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Abstract 38 

Patients with non-infectious systemic inflammation may suffer from one of many diseases, 39 

including hyperinflammation (HI), autoinflammatory disorders (AID), and systemic 40 

autoimmune disease (AI). Despite their clinical overlap, the pathophysiology and patient 41 

management differ between these disorders. We aimed to investigate blood biomarkers able to 42 

discriminate between patient groups. We included 44 patients with active clinical and/or genetic 43 

systemic inflammatory disease (9 HI, 27 AID, 8 systemic AI) and 16 healthy controls. We 44 

quantified 55 serum proteins and combined multiple machine learning algorithms to identify 45 

five proteins (CCL26, CXCL10, ICAM-1, IL-27, and SAA) that maximally separated patient 46 

groups. High ICAM-1 was associated with HI. AID was characterized by an increase in SAA 47 

and decrease in CXCL10 levels. A trend for higher CXCL10 and statistically lower SAA was 48 

observed in patients with systemic AI. Principal component analysis and unsupervised 49 

hierarchical clustering confirmed separation of disease groups. Logistic regression modelling 50 

revealed a high statistical significance for HI (P=0.001), AID, and systemic AI (P<0.0001). 51 

Predictive accuracy was excellent for systemic AI (AUC 0.94) and AID (0.91) and good for HI 52 

(0.81). Further research is needed to validate findings in a larger prospective cohort. Results 53 

will contribute to a better understanding of the pathophysiology of systemic inflammatory 54 

disorders and can improve diagnosis and patient management. 55 

56 
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Introduction 57 

Inflammation provides essential protective measures for the human body and occurs in response 58 

to stress or damage [1,2]. It is a prerequisite to ensure the removal of detrimental stimuli, as 59 

well as to initiate the healing of damaged tissues and cells. The inflammatory response is 60 

pathological when it occurs persistently or is exaggerated, which can occur in the presence or 61 

absence of a pathogen [3]. Caring for patients with acute, chronic, or relapsing systemic 62 

inflammation is challenging, especially because their clinical presentations can appear similar, 63 

despite having diverse underlying causes. 64 

Autoinflammatory disorders (AID) are a rapidly expanding group of diseases that present 65 

recurrent or continuous systemic inflammation in sterile conditions that is caused by 66 

inappropriate activation of the innate immune system [4,5]. Stigmata that are classically found 67 

in autoimmune diseases, such as high-titer autoantibodies and antigen-specific T lymphocyte 68 

activation, do not participate in the onset or continuation of AID inflammation [6]. Mutations 69 

in over 50 different genes have been reported to underlie AID [7], while a substantial proportion 70 

of patients suffer from non-Mendelian AID, such as periodic fever with aphthous stomatitis, 71 

pharyngitis and adenitis (PFAPA) syndrome, systemic-onset juvenile idiopathic arthritis (sJIA, 72 

pediatric Still’s disease), or adult-onset Still’s disease (AOSD) [8,9]. In contrast to AID, 73 

dysregulated lymphocyte activation and autoantibody formation are hallmark features of 74 

autoimmune diseases (AI) [10]. In AI, healthy tissues or cells are mistakenly targeted by the 75 

body’s own immune system, which can lead to dysfunction or damage to specific organs and/or 76 

manifest with systemic inflammatory features, such as systemic lupus erythematosus (SLE), 77 

dermatomyositis (DM) and rheumatoid arthritis [11,12]. Hyperinflammation (HI) is a third 78 

subset of systemic inflammatory diseases that typically present as acute and potentially life-79 

threatening. HI has been categorized as a subset of AID mainly because it is propagated by 80 

innate immune cell activation [13]. However, the pathogenesis of HI is often more intricate, 81 
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including impaired cell death by cytotoxic cells [14] and/or unhalted phagocytosis of 82 

hematopoietic cells [15]. Primary and secondary immunopathologies are found in HI, 83 

respectively known as hemophagocytic lymphohistiocytosis (HLH) or macrophage activation 84 

syndrome (MAS) [13]. In some patients presenting with HI, microbial infections may be the 85 

initial trigger, as has been observed during the coronavirus 2019 (COVID-19) pandemic in the 86 

majority of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infected patients 87 

in intensive care units [16].  88 

As systemic inflammation is a common feature of these diseases, patients with AID, AI, or HI 89 

may present similarly. Despite clinical overlap, the underlying pathophysiology and subsequent 90 

