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Abstract

Digital polymerase chain reaction (dPCR) is a best-in-class molecular biology technique for the accurate and precise quantification
of nucleic acids. The recent maturation of dPCR technology allows the quantification of up to thousands of targeted nucleic acids
per instrument per day. A key step in the dPCR data analysis workflow is the classification of partitions into two classes based on
their partition intensities: partitions either containing or lacking target nucleic acids of interest. Much effort has been invested in the
design and tailoring of automated dPCR partition classification procedures, and such procedures will be increasingly important as the
technology ventures into high-throughput applications. However, automated partition classification is not fail-safe, and evaluation
of its accuracy is highly advised. This accuracy evaluation is a manual endeavor and is becoming a bottleneck for high-throughput
dPCR applications. Here, we introduce dipcensR, the first data-analysis procedure that automates the assessment of any linear partition
classifier’s partition classification accuracy, offering potentially substantial efficiency gains. dipcensR is based on a robustness evaluation
of said partition classification and flags classifications with low robustness as needing review. Additionally, dipcensR’s robustness
analysis underpins (optional) automatic optimization of partition classification to achieve maximal robustness. A freely available R
implementation supports dipcensR’s use.

Keywords: digital PCR; thresholding; partition classification; accuracy; multiplexing

Introduction
Digital polymerase chain reaction (dPCR) is a molecular biology
technique that allows best-in-class accurate and precise quan-
tification of nucleic acids, with broad cross-field applications
[1–4]. While an old principle, its adoption has accelerated substan-
tially over the past decade following advances in microfluidics
[1, 4]. State-of-the-art implementations have considerably
increased the reach of the method, now offering possibilities to
quantify tens of distinct nucleic acid target sequences in a single
reaction (“(higher-order) multiplexing”), and with throughput
in the order of hundreds of samples per instrument per day
[1, 4, 5]. Thanks to these and other key advantages, digital PCR
increasingly replaces quantitative PCR [1–3].

A unifying aspect of dPCR across the range of implementations
is the partitioning of the reaction mixture in, typically, tens of
thousands of partitions before performing the PCR [1, 4]. In most
current implementations, the fluorescence intensities in these
partitions are subsequently measured after the PCR has ended
(“endpoint fluorescence”), yielding a single fluorescence intensity
value per partition per interrogated color [4]. These fluorescence

intensities are a proxy of the presence (absence) of a (series of)
nucleic acid target sequence(s). The term digital arises from mak-
ing an informed dichotomization (“classification”, “thresholding”)
of partitions based on those intensities, i.e. as either containing
(“positive”) or lacking (“negative”) that (particular combination of)
nucleic acid target sequence(s) [6]. The observed fraction of pos-
itive partitions (“partition occupancy”) is finally used to estimate
the target’s concentration [1]. We refer the unacquainted reader
to Huggett et al. [1] for an in-depth review of dPCR’s concepts and
terminology.

While manual partition classification is often feasible and
straightforward, many efforts have focused on developing
objective, automated partition classifiers [6]. Such classifiers
are becoming increasingly important as the technology matures
and moves toward multicolor, higher-throughput applications.
Ample discussion on performance characteristics and application
niches of these classifiers is available elsewhere [6–8]. Proper
dichotomization is essential to dPCR’s accuracy yet does not
always result from automated partition classification [6–8].
The post hoc performance evaluation of partition classification
accuracy remains wholly unaddressed; hence, such evaluations
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are still a manual endeavor. With the aforementioned increase in
throughput, both in the number of targets investigated within
single reactions and the number of reactions, such manual
scrutiny of classification accuracy is becoming a bottleneck in
the dPCR data analysis pipeline.

