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1 Comment by Jan Beyersmann

Some words about Gillian’s paper - use classical bibtex citations Lesaffre et al. (2009).

1.1 Models for binary data

You can use subsections if you want to.

1.2 Models for time-to-event data

2 Comment by Guadalope Gmez Melis

Text by Lupe.

3 Comment by Thomas Kneib

Text by Thomas.
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4 Comment by Geert Molenberghs

A strong merit of the article by Gillian Heller is that it makes us reflect on the models

we commonly use for statistical modeling of various data types, in particular binary

data and time-to-event data.

Simply said, Heller suggests that we should carefully balance considerations of math-

ematical elegance and computational convenience on the one hand, and ease of inter-

pretation and communication of results on the other.

The central framework is that of generalized linear models (GLM; McCullagh and

Nelder, 1989), built upon the exponential family of distributions. Extensions such

as GAMLSS are considered too. The unifying GLM framework led to a tremendous

expansion of the modeler’s toolkit at the time, which up to then centered largely on

the well-developed linear models framework, with analysis of (co)variance and linear

regression as its most prominent representatives, as well as ramifications towards mul-

tivariate linear regression, MANOVA, and such multivariate techniques as principal

components analysis, factor analysis, canonical correlation, and normal-distribution-

based discriminant analysis. Prior to the development of GLMs, modeling of, for

example, binary and categorical data, proceeded by well-developed but ad hoc meth-

ods, such as χ
2, Fisher’s exact, McNemar, and Cochran-Mantel-Haenszel tests, with

(conditional) logistic regression emerging (Breslow et al., 1980).

Heller further points to the important and somewhat unfortunate fact that the mod-

eling of time-to-event data took a different turn, away from GLMs, implying that

the close link with other data is under-valued and hence under-used. For example,

time-to-event data and count data share the fact that their mean parameters range
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over the non-negative half line, making the log link a natural choice.

As logarithms and exponentials map multiplication onto addition and back, the log

link enjoys more elegant properties than the various links for intervals (such as the

logit and probit links). Still, the log link falls short of the elegance of the identity

link, which can be used for data and hence mean parameters on the entire real line.

This leads us to back to models based on normality. They enjoy a large number of

properties that do not simultaneously transfer to other data types and the models

used in that context. In this sense, while the normal distribution is a specific instance

of an exponential family distribution and the linear model is a special case of a GLM,

they have a much wider array of convenient properties than is generally the case.

Because of the identity link, there is no need to choose between scales that are either

mathematically convenient or facilitate interpretation; both apply simultaneously in

the normal case. The fact that ordinary linear regression essentially coincides with

normal regression makes the model applicable beyond outcome data that are nor-

mally distributed. Another useful feature of the normal distribution is the functional

independence between the mean and variance(-covariance) parameters, whereas a

mean-variance link, at least in part, is present in most GLMs. This link implies that

model misspecification can have more severe consequences when non-normal models

are used and forces one to deal with over- or under-dispersion in many cases.

Furthermore, the univariate normal distribution has a very natural extension to the

multivariate case, while the multivariate normal distribution, in turn, is closed under

both marginalization and conditioning.

An issue that should not be overlooked is the potential for misspecification when
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choosing between modeling options. When considering three models for the same

binary outcome (odds ratio, relative risk, and risk difference), and when there is

correction for other covariates, not all three quantities will be simultaneously constant.

For example, if a logistic – constant odds ratio – model is used, the relative risk will

not be constant. Thus, changing from one scale to the other should be done with

caution and upon verification of the fit of the model.

A particular issue is also the fact that the log link for binary data is not range-

preserving. Heller addresses this and rightly points to the fact that we have com-

putational tools to enforce valid solutions. Of course, technically it remains possible

that certain combinations of covariates, outside of the observed configuration, would

lead to non-valid solutions. The large sample behavior with such non-standard links

need to be investigated, at least in extensive simulation studies.

