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ABSTRACT
During an epidemic, the daily number of reported infected cases, deaths or hospitalizations is often lower
than the actual number due to reporting delays. Nowcasting aims to estimate the cases that have not
yet been reported and combine it with the already reported cases to obtain an estimate of the daily
cases. In this article, we present a fast and flexible Bayesian approach for nowcasting by combining P-
splines and Laplace approximations. Laplacian-P-splines provide a flexible framework for nowcasting that
is computationally less demanding as compared to traditional Markov chain Monte Carlo techniques. The
proposed approach also permits to naturally quantify the prediction uncertainty. Model performance is
assessed through simulations and the nowcasting method is applied to COVID-19 mortality and incidence
cases in Belgium. Supplementary materials for this article are available online.
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1. Introduction

Nowcasting is a term used for estimating the occurred-but-
not-yet-reported-events (Donker et al. 2011; Van de Kassteele,
Eilers, and Wallinga 2019). In epidemiology, real-time updates
of new symptomatic/infected individuals are helpful to assess
the present situation and provide recommendations for rapid
planning and for implementing essential measures to contain
an epidemic outbreak. The exact number of new daily cases
is frequently subject to reporting delays, resulting in underre-
porting of the real number of infected individuals for that day.
Failing to account for the reporting delays will lead to possibly
biased predictions that might have an effect on policy making
(Gutierrez, Rubli, and Tavares 2020). The main goal of nowcast-
ing is to estimate the actual number of new cases by combining
the (predicted) not-yet-reported-cases with the already reported
cases.

Lawless (1994), De Angelis and Gilks (1994), and Lindsey
(1996) are among the first to establish a statistical modeling
framework for this type of problem. In disease surveillance,
Höhle and an der Heiden (2014) apply nowcasting to the out-
break of Shiga toxin-producing Escherichia coli in Germany and
also to the SARS-CoV-2 outbreak (Glöckner, Krause, and Höhle
2020; Günther et al. 2021). Their approach is formulated within
a hierarchical Bayesian framework and consists in estimating
the epidemic curve by using a quadratic spline based on a
truncated power basis function and to approximate the time-
varying reporting delay distribution by a discrete time survival
model. Van de Kassteele, Eilers, and Wallinga (2019) point out

CONTACT Bryan Sumalinab bryan.sumalinab@uhasselt.be Interuniversity Institute for Biostatistics and Statistical Bioinformatics (I-BioStat), Data Science Institute
(DSI), Hasselt University, Agoralaan Gebouw D, 3590 Diepenbeek, Belgium.

Supplementary materials for this article are available online. Please go to www.tandfonline.com/r/JCGS.

that a potential drawback of such a method is the long computa-
tion time required by the Markov chain Monte Carlo (MCMC)
algorithm and therefore propose an alternative fast and flexible
modelling strategy based on bivariate P-splines. P-splines (Eilers
and Marx 1996) provide a flexible smoothing tool to describe
trends in data. It introduces a penalty parameter that controls
the roughness of the fit and counterbalances the flexibility of a
rich B-spline basis. The relatively simple structure of the penalty
matrix and the natural extension to a Bayesian framework (Lang
and Brezger 2004) are two attractive features of the P-splines
smoother. Based on the approach of Van de Kassteele, Eilers, and
Wallinga (2019), the number of cases are structured in a two-
dimensional table (with calendar time as the first dimension and
delay time as the second dimension), yielding the data matrix
used as an input in the model. The reporting intensity is assumed
to be a smooth surface and is modeled using two-dimensional P-
splines.

In this article, we build upon the work of Van de Kassteele,
Eilers, and Wallinga (2019) and propose a new nowcasting
methodology based on Laplacian-P-splines (LPS) in a fully
Bayesian framework. A key advantage of working with the
Bayesian paradigm is that it permits to naturally characterize the
predictive distribution and quantify the uncertainty associated
with the predictions. The Laplace approximation uses a
second-order Taylor expansion to approximate the posterior
distribution of the regression parameters by a Gaussian density.
It is a sampling-free method with the major advantage of faster
computational time as compared to MCMC approaches; the

© 2024 The Author(s). Published with license by Taylor & Francis Group, LLC.
This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0/ ), which permits unrestricted use, distribution,
and reproduction in any medium, provided the original work is properly cited. The terms on which this article has been published allow the posting of the Accepted Manuscript in a repository by
the author(s) or with their consent.

https://doi.org/10.1080/10618600.2024.2395414
https://crossmark.crossref.org/dialog/?doi=10.1080/10618600.2024.2395414&domain=pdf&date_stamp=2024-09-28
http://orcid.org/0000-0001-8264-5336
mailto:bryan.sumalinab@uhasselt.be
http://www.tandfonline.com/r/JCGS
http://creativecommons.org/licenses/by/4.0/