Here, we aim to address this incipient bottleneck by proposing
a simple and effective partition classification accuracy metric
that can be used with any linear threshold method. In essence,
the dipcensR algorithm assesses the robustness of the estimated
target concentration to threshold perturbation: large changes in
target concentration estimates for small threshold perturbations
indicate a threshold that may not be optimally located or a
reaction with, e.g. limited resolution. This robustness is intuitively
visualized as a change in concentration versus perturbation plot,
where a steeply declining curve corresponds to low robustness.
The dipcensR metric d reflects the proportional change in nucleic
acid concentration for a preset threshold perturbation window.
This metric forms the basis of a flagging system that allows an
agile identification of (i) potentially aberrant partition classifica-
tion or (ii) a nucleic acid quantity that is particularly sensitive to
the given partition classification. Such flagging is done on the sin-
gle reaction-single color level and allows to select reaction–color
pairs needing manual review. The flagging system aims to offer
potentially substantial time and effort savings. Additionally, based
on this accuracy metric, an optional robustness-maximizing clas-
sification adjustment procedure is described and evaluated and
shown to correct aberrant classification in some instances.

Materials and methods
This section is organized as follows. The dipcensR quality con-
trol methodology is introduced in section The dipcensR Method.
Building upon the quality control procedure, a related threshold
adjustment procedure, aiming to improve threshold robustness, is
described in section Optional: Robustness-Maximizing Threshold
Adjustment. The section concludes with a description of method
evaluation on experimental and simulated data in section Method
Evaluation.

The dipcensR method
The dipcensR method is a threshold quality evaluation procedure
(note: it is not a partition classifier) designed to verify linear
threshold stability on a reaction-by-reaction, color-by-color basis.
The description of the method focuses on the analysis of a single
color, but dipcensR can be applied repeatedly to deal with reactions
querying any number of colors (targets).

Figure 1 provides a flowchart illustrating the key steps of the
dipcensR method. dipcensR starts from the raw partition-level flu-
orescence intensities and a predetermined linear threshold, the
latter given by any partition classification method (Fig. 1a). Next,
partitions with the most extreme, i.e. lowest and highest, fluores-
cence intensities are trimmed to increase the stability of the range
estimate (Fig. 1b; details on this range stability are provided fur-
ther). A sequence of perturbed thresholds is then calculated, with
the range of that sequence based on the range of the remaining
partition fluorescence intensities (Fig. 1c). For each of those per-
turbed thresholds, the change in partition occupancy arising from
the perturbed threshold is calculated (Fig. 1d). Finally, reactions
displaying low robustness, obvious from a steeply declining curve
about the original threshold, are flagged for review.

Formally, let yi
(
i = 1, . . . , n

)
denote a partition’s endpoint fluo-

rescence intensity for a given color and reaction, with n the total
number of partitions. Define the sequence Y = 〈

y1, . . . , yn
〉

as the

observed partition intensities (re)indexed in monotone increasing
order. Let t denote a predetermined threshold that dichotomizes
the sequence Y into two subsequences: a sequence Yneg of parti-
tions assumed not to contain the nucleic acid target sequence(s)
of interest (all elements for which yi < t) and a sequence Ypos of
partitions assumed to contain the target nucleic acid(s) of interest
(all elements for which yi ≥ t). Let nneg = #

(
Yneg

)
, npos = #

(
Ypos

)

denote the length of those sequences, respectively. The algorithm,
named dipcensR, proceeds as follows:

1. If nneg ≥ x,i.e. the sequence contains at least x (default: 10)
elements, remove from that sequence the elements yneg,1 to
yneg,�nneg/10� (where � � denotes the floor function) to obtain
Yneg∗ , i.e. trim the lower 10% elements.

2. If npos ≥ x,i.e. the sequence contains at least x (default: 10)
elements, remove from that sequence elements
ypos,npos−�npos/10� to ypos,npos to obtain Ypos∗ , i.e. trim the upper
10% elements.

3. Denote Y∗ = {
Yneg∗ , Ypos∗

}
as the combined sequences of

trimmed negative and positive intensities. Calculate r =
max (Y∗) − min (Y∗), i.e. the range of Y∗.