patient management differ, making it challenging to diagnose and treat individuals. Many 91 

routine laboratory tests are abnormal in most patients, both during and between symptomatic 92 

episodes (e.g., increase in white blood cells (WBC), C-reactive protein (CRP), or erythrocyte 93 

sedimentation rate (ESR)). These parameters are non-specific and generally do not distinguish 94 

between different sources of inflammation. 95 

Cytokines are small protein molecules (<40 kDa) produced and secreted by most human cells, 96 

acting as highly inducible and versatile immune signaling molecules [17].In recent years, 97 

studies on cytokines have increased our understanding of inflammation while simultaneously 98 

revealing its complexity [17,18]. Despite the complex architecture and dynamic cascade of 99 

events that precede and ensue the onset of systemic inflammation, multiple mediators can be 100 

delineated as disease-, context-, and patient-specific, which contrasts with clinically 101 

overlapping features [19]. As such, the evaluation of patients’ individual cytokine profiles has 102 

emerged as a simple, relatively quick, cheap, and highly effective approach to guide diagnostic, 103 

prognostic, and therapeutic decision-making in human diseases, especially immune-related 104 

disorders [17,20,21]. 105 
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In this study, we aimed to identify sensitive and specific serum cytokine signatures for three 106 

disease categories of systemic inflammatory disease (AID, systemic AI, and HI). For this, we 107 

performed machine learning and unbiased variable selection methods on serum concentrations 108 

of 55 inflammatory cytokines as measured by Meso Scale Discovery (MSD) in a cohort of 44 109 

patients, grouped into three disease categories and collectively exhibiting more than 12 different 110 

well-defined inflammatory diseases. To facilitate future studies to validate group-specific 111 

cytokine signatures, we favored maximal accuracy with the smallest possible number of 112 

biomarkers. This led to the identification of a 5-plex cytokine panel that showed a unique and 113 

differentiating signature between disease categories. 114 

115 
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Results 116 

Cohort characteristics 117 

We included 44 patients with active systemic inflammation (4 infants, 37 children, and 3 adults; 118 

overall median age 6.5y, [interquartile range (IQR) 3.8-13.3]) and 16 age-matched healthy 119 

individuals (Table 1, Figure 1A-C). Only samples from patients with known inflammatory 120 

diseases obtained during active (febrile) disease flares were included, excluding partial or 121 

complete remission status from the analyses. Among patients, 27 had active AID (including 122 

four patients with monogenic AID [MEFV, NLRP3, and NOD2 variants], 13 sJIA/AOSD cases, 123 

and nine PFAPA patients), eight presented systemic AI (two SLE, three juvenile DM, and three 124 

scleroderma), nine showed HI (four with HLH in the first months of life [two with inborn errors 125 

in PRF1 and UNC13D], and five patients with MAS, of which four patients had underlying 126 

sJIA or AOSD). Twenty-six patients were female (M/F ratio 1:1.4). Patients with systemic AI 127 

were exclusively female, as opposed to other subgroups with a balanced sex ratio (Figure 1C). 128 

The majority of patients had elevated white blood cell (WBC) count, absolute neutrophil count 129 

(ANC), C-reactive protein (CRP), erythrocyte sedimentation rate (ESR), and ferritin (Figure 130 

1D-H). Patients with AID presented with higher WBC counts (11500/µl, [8610, 16340]), ANC 131 

(7390/µl, [5452, 10620]), and CRP (88.4 mg/l, [42.7, 175.8]). The highest ferritin levels were 132 

noted in patients with HI (12241 µg/l, [2468, 21425]). In the same group systemic steroids 133 

(55.6%) and biopharmaceuticals (22.2%) were most frequently used at the time of sampling. 134 

When multiple samples were available from the same patient, we used serum obtained when 135 

the patient was treatment-naive and/or at maximal inflammation (according to clinical 136 

assessment and routine laboratory parameters). Detailed patient characteristics and routine 137 

laboratory data are presented in supplementary data (Table S1). 138 

Cytokine quantification 139 
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Fifty-five inflammatory cytokines were quantified in patients and controls (Table S2). Because 140 

of sample availability, two patients (an 11-year-old girl with MAS and a 3-year-old boy with 141 

PFAPA) had missing data for >20% of the cytokines and were excluded from further data 142 

analysis. Three cytokines (IL-21, IL-23, and IL-31) were excluded because of low detectability 143 

among patients and controls (i.e., IL-21, IL-23 and IL-31 respectively with 100%, 97.5% and 144 