While the paper focuses on models for univariate data, there is a variety of exten-

sions towards multivariate, longitudinal, and otherwise hierarchical data that should

be kept in mind too. The issues brought forward in this article further deepen in such

settings. Also here, the normal case is the fortunate exception. As mentioned by

Molenberghs et al. (2013) and Kenward and Molenberghs (2016), the normal distri-

bution is the only one that is self-bridging, apart from the degenerate and Cauchy dis-

tribution, and as such the only regular one. That said, the normal distribution is not

conjugate to the Bernoulli, Poisson, exponential, or Weibull distributions, implying

that the generalized linear mixed model (GLMM; Breslow and Clayton, 1993; Molen-

berghs and Verbeke, 2005) is less of a natural choice than its common use suggests.

Using the conjugate distributions instead (beta for Bernoulli, gamma for the others),

while mathematically convenient, comes with its own limitations. Molenberghs et al.
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(2010) combined both normal and conjugate random effects into GLMMSs into a sin-

gle model, in an effort to flexibly model both overdispersion and correlation between

repeated measures.

These authors introduced the concept of strong conjugacy, taken to mean that conju-

gacy between the outcome and conjugate random effects ‘survives’ the introduction

of normal random effects into the linear predictor. Apart from, evidently, the normal

case, this property applies to the Poisson model with gamma random effects, and to

the Weibull and exponential models also with gamma random effects. It does not

apply to the Bernoulli or binomial models with beta random effects. This is one of

many peculiarities of the binary case or, more generally, to cases where the mean

parameter ranges over a finite interval. This implies that in a GLMM for binary

data the fixed-effects parameters are not interpretable as describing the marginal

mean function, but rather that of a ‘median subject,’ i.e., one with all random effects

equal to zero. Marginal means can be obtained directly from generalized estimating

equations (Liang and Zeger, 1986; Molenberghs and Verbeke, 2005)) or other fully

parametric or semi-parametric marginal models.

Related to this, the peculiarity of the binary case also surfaces when three tools are

considered to derive marginally interpretable parameters (or functions) from hierar-

chical models, as reviewed in Molenberghs et al. (2013). The first is to marginalize

a GLMM by integrating over the normal random effects in the linear predictor; the

second is to consider a hierarchical model built around a marginal mean function

(Heagerty, 1999); the third is to replace the normal distribution of the random ef-

fects by a so-called bridge distribution that preserves a marginal interpretation of the

linear predictor, potentially modulo translation and scaling (Wang and Louis, 2003).
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When considering linear models for normally distributed outcomes, the three opera-

tions are trivial. For models with a log link (e.g., for counts and time-to-event data)

the three operations are relatively straightforward. For example, a marginal mean

function from a GLMM with log link has a closed form, and parameters different from

intercepts retain their interpretation. In the same case, every sufficiently regular dis-

tribution can be used as a random-effects distribution. Even for binary data with

probit link, marginalization of the mean leads to a closed form, although the variance

components appear in the marginal mean function, and the bridge is formed by the

normal distribution, thanks to the distribution’s self-bridging (and self-conjugacy)

property. However, when the logit link is used, all three operations are different and

non-trivial.

It is thus reasonable to add to Heller’s comments that even when a distributional and

modeling choice is made for convenience in the univariate case, it might not carry

over to hierarchical settings.

The fact that time-to-event data took a separate turn, as Heller correctly states, has

had consequences for hierarchical models as well, and often the connection between

frailty models and random-effects models (the latter in the sense of normal random

effects in the linear predictor) is overlooked. Whereas frailties in the sense of gamma

random effects at the level of the mean parameter of Weibull models seems a natural

choice, care is needed. Molenberghs and Verbeke (2011) showed that the Weibull-

gamma frailty model always has only a finite number of finite moments. An extreme

example of this, and one to which Heller also refers, is the log-logistic distribution,

which does not have any finite moments, a feature frequently overlooked.

In summary, it seems imperative for the statistical modeler to have a good working
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knowledge of large classes of models, such as GLM and extensions in the univariate

(e.g., GAMLSS) and hierarchical directions (e.g., GLMM and related families), their

statistical, mathematical, computational, and interpretation qualities, to facilitate a

well-informed, pragmatic choice. While in some cases the interpretation may dom-

inate the choice, in others different considerations may prevail, after which Monte

Carlo or approximation calculations are done to arrive at quantities or functions of

scientific interest.

5 Comment by Vito Muggeo

Text by Vito.

6 Comment by Stijn Vansteelandt

Text by Stijn.
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