4. Construct a perturbation sequence P = 〈−0.5, −0.49, . . . , 0.5〉
(step size default: 0.01). Calculate a sequence TP that con-
tains for each element pj

(
j = 1, . . . , #(P)

)
of P the perturbed

thresholds tj = t − r ∗ pj.
5. For each element of TP, calculate a sequence Z with elements

zj =
∑

Y∗ I(Y∗>tj)/ dim(Y∗)
∑

Y∗ (I(Y∗>t)/ dim(Y∗) , i.e. the reaction partition occupancy
for a given perturbed threshold relative to the partition
occupancy estimated using the original threshold. When
∑

Y∗ I
(
Y∗ > tj

) = 0, set zj = 1010, when
∑

Y∗ I
(
Y∗ > tj

) = # (Y∗)
set zj = 10−10.

6. Calculate the difference in relative partition occupancy d in
a window w (default, 0.2) about the initial threshold t: d =
zk −zl,where k is the index j for which pj = −w/2, and l = j for
which pj = w/2.

7. Finally, assign the reaction–color pair a “green” flag (no
review needed) if d < c1, an “orange” flag (needs review)
if c1 ≤ d < c2, a “red” flag (needs review and likely needs
threshold adjustment) if d ≥ c2. The scalars c1 and c2 are
two cut-offs for flagging, with default values 0.1 and 0.2,
respectively.

Further, a visualization of dipcensR’s output is provided as a line
plot of the sequence Z as a function of the sequence P.

Optional: robustness-maximizing threshold
adjustment
The dipcensR algorithm can optionally improve the specified
threshold t by minimizing d. In particular, this is achieved as
follows:

1. Minimize d in a neighborhood of t, which is defined as the
interval in which the relative partition occupancy change zj

does not exceed a given fraction (default 50%, i.e. (1
/

1.5 < zj <

1.5)).
2. Obtain a new threshold tnew, as the center of the interval

obtained in Step 1.
3. A consequence of adjusting the threshold is that the esti-

mated partition occupancy, i.e. the denominator used in
the calculation of the sequence Z (The dipcensR Method,
Step 5) will change. This necessitates a rerun of the dipcensR
algorithm using the tnew threshold. A new estimate d results,
which is used to assign a final flag, as before (see section The
dipcensR Method).
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Figure 1. The dipcensR workflow. (a) dipcensR’s input consists of (i) individual partition fluorescence intensities and (ii) a (preliminary) threshold given
by any (automatic) partition classifier. (b) Extreme partitions, i.e. partitions with very high or very low fluorescence intensities, are removed. (c) Based
on the range of remaining fluorescence intensities, the initial threshold (Step a) is perturbed, leading to (d) a sensitivity curve displaying the impact of
threshold perturbation (x-axis) on the estimated partition occupancy (y-axis); note that a lower threshold will lead to a higher partition occupancy, and
vice versa (arrows).

Method evaluation
Selected cases
For demonstrating dipcensR’s flagging, example cases represent-
ing the different flags were selected from an analysis of a 48-
sample, 6-color/6-target dilution series experiment. The reactions
were run on a Nio + platform (Stilla Technologies, Villejuif, France)
and analyzed with an in-house developed partition classification
method (unpublished). Details are provided as Supplementary
Material. Note that dipcensR can be used in conjunction with any
linear thresholding procedure (see the discussion).

For verification of the threshold adjustment procedure
performance, the thresholds of these cases were then adjusted
(robustness-maximized) and re-evaluated. To show potential
failure of the threshold adjustment procedure, erroneous
thresholds were then manually assigned to these cases, and
threshold robustness maximization was attempted.

Impact of trimming, concentration, resolution, and
parameter selection
The impact of trimming on the hypothesized increased stability
of range estimates, translating to increased flagging stability, was
investigated. The range of partition intensities in 48 reactions was
calculated before and after trimming. The spread of the ranges in
both groups was then compared qualitatively by calculation of the
ratio of median absolute deviations (after/before) and formally
using the Brown–Forsythe Levene test (lawstat package version
3.6).