2 B. SUMALINAB ET AL.

gold benchmark to explore posterior distributions. Therefore,
the flexibility of P-splines smoothers and the computational
benefit of Laplace approximations are interesting features to
be considered in a Bayesian nowcasting model. Laplacian-
P-splines already proved to be useful in survival models
(Gressani and Lambert 2018; Gressani, Faes, and Hens 2022a),
generalized additive models (Gressani and Lambert 2021)
and also in epidemic models for estimating the time-varying
reproduction number (Gressani et al. 2022b; Gressani, Faes,
and Hens 2023; Sumalinab et al. 2024). We build on the work
of Gressani and Lambert (2021) and extend the Laplacian-P-
splines methodology to nowcasting, thereby providing a fast and
flexible Bayesian model alternative to Van de Kassteele, Eilers,
and Wallinga (2019). To evaluate the (predictive) performance
of our method, a simulation study is implemented and several
performance measures are reported such as the (relative)
bias, prediction interval coverage, and prediction interval
width. Finally, our method is applied to COVID-19 mortality
and incidence data in Belgium for the year 2021 and 2022,
respectively. R code used for the simulation study is available
on GitHub (https://github.com/bryansumalinab/Laplacian-P-
spline-nowcasting.git).

2. Methodology

2.1. Bayesian Model Formulation

Let yt,d denote the number of cases that occurred at time t =
1, 2, . . ., T (corresponding to the calendar day) and are reported
with a delay of d = 0, 1, 2. . ., D days. The information on cases
can be summarized in matrix form:

Y =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

y1,0 y1,1 y1,2 . . . y1,D
y2,0 y2,1 y2,2 . . . y2,D

...
...

... . . .
...

yT−(D−1),0 yT−(D−1),1 yT−(D−1),2 . . . yT−(D−1),D
...

...
... . . .

...
yT−1,0 yT−1,1 yT−1,2 . . . yT−1,D

yT,0 yT,1 yT,2 . . . yT,D

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
,

with cases that have not yet been reported (at time T) high-
lighted in bold. The not-yet-reported cases correspond to (t, d)
combinations satisfying t > T − d. The main objective is to
predict the total number of cases, yt = ∑D

d=0 yt,d , for t =
T−(D−1), . . . , T for which the nowcasted and already reported
cases can be combined.

Let D := y = (y1, y2, . . . , yn)� denote the observed number
of cases by stacking the columns of matrix Y for the reported
cases, where each entry corresponds to each (t, d) combination
of reported cases yt,d. The model assumes that the number
of cases either follows a Poisson or a negative binomial (NB)
distribution, that is yt,d ∼ Poisson(μt,d) or yt,d ∼ NB(μt,d, φ)

with mean μt,d > 0. For the negative binomial, φ > 0 is
an overdispersion parameter and the variance is V(yt,d) =
μt,d + μ2

t,d/φ. Following Van de Kassteele, Eilers, and Wallinga
(2019), the (log) mean number of cases is modeled with two-
dimensional B-splines:

log(μt,d) = β0 +
KT∑
j=1

KD∑
k=1

θj,kbj(t)bk(d) +
p∑

l=1
βlzl(t, d), (2.1)

where β0 is the intercept; bj(·) and bk(·) are univariate B-splines
basis functions specified in the time and delay dimensions,
respectively; and zl(t, d) represents additional covariates with
regression coefficients βl. In matrix notation:

log(μ) = Bθ + Zβ , (2.2)

where matrices B and Z correspond to the basis functions and
covariates, respectively, and vectors θ and β are the associated
parameters to be estimated (details in supplementary material
S1).

Following the philosophy of Eilers and Marx (1996), we use
a rich (cubic) B-splines basis and counterbalance the associ-
ated flexibility by imposing a discrete roughness penalty on
contiguous B-spline coefficients. For two-dimensional P-splines,
the penalty can be obtained based on row-wise (direction of
calendar time) and column-wise (direction of reporting delay)
differences for matrix � = (θj,k) with j = 1, . . . , KT and
k = 1, . . . , KD as shown in supplementary material S1 (Durbán,
Currie, and Eilers 2002; Fahrmeir et al. 2013). Let Dm

t and
Dm

d denote the mth order row-wise and column-wise difference
matrix (here m = 2) with dimensions (KT − m) × KT and
(KD − m) × KD, respectively. For ease of notation, let Dt =
Dm

t and Dd = Dm
d . The difference matrix for vector θ can be

obtained by expanding the difference matrix into IKD ⊗ Dt and
Dd ⊗ IKT , where ⊗ denotes the Kronecker product. Using this
notation, the row-wise and column-wise difference penalty can
be written as

‖(IKD ⊗ Dt)θ‖2 = θ�(IKD ⊗ Dt)
�(IKD ⊗ Dt)θ

= θ�(IKD ⊗ D�
t Dt)θ and

‖(Dd ⊗ IKT )θ‖2 = θ�(Dd ⊗ IKT )�(Dd ⊗ IKT )θ

= θ�(D�
d Dd ⊗ IKT )θ .

Let λt > 0 and λd > 0 denote the row-wise and column-
wise penalty parameter, respectively. The penalty for the two-
dimensional B-spline basis becomes:

λtθ
�(IKD ⊗ D�

t Dt)θ + λdθ
�(D�

d Dd ⊗ IKT )θ

= θ�
(

λt(IKD ⊗ D�
t Dt) + λd(D�

d Dd ⊗ IKT )

)
θ .

