Figure 2. When contact heterogeneity is accounted for,
the transmission rate in father–mother pairs is well estimated
(5% bias) with a coverage of 88% (Figure 2D and G). Child relative
susceptibility is underestimated by about 6% with a coverage of
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Figure 1. Impact of contact patterns on the estimation of within household transmission, child infectivity, and child susceptibility in severe acute
respiratory syndrome coronavirus 2 (SARS-CoV-2) infections. (A-C) Posterior median estimates of the transmission rate in father–mother pairs, child
relative susceptibility, and child relative infectivity for the correct (heterogeneous mixing) inference model in dark blue (n = 1000), and the incorrect
(homogeneous) inference model in light orange (n = 1000). The black horizontal line corresponds to the true value used in the simulations.
(D-F) Relative bias between the posterior median estimate and the true value for the transmission rate in father–mother pairs, child relative
susceptibility, and child relative infectivity. Positive values indicate overestimation and negative values underestimation. Relative bias is expressed in
percentage. (G-I) Coverage of the transmission rate in father–mother pairs, child relative susceptibility, and child relative infectivity. Coverage is
expressed in percentage.

85% (Figure 2E and H). In contrast, when homogeneous mixing
between household members is assumed, the transmission rate
in father–mother pairs is overestimated by 22% (Figure 2D) and
child relative susceptibility is underestimated by 20% (Figure 2E)
with a coverage that does not exceed 22% for both parameters
(Figure 2G-H). Just like in the COVID-19 scenario, estimation bias
in the incorrect inference model resulted from the compensation
of contact heterogeneity in the simulations. The results for child
relative infectivity are less clear in the influenza scenario in
which adults and children have the same infectivity levels. Indeed,
the parameter is overestimated by 5% with a coverage of 92%
(Figure 2F and I) with the correct model, and it is underesti-
mated by 10% with a coverage of 80% with the incorrect model
(Figure 2F and I).

Discussion
In this study, we show that estimates of child relative suscepti-
bility and infectivity derived in household studies can be biased
when heterogeneous contact patterns between household mem-
bers are not accounted for. When considering the transmission of
SARS-CoV-2 or influenza virus in households with heterogeneous
contacts derived from Goeyvaerts et al,20 the incorrect assump-
tion of homogeneous mixing in the inference model leads to the
underestimation of child relative susceptibility and infectivity
by approximately 20%. This underestimation compensates for
the lower contact rate between children and other household
members compared with the contact rate in father–mother pairs
in the simulated epidemics.20 Biased estimates of child relative
susceptibility and infectivity may lead to an inaccurate picture of
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Figure 2. Impact of contact patterns on the estimation of within household transmission, child infectivity, and child susceptibility in influenza virus
infections. (A-C) Posterior median estimates of the transmission rate in father–mother pairs, child relative susceptibility, and child relative infectivity
for the correct (heterogeneous mixing) inference model in dark blue (n = 1000), and the incorrect (homogeneous) inference model in light orange (n =
1000). The black horizontal line corresponds to the true value used in the simulations. (D-F) Relative bias between the posterior median estimate and
the true value for the transmission rate in father–mother pairs, child relative susceptibility, and child relative infectivity. Positive values indicate
overestimation and negative values underestimation. Relative bias is expressed in percentage. (G-I) Coverage of the transmission rate in father–mother
pairs, child relative susceptibility, and child relative infectivity. Coverage is expressed in percentage.

the biology of transmission within households, with direct impli-
cations on the parameterization of disease transmission models
used for the design of intervention measures beyond households.

We emphasize that the intensity of the bias we quantified
is conditional on our assumptions about contact patterns in
households in our simulations. These assumptions were derived
from the study of Belgian households by Goeyvaerts et al.20 As a
consequence, our results are expected to reflect contact patterns
in Western Europe; the bias might be substantially different in
other settings. For example, in low- and middle-income countries
like South Africa, where there are more frequent contacts
between children than between children and parents,22 inference
biases could be strongly modified. Even within Europe, we may
expect that household contact patterns vary by country (eg,
North vs South of Europe). We assumed that transmission

rates were dependent on the intensity of physical contacts,
defined as β

n/2 κk,l and measured by Goeyvaerts et al.20 However,
uncertainty remains about which type of contact (characterized
by the duration, frequency, and distance of the contact) best
explains transmission. In our analysis, we only considered droplet
transmission that occurs during close contacts. Fomite and
aerosol transmissions might also play a role in the transmission
of influenza and SARS-CoV-2.27 In particular fomite transmission
might be an important mode of transmission for infants.28