The impact of target concentration on flagging was investi-
gated by in silico dilution of a single sample. In particular, fluores-
cence intensities from reaction F08 of definetherain’s [9] bench-
marking data (https://github.com/jacobhurst/definetherain/,
obtained 3 April 2024) were used, the reaction serving as a
reaction with high partition occupancy and clearly discerned
negative and positive clusters. We performed definetherain to
obtain an upper bound on negative partition intensities and a
lower bound on positive partition intensities [9]. We proceeded to
classify partitions as positive when they were above or equal to
the mean of these two bounds and negative when below. In silico
dilution was then achieved by resampling (with replacement)
15 000 intensities, with a given fraction of partitions from the
set of positive (negative) partition intensities, to achieve partition
occupancy in the set {0.001, 0.01, 0.1, 0.2, 0.3, 0.6, 0.9}. dipcensR’s
relative partition occupancy difference d evaluation metric (see
section The dipcensR Method) was then assessed as a function
of partition occupancy. Resampling was performed 100 times for
each of the partition occupancies.

To investigate the effect of resolution, samples with varying
degrees of negative–positive cluster resolution and a range of
partition occupancies (see previous paragraph) were constructed
in silico. Different definitions of resolution in the context of dPCR
experiments have been proposed [7, 10], but all have in common
that a lower positive (negative) cluster variance results in a higher
resolution. Here, specifically, the partition intensities’ standard
deviations (SDs) in both the positive and negative partition subset
of reaction F08 (see previous paragraph) were rescaled by a factor
in the set {1.00, 1.33, 1.66, 2.00}. The relative partition occupancy
difference d was then assessed as a function of the rescaling value,
the latter being an inverse proxy of the resolution.

The impact of parameter selection was investigated through a
sensitivity analysis of the window w parameter and the flagging
cut-offs c1 and c2 (section The dipcensR Method). For each of the
four example reactions (section Selected Cases), a series of flags
was obtained by varying w between 0.01 and 0.9 (default value:
0.2) and by multiplying c1 and c2 by a factor ranging from 0.1
to 2 (default values: 0.1 and 0.2, respectively, resulting in values
0.01–0.2 for c1 and values 0.02–0.4 for c2). Flagging consistency
was verified by visualizing the flag color in a cut-off versus
window plot.

Case study
The threshold as obtained in the section Impact of Trimming, Con-
centration, Resolution, and Parameter Selection was employed as
the threshold for analyzing the entire set of reactions supplied
by Jones et al. [9]. In particular, the dataset consists of a 6-point,
10-fold dilution series with four replicate reactions per dilution
point and four blank samples. Each reaction consists of a one-
color assay. We refer to Jones et al. [9] for more details. We then
investigated dipcensR flagging performance by examining whether
flagging was deemed appropriate (expert review).

Computation
All analyses were performed with an M1 (APL1102) processor,
16GB RAM, using R 4.3.3 [11]. dipcensR’s R code and the example
datasets used in this work are freely available at https://www.
github.com/DIGPCR/dipcensR. An R/Shiny interface to dipcensR is
available at https://digpcr.shinyapps.io/dipcensR/.

Results and discussion
The dipcensR algorithm
The dipcensR algorithm calculates the impact of threshold per-
turbation on the estimated concentration and flags reaction–
color pairs for review when there is a substantial change in
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Figure 2. dipcensR’s robustness curve output (top row) for selected cases (Materials and Methods section Selected Cases), observed partition intensities,
and thresholds (bottom row). (a–d): Vertical dotted lines indicate the window of perturbation considered for flagging (see Materials and Methods),
whereas horizontal lines indicate warning levels (dashed, orange) or error levels (dashed, red); the horizontal y = 0 line corresponds to no perturbation/no
change (see Materials and Methods). (e–h) Full lines indicate the thresholds, whereas dotted lines indicate the threshold at the boundaries considered
for flagging; line color corresponds to the assigned flag (pass, warning, error). (a, e) Appropriate threshold location, with little impact of shifts, resulting
in a pass flag (threshold color green). (b, f) Due to a reasonably large amount of rain and a threshold that could arguably be placed lower, there is an
intermediate impact of threshold location on the estimated concentration, resulting in a warning flag (threshold color orange). (c, g) Due to a threshold
located close to the negative cluster and few positive partitions, a small threshold shift (to lower intensities) will result in a large change in concentration,
hence an error flag (threshold color red); note that the threshold here is not necessarily wrong. (d, h) Threshold placed erroneously within a cluster,
leading to large changes in estimated concentration, and an error flag (threshold color red); here, the threshold needs to be corrected. An annotated
version of the robustness curve visualization is available as Supplementary Fig. S2 available online at http://bib.oxfordjournals.org/.