Let us define the penalty matrices Pt = D�
t Dt + δIKT and

Pd = D�
d Dd + δIKD , where δ is a small number (say δ =

10−12), to ensure that the penalty matrices are full rank and thus
invertible. Following Lang and Brezger (2004), the penalty can
be translated in a Bayesian framework by specifying a Gaussian
prior (θ |λ) ∼ Ndim(θ)(0,P−1(λ)), where λ = (λt , λd)

� is the
penalty vector andP(λ) = λt(IKD ⊗Pt)+λd(Pd⊗IKT ) is the pre-
cision matrix. An uninformative Gaussian prior is assumed for
β , namely β ∼ Ndim(β)(0, V−1

β ) with Vβ = ζ Ip+1 (ζ = 10−5).
Denote by X = (B, Z) the global design matrix, ξ = (θ�, β�)�
the latent parameter vector and Qλ

ξ
= blkdiag(P(λ), Vβ) the

precision matrix for ξ , where blkdiag(·) refers to a block diagonal
matrix. From here, we focus on the negative binomial model
for the number of cases. The Poisson model is described in
supplementary material S4. The Bayesian model is summarized
as follows:

https://github.com/bryansumalinab/Laplacian-P-spline-nowcasting.git
https://github.com/bryansumalinab/Laplacian-P-spline-nowcasting.git
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(yi|ξ) ∼ NB(μi, φ) with log(μ) = Xξ ,

(ξ |λ) ∼ Ndim(ξ)(0, (Qλ
ξ )

−1),

(λt|δt) ∼ G
(

ν

2
,
νδt
2

)
,

(λd|δd) ∼ G
(

ν

2
,
νδd

2

)
,

δt ∼ G(aδ , bδ),

δd ∼ G(aδ , bδ),

φ ∼ G(aφ , bφ),

whereG(a, b) denotes a Gamma distribution with mean a/b and
variance a/b2. The prior specification on the penalty parameters
follows from Jullion and Lambert (2007). They have shown that
when hyperparameters aδ , bδ are chosen to be equal and small
enough (say 10−5), then the resulting fit is robust to the value
of ν (ν = 3 in this article). In addition, we impose an unin-
formative Gamma prior on the overdispersion parameter with
aφ = bφ = 10−5.

2.2. Laplace Approximation to the Conditional Posterior
of ξ

The conditional posterior of the latent vector ξ is approximated
by a Gaussian distribution via the Laplace approximation. The
gradient and Hessian of the (log) conditional posterior are ana-
lytically derived and used in a Newton-Raphson algorithm to
obtain the Gaussian approximation to the conditional posterior
distribution of ξ .

For a negative binomial distributed yi with mean
E(yi) = μi, the probability distribution can be written as
an exponential dispersion family given by p(yi; γi, φ) =
exp

( (
yiγi − b(γi)

)
/a(φ)+c(yi, φ)

)
, where γi = φ log

(
μi

μi+φ

)
,

b(γi) = −φ2 log
(

φ
μi+φ

)
, c(yi, φ) = log

(
�(yi+φ)

�(yi+1)�(φ)

)
,

a(φ) = φ, and �(·) is the gamma function. Thus, for fixed
φ, a negative binomial regression model is a generalized
linear model (GLM) where μi is linked to the linear predictor
through the link function g(μi). Our setting uses a log-link
function g(μi) = log(μi) and the log-likelihood is given by
logL(ξ , φ;D) = ∑n

i=1((yiγi − b(γi))/a(φ) + c(yi, φ)). It can
be shown that for a negative binomial model, the gradient and
Hessian are:

∇ξ logL(ξ , φ;D) = X�WD(y − μ) and
∇2

ξ logL(ξ , φ;D) = X�MVX − X�WX,

where W = diag(w1, . . . , wn), wi = [V(yi)(g′(μi))2]−1,
D = diag(g′(μ1), . . . , g′(μn)), V = diag(v1, v2, . . . , vn),
vi = g′(μi)−1

(
V(yi)−1(∂(g′(μi)−1)/∂μi) + g′(μi)−1

(∂(V(yi)−1)/∂μi)
)

and M = diag(y1 − μ1, . . . , yn − μn).
Further details are provided in supplementary
material S2.

Using Bayes’ rule, the posterior of ξ conditional on the
penalty vector λ and overdispersion parameter φ is:

p(ξ |λ, φ,D) ∝ L(ξ , φ;D)p(ξ |λ)

∝ exp
(

1
φ

n∑
i=1

(yiγi − b(γi)) − 1
2
ξ�Qλ

ξ ξ

)
.

The gradient and Hessian for the log-conditional posterior of ξ

are:

∇ξ log p(ξ |λ, φ,D) = X�WD(y − μ) − Qλ
ξ ξ ,

∇2
ξ log p(ξ |λ, φ,D) = X�MVX − X�WX − Qλ

ξ .