Accounting for those modes of transmission would necessitate
alternative model formulations, and additional data should be
collected to quantify the relative contribution of the different
routes of transmission. In addition, we made simplifying
assumptions in the simulation model. For example, we assumed
that all infected individuals eventually develop symptoms and
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that testing is perfect. We considered a single point estimate for
the relative contact frequencies even though these frequencies
are expected to vary by household and over time. Temporal
dynamics of contact patterns can be caused by multiple factors,
among which are the effect of the day of the week (weekday versus
weekend)20 and behavioral change following symptom onset.29,30

We also assumed that all children had the same contact patterns
and biological susceptibility/infectivity regardless of their age,
even though contact rates with parents are presumably the
highest during infancy31 and decrease with age,20 and biological
susceptibility/infectivity vary with age as well.15,16,32 For all these
reasons, important uncertainties remain about how estimation of
key biological parameters from household transmission studies
may be affected when household contact patterns are being
ignored; but our simulation study emphasizes that bias could
be substantial and that further improvements to study design
and data analysis are required to circumvent the problem.

To mitigate the risk of bias, we believe it is important to inte-
grate information about contact patterns in household transmis-
sion studies and models. Using the results of a household contact
survey such as Goeyvaerts et al.20 to inform an observational
study in a different country is problematic since household con-
tact patterns likely vary across socioeconomic levels,33 cultural
practices,21,22,34 and epidemic/pandemic contexts.29 Ideally, the
study design of household transmission studies should integrate
the collection of data on contacts between household members.
The behaviors of household members not only vary between
weekdays and weekends20 but may also change when one or
multiple members develop symptoms; it is therefore important
to monitor variations in contact patterns during the study period.
In addition, behavioral change upon symptomatic infection may
depend on socioeconomic factors and the role of the individu-
als in the household. For instance, physical distancing and self-
isolation are not possible in crowded households,35 and they
are difficult if not impossible to apply when the symptomatic
case is a young child. Finally, the way contact data are collected
may affect results. Contact diaries are easy to put in place and
can be repeated to capture behavioral changes but they may be
subject to reporting bias because participants may underreport
undesirable behaviors like not implementing physical distancing.
Alternatively, wearable electronic devices that measure close-
proximity face-to-face interactions are highly valuable in con-
texts with complex networks and for the study of infectious
disease transmission.36 Given that most contacts are physical in
households, using devices to measure close contacts might not
be relevant, especially in small accommodations. Besides, records
typically do not exceed a few days due to the limited autonomy
of these devices, and participants may raise concerns over the
use of such devices, which could potentially limit compliance.
For example, only 71% of index cases and 68% of household
contacts complied with the sensors and had exploitable contact
data in the study by Kleynhans et al.22 While the collection of
contact data seems essential to better disentangle the impact
of biological versus behavioral factors, integration of these data
to transmission assessment raises new questions. For example,
different definitions of contact may be proposed to investigate
transmission (eg, physical contact versus being < 1 meter away,
short versus long duration of contact), and the optimal defini-
tion to measure transmission risk may depend on the infectious
disease. The collection of these data, using contact diaries or
electronic devices, will offer a unique opportunity to study the
association between contact and transmission and assess how
this association may vary with the context and the disease.

Here, we simulated epidemics in households so that around
33% of household contacts get infected. The choice of this value
for the SAR is relatively arbitrary given that estimates from empir-
ical data vary from a few percent to 45% for the historical variant
of SARS-CoV-2,6 and from 4% to 45% for influenza viruses.9,37-39

Simulating epidemics with a lower SAR would reduce the number
of infected pairs, and thus, the statistical power to estimate child
relative susceptibility and child relative infectivity, but we do not
expect the potential lack of statistical power in our simulations to
reach the magnitude of the bias induced by contact patterns.

In conclusion, the heterogeneous nature of contacts in house-
holds is expected to bias estimates of key parameters that are esti-
mated from household studies, such as the relative susceptibility
and infectivity of children. It is therefore important that these
complex household contact patterns be accounted for in future
household studies. Data are scarce, and many knowledge gaps
remain concerning the changes of household contact patterns
that may occur following infections and certainly depend on age.
Future household transmission studies should collect data on
both disease and contact patterns (especially during the trans-
mission period in the household), raising new challenges related
to the study design, and model development.
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