estimated concentration under limited perturbations. Specifically,
each reaction–color pair receives one of three flags: small changes
(“green”) indicate the robustness of the threshold to perturbations
and indicate that such reaction–color pairs do not need review,
whereas intermediate (“orange”) changes indicate some effect,
and large (“red”) changes indicate a strong effect, suggesting that
such reaction–color pairs need review (Fig. 2).

We find that intermediate changes (“orange” flag) are flagged
typically when the amount of rain is not low, often in combination
with a slightly misplaced threshold (Fig. 2b and e). Large changes
(“red” flag) occur when (i) the threshold is placed aberrantly, e.g.
too close to a cluster center (Fig. 1h), (ii) the concentration is
low, and there is a reasonably large amount of rain, and (iii) the
threshold is placed close to the negative cluster center, and the
concentration is very low, or the target is absent (Fig. 2g), among
others.

Investigation of dipcensR’s visual output provides a rapid diag-
nosis of whether a threshold is misplaced, e.g. showing a plateau
above or below the y = 0 change in relative occupancy line
(Fig. 1d), or whether a target–color combination is flagged because
of a large amount of rain, i.e. no plateau is visible, but there is a
steadily decreasing partition occupancy for increasing threshold
values (Fig. 2b). A steep slope (Fig. 2c and d) indicates a threshold
close to, or within the body of a cluster, or a reaction with limited
resolution (see further), often resulting in a “red” flag.

The dipcensR plot provides multiple guidance components facil-
itating threshold robustness interpretation. Horizontal dashed
lines indicate (user-adaptable) cut-off limits for reaction flagging
(orange, red). A rectangle indicates the (user-adaptable) pertur-
bation limits (x-axis, vertical dotted lines) and the corresponding
observed change in relative partition occupancy (y-axis, full black
robustness curve), the rectangle color corresponds to the assigned
flag (green, orange, red). Last, the estimated relative partition
occupancy change (the d metric) used for assigning the flag is
shown.

The robustness of dipcensR is enhanced by trimming the par-
tition intensities before calculating the level of perturbation to
perform. This trimming removes any partitions that may occur
as outlying values beneath the negative cluster’s body or outlying
values above the positive cluster’s body. Such values that occur
due to, e.g. droplet coalescence [12], are typically rare, and their
intensity values are irreproducible [12, 13]. Failing to remove
them can lead to unstable range estimates and, subsequently,
erroneous flagging. In a 48-reaction series, the between-reaction
median absolute deviation, a measure of spread, of the range
after trimming was 52.7% lower than before trimming (P < .001,
Brown–Forsythe Levene test), supporting that trimming improves
the estimated range’s stability.

dipcensR’s computational load is limited, requiring ∼0.1 s per
reaction–color pair.
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Figure 3. dipcensR’s robustness curve output (top row) and robustness-maximized thresholds (bottom row) for selected cases (as in Fig. 1, Materials and
Methods section Selected Cases). (a–d) Vertical dotted lines indicate the window of perturbation considered for flagging (see Materials and Methods),
whereas horizontal lines indicate warning levels (dashed, orange), or error levels (dashed, red); the horizontal y = 0 line corresponds to no perturbation/no
change; all curves remain within the warning limits within the window of perturbation; for the original window of perturbation, partition occupancy
change, and flag levels, see Fig. 1. (e–h) Full lines indicate the thresholds (gray: original, green: robustness-maximized), whereas dotted lines indicate
the threshold at the boundaries considered for flagging, after threshold robustness maximization; the line color corresponds to the assigned flag (pass,
warning, error); all thresholds receive a pass flag.