The above gradient and Hessian are used in a Newton-
Raphson algorithm to approximate the mode of the conditional
posterior of ξ . After convergence, the Laplace approximation to
the conditional posterior of ξ is a multivariate Gaussian density
denoted by p̃G(ξ |λ, φ,D) = Ndim(ξ)(̂ξλ, ̂λ) with mean and
covariance matrix obtained from the Newton-Raphson algo-
rithm. There are situations where the Laplace approximation
provides a poor summary of the target posterior distribution, for
example in scenarios of sparse likelihoods or low counts. In such
scenarios, the resulting posterior distribution may exhibit skew-
ness and Lambert and Gressani (2023) propose an approach to
address this issue in a Laplacian-P-splines context.

2.3. Optimization of Hyperparameters and
Overdispersion Parameter

In this section, we derive the (approximate) posterior distribu-
tion of the hyperparameters λ = (λt , λd)

� and δ = (δt , δd)
�,

and overdispersion parameter φ. Let η = (λt , λd, δt , δd)
� denote

the vector of hyperparameters. Using Bayes’ theorem, the joint
posterior of η and φ is

p(η, φ|D) ∝ L(ξ , φ;D)p(ξ |λ)p(λ|δ)p(δ)p(φ)

p(ξ |λ, φ,D)
.

Following Rue, Martino, and Chopin (2009), the above pos-
terior can be approximated by replacing p(ξ |λ, φ,D) with
p̃G(ξ |λ, φ,D) obtained in Section 2.2 and by evaluating the
latent vector at ξ̂ λ. Note that γi = x�

i ξ , where x�
i corresponds

to the ith row of the design matrix X. Also, the determinant
|Qλ

ξ
| in p(ξ |λ) is |Qλ

ξ
| ∝ |P(λ)|. Hence, the approximated joint

posterior of η and φ is

p̃(η, φ|D) ∝ L(ξ , φ;D)p(ξ |λ)p(λ|δ)p(δ)p(φ)

p(ξ |λ, φ,D)

∣∣∣
ξ=ξ̂ λ

∝ exp

( n∑
i=1

(
(yix�

i ξ̂ λ − b(x�
i ξ̂ λ))/φ

+ log(�(yi + φ)) − log �(φ)
))

× |P(λ)| 1
2 exp

(
−1

2
ξ̂

�
λ Qλ

ξ ξ̂ λ

)
× (λtλd)

( ν
2 −1) δ

( ν
2 +aδ−1)

t exp
(
−δt(bδ + ν

2
λt)

)
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× δ
( ν

2 +aδ−1)

d exp
(
−δd(bδ + ν

2
λd)

)
× φ(aφ−1) exp(−bφφ)|̂λ| 1

2 .

Integrating out the hyperparameters δt and δd from
p̃(η, φ|D), we obtain the joint marginal posterior of λ and φ:

p̃(λ, φ|D) =
∫ ∞

0

∫ ∞

0
p̃(η, φ|D)dδt dδd

∝ exp

( n∑
i=1

(
(yix�

i ξ̂ λ − b(x�
i ξ̂ λ))/φ

+ log(�(yi + φ)) − log �(φ)
))

× |P(λ)| 1
2 exp

(
−1

2
ξ̂

�
λ Qλ

ξ ξ̂ λ

)
φ(aφ−1)

× exp(−bφφ)|̂λ| 1
2

× (λtλd)
( ν

2 −1)
(
(bδ + ν

2
λt)(bδ + ν

2
λd)

)−( v
2 +aδ)

.

To ensure numerical stability, the penalty vector is log trans-
formed v = (vt , vd)

� = (log(λt), log(λd))
� and so is the

overdispersion parameter vφ = log(φ). The joint log-posterior
of v and vφ is then given by:

log p̃(v, vφ ;D) =̇
n∑

i=1

(
(yix�

i ξ̂ v − b(x�
i ξ̂ v))/ exp(vφ)

+ log(�(yi + exp(vφ))) − log �(exp(vφ))
)

+1
2

log |P(v)| − 1
2
ξ̂

�
v Qv

ξ ξ̂ v

+aφvφ − bφevφ + 1
2

log |̂v|
+ν

2
(vd + vt) −

(ν

2
+ aδ

)
(

log(bδ + ν

2
exp(vd)) + log(bδ + ν

2
exp(vt))

)
,

where =̇ denotes equality up to an additive constant. Finally,
log p̃(v, vφ ;D) is maximized using the optim() function in R to
obtain the posterior mode as a point estimate for v and vφ .

2.4. Nowcasting and Prediction Interval

To obtain the mean nowcast estimate with the prediction inter-
val, note that log(μi) = x�

i ξ or equivalently log(μt,d) = x�
t,dξ ,

where p̃G(ξ |v,D) = Ndim(ξ)(̂ξ v, �̂v). Thus, p̃(log(μt,d)|v,D) =
N1(x�

t,dξ̂ v, x�
t,d�̂vxt,d). The mean estimate for the not-yet-

reported cases is calculated as μ̂t,d = exp(x�
t,dξ̂ v) for all (t, d)

combinations with t > T − d. Next, the estimate for the total
number of cases for each t is obtained by summing the already
reported cases and the mean estimate for the not-yet-reported
cases, that is

μ̂t =
∑

{d:t≤T−d}
yt,d +

∑
{d:t>T−d}

μ̂t,d.

The prediction interval for the nowcast values is obtained by
sampling from the posterior predictive distribution of the log-
mean number of cases through the following steps:

1. For each (t, d) combination with t > T −d (corresponding to
the not-yet-reported cases), generate 1000 random samples
(̂yt,d) from a Gaussian distribution with mean x�

t,dξ̂ v and
variance x�

t,d�̂vxt,d.
2. Exponentiate the sampled values from the previous step to

obtain the (estimated) average reporting intensities μ̂t,d =
exp(̂yt,d).

3. Compute the average prediction for the not-yet-reported
cases for each t , that is, compute μ̂t = ∑

d μ̂t,d for t > T −d.
4. For each t, sample ŷt containing 1000 values from the

NB(μ̂t , exp(̂vφ)) distribution.
5. Finally, compute the quantiles of the sampled values ŷt corre-

sponding to the desired prediction interval.

2.5. Delay Distribution

To obtain the smooth estimate of the delay distribution, only the
first term on the right hand side of (2.2) is used (excluding day of
the week effects), as explained in the paper of Van de Kassteele,
Eilers, and Wallinga (2019). Specifically, the procedure to com-
pute the delay distribution is as follows:

1. Compute the contribution of the smoothing term in (2.2) to
the reporting intensity for all (t, d) combinations: μsmooth =
exp(Bθ).

2. Arrange μsmooth into a T × (D + 1) matrix with entries
μsmooth

t,d .
3. For each t = 1, . . . , T, compute the reporting delay distribu-

tion given by: f̂t(d) = μsmooth
t,d /

∑D
d=0 μsmooth

t,d .

3. Simulations

A simulation study is implemented in order to evaluate the
predictive performance of the proposed method. The procedure
to perform the simulations is as follows:

1. Consider a function f (t) that represents the mean epidemic
curve of all cases such that μ(t) = exp(f (t)) for t = 1, . . ., T.

2. For each t, generate a random sample yt from a negative bino-
mial distribution with mean μ(t) and fixed overdispersion
parameter (here φ = 10).

3. To account for possible delays d = 0, 1, 2, . . . , D, generate
samples from a multinomial distribution with probabilities
p0, p1, p2, . . . , pD such that

∑D
d=0 pd = 1:

(yt,0, yt,1, yt,2, . . . , yt,D) ∼ Multinomial(yt , p0, p1, p2, . . . , pD).

This sample represents the reported number of cases for each
(t, d) combination.

4. Steps 1–3 are repeated 500 times to generate 500 possible
realizations.

For the epidemic curve, the following two functions inspired
from the paper of Noufaily et al. (2016) are used:

f (t) = θ1 + θ2 sin
(

2π t
150

)
,

h(t) = θ1 + θ2 sin
(

2π t
150

)
+ θ3

√
t,

for t = 1, . . . , 365 so that a yearly time window (365 days)
is assumed in the simulations. In terms of delay probabilities,
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Figure 1. Illustration of the delay probabilities considered in the simulations.

Figure 2. Mean epidemic curves considered in the simulations.

we consider a maximum delay of D = 7 days with probabil-
ities (p0, p1, p2, . . . , p7) = (0.0, 0.1, 0.4, 0.2, 0.1, 0.1, 0.05, 0.05),
as illustrated in Figure 1. This means that 5% of the cases that
occurred at time T − 6 have a delay of 7 days (with probability
p7 = 0.05) and still need to be reported, or equivalently, 95% of
the cases that occurred at time T −6 have already been reported.
For cases that occurred at time T − 5, only 90% of these cases
have been reported, as cases with delays of 6 and 7 days are yet
to be reported. For those cases that occurred on the nowcast day
(time T), no cases are reported and the delay is 100%.

Two scenarios are considered for f (t): (i) the first has a small
number of cases with values of θ1 = 3 and θ2 = 1; (ii) the second
scenario has a relatively large number of cases with θ1 = 3 and
θ2 = 2 and an additional factor of 50 is added to the mean
function such that μ(t) = 50 + exp(f (t)). These scenarios are
denoted by f1(t) and f2(t), respectively. Similarly, two scenarios
are also considered for the second function h(t): (i) the first
scenario has values θ1 = 0, θ2 = 0.4, and θ3 = 0.2; (ii) the
second scenario has values θ1 = 1.5, θ2 = 0.4 and θ3 = 0.2. We
denote these functions by h1(t) and h2(t), respectively. The first
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Figure 3. Simulated cases for different epidemic curves. The dashed vertical lines correspond to different nowcast dates.

Table 1. Performance on the nowcast date for function f1(t): LPS-NB—LPS model with a negative binomial distribution for the number of cases; LPS-P —LPS with a
Poisson distribution for the number of cases; VDK—Methodology of Van de Kassteele, Eilers, and Wallinga (2019).