Robustness-maximizing threshold adjustment
A threshold is often not completely erroneous but may be located
(too) close to the negative (positive) cluster center, and a warn-
ing or error flag may result (Fig. 2b–d). Small displacements of
such thresholds, the maximal extent of which is a dipcensR user-
determined parameter, may then increase the robustness and
reduce the number of reaction–color pairs needing review. Indeed,
in the example reaction–color pairs shown previously (Fig. 2),
the robustness-maximizing threshold adjustment leads to more
appropriate thresholds (by expert user interpretation) and pass
flags (Fig. 3).

While successful for slightly erroneous thresholds (Figs 2 and
3), threshold adjustment may fail for completely erroneous
thresholds, as the range of adjustment is constrained by the
(user-determined) change in relative occupancy (Supplementary
Fig. S1 available online at http://bib.oxfordjournals.org/). Such a
constraint is needed as a perturbation zone with limited partition
occupancy change below the negative or above the positive
partition cluster can often be found, ultimately leading to a
pass flag for an erroneous threshold. Consequently, the choice
and validation of a suitable initial partition classifier remains
crucial.

In addition, whether a robustness-maximizing threshold is the
most appropriate location of a threshold is debatable. For exam-
ple, rain is often assumed to represent partitions containing the
nucleic acid target sequence(s) [6], and some partition classifiers
have been designed to model such rain or the negative partition
intensities only [9, 14, 15]. In practice, such efforts and their accu-
racy are just as well debated as intensities can be irreproducible

across samples, e.g. due to sample-level matrix effects, therefore
invalidating such rationales.

Impact of concentration, resolution, and
parameter selection on flagging
Flagging by dipcensR will depend on target occupancy (concen-
tration) for assays with an erroneously positioned threshold, as
well as on resolution (Figs 4 and 5). Thresholds positioned close
to the negative (positive) clusters may result in more prevalent
flagging as the concentration decreases (increases), and this effect
becomes more pronounced as the resolution decreases (Fig. 4c
and d). Contrarily, for reactions with an appropriately positioned
threshold and sufficient resolution, flagging will be stable inde-
pendent of concentration (Fig. 4a). Note that even for such reac-
tion characteristics, flagging can be more variable for very low
or high partition occupancy due to the stochasticity of partitions
with somewhat outlying partition intensities, resulting in a higher
variance of the dipcensR d metric (Fig. 4; see next paragraph for a
rationale).

Further, the presence of false positives, which often show
intermediate fluorescence intensities, may cause higher flag rates
in low-concentrated samples. Indeed, such false positives will
have a high (relative) impact on the estimated concentration.
This low robustness is visible as a steeply declining curve
in the dipcensR plot (Fig. 5). Moreover, flagging can be more
variable due to the stochasticity of false positives, i.e. when
such false-positive partitions with intermediate intensities are
present at a low rate, they may occur in some reactions but not
others.
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Figure 4. dipcensR’s d metric as a function of partition occupancy, for decreasing resolution (a-d; Materials and Methods section Impact of Trimming,
Concentration, Resolution, and Parameter Selection); note the differences in x-axis scales, (a) dipcensR’s d metric for cluster standard deviations
(resolution) as in the experimental data (Materials and Methods), (b) for cluster SDs 33% larger, (c) for cluster SDs 66% larger, and (d) for cluster SDs
100% larger. Larger SDs correspond to a lower resolution.

Figure 5. Examples of flagging when the resolution is lowest for increasing partition occupancy. (a, e) Example of a red flag obtained for a reaction with
0.001 partition occupancy and lowest resolution, (b, f) as before, but with 0.01 partition occupancy, (c, g) as before, but with 0.1 partition occupancy, now
flagged green, and (d, h) as before, but with 0.2 partition occupancy.