95% PI coverage PI width Bias (μ) % Bias (μ)

LPS-NB LPS-P VDK LPS-NB LPS-P VDK LPS-NB LPS-P VDK LPS-NB LPS-P VDK

March 95.8 78.6 99.8 48.9 32.7 74.9 1.7 3.1 4.0 32.1 47.7 70.2
Apr 97.6 86.0 99.2 20.7 15.6 28.2 −0.4 0.4 −1.6 23.9 30.9 32.3
May 96.6 73.0 100.0 41.5 25.2 73.7 −1.9 1.8 −3.0 19.3 26.4 27.9
June 96.0 54.0 99.6 98.6 42.2 226.5 −0.1 9.3 15.3 14.7 27.7 35.3
July 96.0 60.6 98.4 63.5 29.2 192.2 1.1 5.0 20.2 14.1 25.2 66.9
Aug 95.6 83.8 98.8 19.0 13.4 31.8 −0.7 0.2 −1.3 16.2 19.3 28.3
Sept 94.0 85.6 98.2 14.5 11.3 23.9 −1.3 −0.5 −1.9 19.2 19.1 31.9
Oct 95.6 72.6 99.2 38.6 21.3 69.2 −2.2 0.5 −3.0 14.8 16.8 23.7
Nov 97.2 48.8 99.0 96.6 34.0 232.5 4.7 4.9 21.7 14.5 17.8 43.0

Table 2. Performance on the nowcast date for function h1(t): LPS-NB—LPS model with a negative binomial distribution for the number of cases; LPS-P —LPS with a
Poisson distribution for the number of cases; VDK—Methodology of Van de Kassteele, Eilers, and Wallinga (2019).

95% PI coverage PI width Bias (μ) % Bias (μ)

LPS-NB LPS-P VDK LPS-NB LPS-P VDK LPS-NB LPS-P VDK LPS-NB LPS-P VDK

March 96.6 81.2 95.6 26.5 19.1 13.2 1.3 2.0 −0.3 41.1 55.3 20.3
Apr 97.4 85.8 93.8 18.8 13.1 12.9 0.2 0.7 −0.9 25.5 33.1 23.2
May 97.2 78.4 95.2 26.4 16.4 20.9 −0.6 0.4 −1.7 20.4 25.4 19.2
June 95.8 75.2 95.2 40.5 21.7 39.6 −1.6 0.7 −0.5 16.6 21.4 15.3
July 96.4 72.0 96.4 40.0 21.7 49.2 −1.4 1.3 1.9 15.0 19.8 17.2
Aug 94.4 77.6 97.6 29.2 17.9 34.6 −1.6 0.4 −0.7 15.5 18.0 15.7
Sept 96.0 77.6 96.8 30.7 18.4 34.8 −2.3 −0.1 −2.6 16.5 17.5 18.5
Oct 96.2 66.0 97.8 54.7 25.8 69.2 −3.0 0.6 −1.1 13.9 16.4 14.7
Nov 97.6 49.4 96.4 94.4 34.3 157.1 0.2 3.8 16.7 11.3 16.6 30.9

function is symmetric with three peaks as shown in Figure 2(a)
and (b). On the other hand, the second function is not periodic
as opposed to the first function (see Figure 2(c) and (d)). The
plots for (one realization of) simulated cases based on these
functions are shown in Figure 3 with (dashed) vertical lines
corresponding to the different nowcast dates.

For each generated dataset, we fit the LPS-NB (negative
binomial assumption) and LPS-P (Poisson assumption) models
as well as the method proposed by Van de Kassteele, Eilers,
and Wallinga (2019) (VDK), and compute the following per-
formance measures. The bias and relative bias (% bias) with
respect to the true mean epidemic curve (μ) and the 95%



JOURNAL OF COMPUTATIONAL AND GRAPHICAL STATISTICS 7

Table 3. Performance on the nowcast date for function f2(t): LPS-NB - LPS model with a negative binomial distribution for the number of cases; LPS-P —LPS with a Poisson
distribution for the number of cases.

95% PI coverage PI width Bias (μ) % Bias (μ)

LPS-NB LPS-P LPS-NB LPS-P LPS-NB LPS-P LPS-NB LPS-P

March 96.8 49.4 296.2 147.5 12.5 32.9 30.0 71.6
Apr 98.0 54.8 147.8 72.6 2.0 17.4 19.5 47.1
May 98.4 50.8 142.2 63.7 −3.7 14.3 16.6 32.1
June 97.4 37.0 380.4 106.5 12.2 42.5 15.7 34.5
July 97.8 42.4 212.8 59.1 8.6 11.3 14.7 24.4
Aug 95.4 55.6 94.1 37.2 −3.5 3.6 14.0 19.8
Sept 96.6 55.8 90.8 35.2 −1.6 2.9 13.3 19.7
Oct 96.6 48.8 123.8 41.6 −5.6 0.7 13.0 17.4
Nov 97.8 36.6 373.4 71.2 28.7 14.4 17.7 19.8

Table 4. Performance on the nowcast date for function h2(t): LPS-NB—LPS model with a negative binomial distribution for the number of cases; LPS-P—LPS with a
Poisson distribution for the number of cases.

95% PI coverage PI width Bias (μ) % Bias (μ)

LPS-NB LPS-P LPS-NB LPS-P LPS-NB LPS-P LPS-NB LPS-P

March 95.0 63.4 115.3 57.5 6.1 8.8 35.6 52.2
Apr 96.8 62.4 67.6 34.9 −0.3 4.1 20.0 32.9
May 97.6 53.8 103.6 45.6 −2.3 7.9 16.2 27.7
June 98.0 44.4 178.6 62.0 −1.1 16.8 14.0 28.3
July 97.0 43.8 184.6 56.6 2.2 12.6 13.5 24.0
Aug 97.2 49.0 129.2 45.0 −2.4 7.9 13.0 21.4
Sept 95.8 44.4 136.3 45.5 −4.6 6.2 12.5 20.4
Oct 97.6 38.2 257.7 63.0 −0.7 10.5 11.5 20.4
Nov 97.2 29.4 455.9 81.7 21.2 17.6 12.8 20.6

Figure 4. COVID-19 death (a) and incidence (b) cases in Belgium. Dashed vertical lines correspond to selected nowcast dates.

prediction interval (PI) coverage and prediction interval width
to measure the predictive accuracy of our methodology. For a
given calendar day t, the bias and relative bias are computed as
Biast = (1/S)

∑S
s=1(μ̂st −μt) and %Biast = (1/S)

∑S
s=1 |(μ̂st −

μt)/μt| × 100%, respectively, where S = 500 is the number of
simulations, μt is the target value for the mean epidemic curve
and μ̂st is the corresponding mean nowcast estimate at time t
and simulation s. The prediction interval coverage is obtained
by determining the percentage of (true) unreported cases that
fall within the computed interval. Moreover, for each simulation,
the interval width is obtained, that is, the difference between the
upper and lower bound of the prediction interval.

The nowcast date is fixed at the end of the month (from
March to November). For each nowcast date, the prediction
performance is computed for the dates having unreported cases,
that is, for t = T − (D − 1), . . . , T. As we fixed a maximum
delay of 7 days, there will be seven dates (including the nowcast
date) that involve the prediction of unreported cases. Here, we

only report simulation results on the nowcast day, that is, at
time T. Tables 1–4 summarize the results of the prediction per-
formance on the nowcast date for the different functions being
considered.

In terms of prediction interval, the Poisson model with LPS
generally exhibits the smallest prediction interval widths result-
ing in lower coverage rates for all functions. This is expected
since data are simulated from the negative binomial distribution
which has an overdispersion feature that is not accounted for
by the Poisson distribution. For function f1(t) (Table 1), LPS-
NB has more stable coverage rates and is closer to the nominal
95% prediction interval across all nowcast dates compared to
VDK. The method of VDK on the other hand, tends to overcover
due to wider prediction intervals, indicating higher uncertainty
in its predictions. For functions h1(t) (Table 2) the PI coverage
for LPS-NB and VDK are somewhat similar. The PI width of
LPS-NB are larger from March to June and smaller from July
to November compared to VDK.
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Table 5. Proportion of cases reported for each delay in the mortality data.

Delay (days) 0 1 2 3 4 5 6 7

Proportion 0.000 0.143 0.664 0.118 0.047 0.017 0.007 0.004

Table 6. Proportion of cases reported for each delay in the incidence data.

Delay (days) 0 1 2 3 4 5 6 7

Proportion 0.000 0.001 0.61 0.373 0.012 0.002 0.001 0.001

The bias of the three methods varies across functions and
months. LPS-NB and LPS-P often exhibit similar bias patterns,
while VDK occasionally shows higher biases, particularly for
function f1(t) during months like July and November. However,
the biases are relatively small in magnitude. In terms of relative
bias, VDK sometimes displays higher values compared to LPS-
NB and LPS-P, especially noticeable in function f1(t) during
months like July and November. For functions f2(t) and h2(t)
(Tables 3 and 4) with relatively high case numbers, we did not
present the method of Van de Kassteele, Eilers, and Wallinga
(2019) since their results yield excessively wide prediction inter-
vals and large relative bias. We believe that the reason for this is
more of a computational issue rather than a methodological one.
The LPS-NB model for these functions yield stable results with
higher coverage rates, wider PI, lower relative bias and generally
lower bias compared to the LPS-P model.

4. Real Data Application

The proposed nowcasting method is applied to COVID-19 mor-
tality data in Belgium for 2021 and incidence data for 2022.
Raw data was downloaded from the website of the Sciensano
research institute (https://epistat.sciensano.be/covid/; Accessed
December 20, 2022). The data contains the cumulative number
of cases, reported up to the day of the file. The file is updated
every day, and in this way, the number of cases and reporting
delays are available. Data is structured in matrix format with
the date of death/confirmed case as rows and number of days
of reporting delay as columns. Figure 4 shows the total number
of cases with (dashed) vertical lines corresponding to different
nowcast dates used for illustration. As no cases are reported
immediately on the day of death/confirmed case in the data, all
cases have a delay of at least one day. The proportion of cases
reported for each delay is shown in Table 5. Most of the cases
(66% for mortality and 61% for incidence) are reported with a
delay of 2 days, followed by a delay of 1 day (14%) for mortality
and 3 days (37%) for incidence. The rest of the delays account
for a very small percentage of the cases. The reporting delay is
truncated to a maximum number of seven days.