Last, dipcensR’s default parameters were selected based on the
analysis of in-house generated data, partly reported in this work.
Flagging stringency can be increased by increasing either the
window parameter w (see Materials and Methods), i.e. considering
a wider threshold perturbation range, or by lowering the flag-
ging cutoffs; conversely, more lenient flagging can be achieved

by lowering the window parameter or increasing flagging cut-
offs. Changing both equally in the same direction, to a limited
extent, will typically preserve the flag, showcasing some robust-
ness to parameter selection (Supplementary Fig. S3 available
online at http://bib.oxfordjournals.org/). In summary, parameter
tuning may be needed depending on assay characteristics and
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Figure 6. Partition intensities of the positive control used for estimating the threshold (a), and of samples flagged for investigation by dipcensR (b–g).
(a) 10e5 input molecules, (b–d) 10e3 input molecules, (e) 10 input molecules, and (f, g) blank.

desired flagging stringency (Fig. 4, and further, section Limitations
and Opportunities).

Case study: reaction flagging in a dilution series
Out of 28 reactions, three were flagged as suffering low robustness
to threshold perturbation, and three were flagged as suffering
intermediate robustness to threshold perturbation (Fig. 6). Low
robustness occurred in samples with an expected (very) low con-
centration (Fig. 6e), or when the nucleic acid target sequence
was presumed absent (Fig. 6f and g), and where some partitions
showed intermediate intensities. Intermediate robustness was
noted in samples with low concentrations but where (i) quite
some partitions showed intermediate intensity (Fig. 6c and d) or
(ii) where a fluorescence intensity baseline shift occurred, bring-
ing the threshold in proximity to the negative cluster (Fig. 6b). In
all cases except for the sample showing a baseline shift, f lagging
was deemed appropriate. A baseline shift correction before clas-
sification has been proposed [14, 15] and could have resulted in a
pass flag for the reaction shown in Fig. 6b.

Application scope
The dipcensR algorithm is mainly aimed at facilitating high-
throughput nucleic acid quantification using dPCR. For any target
in a well-defined assay, parameters, such as partition intensity
distribution and resolution (i.e. level of separation) of negative and
positive partitions, are expected to be reasonably reproducible.
Under such circumstances, the partition classification workload
is often reduced by resorting to cross-well thresholding, based on
a visual inspection of partition intensities that are merged across
wells. However, concentration- or sample-specific effects may be
present and can cause, e.g. location shifts in the partition intensity
distribution (Fig. 6). Such sample-specific effects are often seen,
where, e.g. the level of inhibitors may differ between samples.
This can lead to some samples suffering more rain (partitions
with intermediate fluorescence intensities) or a decrease in
resolution [8, 13, 14]. Such changes may lead to aberrant partition
classification or a classification that is especially sensitive to
threshold location. Such reaction–color pairs then need a review.

Further, dipcensR analysis output could be used as a partition
classifier performance metric: the fraction of stably classified, i.e.
flagged green, reaction–color pairs could be a proxy of partition
classifier performance, whereas, e.g. a high orange/red to green
flag conversion after dipcensR threshold adjustment could indi-
cate subpar partition classifier performance.

dipcensR operates on the individual reaction–color level, scru-
tinizing a single threshold per reaction and color. Nonetheless,
dipcensR’s implementation allows it to be applied to a reaction
with any number of colors, returning a flag for each color.
Although dipcensR is robust to some differences in resolution
(see Results and Discussion, section Robustness-Maximizing
Threshold Adjustment), the resolution obtained may differ
per color, and adjustment of dipcensR’s window parameter
may be required (see Materials and Methods, section The
dipcensR Method). Supplying single reaction–single color partition
intensities together with more than one threshold allows dipcensR
to handle threshold evaluation in assays using higher-order
multiplexing strategies such as amplitude-based multiplexing
[5]. For a simple example: in a single-color, two-target amplitude-
based multiplexing assay, four clusters will arise, requiring the
estimation of three thresholds [5]. To assess threshold robustness,
dipcensR will need to be run once for each threshold. The
appropriateness of each of those thresholds will be returned by
dipcensR, informing the user of whether any of these thresholds
need adjustment. Note that the resolution in an amplitude-based
multiplexing assay will typically be lower than in a conventional
one-color/one-target assay [5]. Consequently, like the previous
example, dipcensR’s window parameter may need to be decreased
for such assays.

Alternatives
dipcensR is the first procedure tailored for dPCR partition classifi-
cation accuracy evaluation. While partition classification in dPCR
experiments can be considered a general classification or cluster-
ing problem for which classification accuracy metrics exist, e.g.
the Dunn [16] or silhouette index [17], dipcensR is distinct from
such general classification accuracy metrics: dipcensR’s key idea
is to take a(ny) metric, which is then followed by a sensitivity
analysis in which the metric is used for quantifying the effect
of perturbing a reaction’s threshold. dipcensR’s default metric is
the relative difference in partition occupancy (see Materials and
Methods, section The dipcensR Method). While dipcensR’s metric
could be exchanged for any other metric relating to classification
accuracy, the explicit choice for change in partition occupancy
is that it is easily understood by the dPCR user and that the
user likely has an idea about what is an acceptable relative
change in partition occupancy. In contrast, it is less intuitive
what an acceptable change is in, e.g. (average) Dunn or silhouette
index.

D
ow

nloaded from
 https://academ

ic.oup.com
/bib/article/25/6/bbae507/7820628 by H

asselt U
niversity user on 08 N

ovem
ber 2024



8 | Vynck et al.

Limitations and opportunities
The dipcensR algorithm has some limitations. First, dipcensR’s
default cut-offs for reaction–color flagging are arbitrary. Nev-
ertheless, we have found these default values to provide desirable
results in a range of datasets. Still, users may need to adapt
these default values to individual assays depending on assay
characteristics. As a counterpoint, because dipcensR’s parameters
can be adjusted, its users can achieve a desired level of flagging
stringency. Further, dipcensR will likely provide the most value
in a high-throughput setting where manual reaction-by-reaction
review becomes prohibitive. In such settings, we expect to see
well-validated assays yielding reasonably stable characteristics,
allowing the use of a single validated set of parameters.

Second, when a threshold is completely aberrant, for example,
above the positive cluster intensities, threshold perturbation may
not detect large changes and flag a reaction–color pair as needing
no review. We have not seen this happen in the datasets we have
analyzed, but such findings could occur depending on the choice
of, e.g. partition classifier. If this is a concern, dipcensR has the
option to flag reaction–color pairs with no positive partitions as
needing review. As a counterpoint, in many applications, (some of)
the nucleic acids’ target sequence(s) will be absent, and, depend-
ing on the incidence of negative reaction–color pairs, this may
substantially increase the number of reaction–color pairs needing
review. Hence, dipcensR’s default option is that such reaction–
color pairs do not need review. Note that dipcensR flags reaction–
color pairs with no negative partitions as needing review because
this indicates reaction saturation. In such cases, concentration
estimation is impossible, and re-analysis of a diluted sample is
indicated.

Third, dipcensR verifies linear threshold stability on a color-by-
color basis. It cannot verify stability for methods that result in
nonlinear thresholds, e.g. two-color methods that employ “dis-
tance to cluster center” measures to assign partition classes, e.g.
elliptical cut-offs, such as calico [1, 18]. While systematic surveys
on selection and use of thresholding procedures are nonexistent,
it is our experience that performing linear thresholding on a color-
by-color basis is most prevalent, and therefore, dipcensR will be
applicable to the majority of experiments. Should multivariate
partition classifiers for dPCR gain more traction, future research
could focus on extending dipcensR to the multivariate space, inves-
tigating, e.g. pairwise cluster assignment stability.

Key Points

• Partition classification robustness can be assessed effi-
ciently, and, likely, aberrant classification is flagged for
user review by dipcensR.

• Partition classification robustness can often be
enhanced automatically, reducing the number
of reactions needing review; cases of severe
misclassification cannot be automatically corrected,
and, for such reactions, a review flag will be retained.

• dipcensR is flexible as (i) parameter tuning allows for
varied levels of flagging stringency, allowing calibration
to assay characteristics, and (ii) it is compatible with
instruments/assays querying any number of targets (col-
ors) in a “one target per color” setup, and with certain
higher-order multiplexing setups such as amplitude-
based multiplexing.
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