We choose KT = 40 and KD = 10 for the real data analysis. In
addition, we consider the day of the week effect as an additional
covariate in the model. Specifically, we fit the following model
log(μt,d) = β0 + ∑KT

j=1
∑KD

k=1 θj,kbj(t)bk(d) + ∑6
l=1 βlzl(t, d)

as in (2.1), where
∑6

l=1 βlzl(t, d) represents the day of the week
with Monday taken as the reference category. Algorithms to fit
the model are available in the EpiLPS package (Gressani 2021)
through the nowcasting() routine.

Figure 5 presents the observed (reported and not-yet-
reported) cases for the past 14 days and nowcasting results
using the mortality data at different nowcast dates (last day of
each month). The blue color represents the confirmed cases
that are already reported as of the nowcast date. The gray color
represents the observed cases that have not yet been reported as
of the nowcast date. The red points with error bars correspond to
the nowcast prediction, with a 95% prediction interval. It can be
seen that most of the nowcast predictions on the nowcast date
are fairly close to the observed not-yet-reported cases (gray).
In addition, all of the observed cases fall within the prediction
interval. For the incidence data, we used a maximum delay of 5
days. The nowcast results for the incidence data (Figure 6) tend
to exhibit varying degrees of accuracy. This means that some
nowcast values are close to the observed values, while others
are further away, and some are moderately close. Notably, the
nowcast estimates (on the nowcast day) for May and July are
more distant from the observed values.

The estimated delay density is shown in supplementary mate-
rial S5. Results show that the delay distribution is fairly stable
over time for both incidence and mortality data. The density
is highest for a two-day delay except in the beginning of the
year for incidence data. This confirms the observed reporting
intensity in our data as most cases are reported with a two-day
delay.

5. Conclusion

We propose a fast and flexible Bayesian approach for nowcasting
based on the framework of Van de Kassteele, Eilers, and Wallinga
(2019) by coupling P-splines and Laplace approximations. Based
on the results presented in this article, Bayesian nowcasting with
Laplacian-P-splines seems to be a promising tool. Simulation
results demonstrate that our method, under the assumption of
a negative binomial distribution, produces stable results with
excellent prediction interval coverage and relatively small bias.
The nowcast predictions for the mortality data of Belgium seem
to be fairly close to the observed not-yet-reported values, and
all prediction intervals for the different nowcast dates being
considered contain the observed values. For incidence data char-
acterized by a large number of cases, the nowcast results tend to
exhibit varying degrees of accuracy. However, it is important to
emphasize the absence of data on the nowcast day and that there
are very few reported cases (0.1%) with a one-day delay for the
incidence data. This makes it much more difficult to produce
accurate nowcast predictions.

While nowcasting can provide valuable real-time informa-
tion and predictions, it also has certain drawbacks. Nowcast-

https://epistat.sciensano.be/covid/
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Figure 5. Nowcast for mortality data with different nowcast dates. Blue—reported cases ; Gray—not-yet-reported cases; Red points—nowcast estimates; Red error bar—
95% nowcast prediction interval.

ing heavily relies on real-time data, which may not always be
readily available or of good quality. Biases in the data (such
as double-counting of cases) that are corrected at a later time
can impact the nowcasting prediction. In addition, gaps in
data collection, processing, or dissemination can impact the

timeliness and effectiveness of nowcasting predictions. Despite
these drawbacks, nowcasting has been a very important tool
for obtaining timely information and short-term predictions.
While the proposed nowcasting model is rather complex, we
have embedded the nowcasting() routine in the EpiLPS pack-
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Figure 6. Nowcast for incidence data with different nowcast dates. Blue—reported cases ; Gray—not-yet-reported cases; Red points—nowcast estimates; Red error bar—
95% nowcast prediction interval.

age (Gressani 2021) to provide a user-friendly experience. An
interesting extension of the LPS nowcasting approach is to
include it within a model for the time-varying reproduction
number (Gressani et al. 2022b) as recently proposed by Suma-
linab et al. (2024). Another possible extension is to consider

the correlation of cases for each time point t. By doing this,
the model will be able to capture temporal dependencies and
may provide better estimates of variability. Finally, account-
ing for spatial correlation and other covariate effects would be
valuable.
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Supplementary Materials

Online Appendix: Contains details for the model matrices and parameters,
derivations for the gradient and Hessian, hyperparameter optimization,
details for the LPS-Poisson model, supplementary figures, and tables.

R scripts: R code used to implement the simulation study is avail-
able on GitHub (https://github.com/bryansumalinab/Laplacian-P-spline-
nowcasting.git).
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