98.8% of data points below the lower detection limit). Because strong positive correlations were 145 

found between SAA and CRP (rho 0.87; P=3.43e-17), IL-6 and CRP (rho 0.80, P=3.95e-9), 146 

CXCL9 and IL-10 (rho 0.76, P=7.41e-13), CRP and CXCL9 were excluded from further 147 

analyses to prevent collinearity (Figure 1I, Figure S1A-D).  148 

The remaining missing data (n=14/3016; 0.46%) were imputed using iterative PCA if a 149 

complete dataset was required for statistical analyses (e.g., PCA and regression models). All 150 

cytokine data were normalized for participants’ ages using the median of age-matched healthy 151 

individuals. Through dimensionality reduction, we verified that adequate normalization by age 152 

group was present (Figure S1E-G). After these data cleaning steps, substantial overlap of 153 

patient groups was present when exploiting all remaining variables in a PCA with variance 154 

explaining up to 37.5% in the first two dimensions (Fig. 1J).  155 

Cytokine profiles by disease group 156 

Of the remaining 50 proteins included in the analysis, 36 (72%) were significantly upregulated 157 

or downregulated when comparing each disease group with healthy individuals (n=17 for 158 

systemic AI, n=23 for AID, and n=27 for HI) or across disease groups (n=18) (Fig. 2A-B). 159 

Levels of SAA, CXCL10, IL-6, IL-15, IFN-γ, and IL-10 levels were significantly altered in 160 

both comparisons (Fig. S2A). Most cytokines were either elevated (e.g., IL-1β, IL-3, and IL-6) 161 

or decreased (e.g., IL-17B, CCL17, and FGF2) when comparing distinct disease groups with 162 

HCs. Of the 18 cytokines with significant differences across disease groups, eight (IL-27, SAA, 163 



  9 

ICAM-1, CCL26, IL-17A/F, Tie-2, IL-17C, and VCAM-1) showed incongruity between 164 

disease groups (e.g., reduced SAA in systemic AI but increased in AID and HI). CCL11, 165 

CCL13, CCL17, CXCL8, IL-3, IL-5, IL-7, IL-12/IL-23p40, IL-12p70, IL-17A, MIP-1α, TNF, 166 

VEGF-A, and VEGFR-1 were excluded from model building because their levels did not differ 167 

among disease groups or between any of the disease groups and HCs (Fig. S2A-B). 168 

Unsupervised hierarchical clustering of normalized patient data showed substantial 169 

heterogeneity of the 36 proteins between individual patients and the three patient groups (Fig. 170 

2C). Patients with systemic AI clustered together, suggesting a relative closeness in their 171 

cytokine profiles. Other patient groups and their routinely assessed inflammatory markers were 172 

dispersed, along with dissimilar levels of multiple cytokines. To varying degrees, multiple 173 

cytokines positively correlated with routine laboratory markers (Fig. S2C). After correcting for 174 

multiple testing, correlations with the highest statistical significance were found between IL-6 175 

and CRP (P=1.9e-4), IL-6 and ESR (P=5.3e-4), and IL-1Ra and ANC (P=1.5e-3), and all of 176 

which have been previously reported to correlate [22–25] confirming the biological relevance 177 

of our assay (Fig. S2D-F). 178 

Machine learning 179 

The 36 proteins with significant differences between disease groups and/or between disease 180 

groups and HCs served as inputs (predictor variables) for three regression models. In these 181 

models, the diagnostic groups (HI, AID, and systemic AI) functioned as the outcome variables. 182 

On the patients’ normalized dataset, we performed repeated runs (n=1000) of 1) random forest 183 

regression, whereby variable importance was defined as the mean decrease in Gini Impurity 184 

(Fig. 3A); and 2) Multivariate methods with Unbiased Variable Selection in R (MUVR), in 185 

which we retained the maximum number of optimal variables (Fig. 3B); and 3) Boruta, which 186 

is a wrapper algorithm for random forests that selects all the relevant features (Fig. 3C). Using 187 
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these three approaches, highly similar protein sets were retained with prioritization of SAA, 188 

ICAM-1, and CXCL10 (Fig. 3D). All variables identified as relevant by MUVR (n=8) were 189 

among the most important variables retained by random forest regression and Boruta (Fig. 3E). 190 

IL-1β was the only protein ranked as relevant by Boruta, whereas it was not deemed important 191 

by the other algorithms (Fig. 3F). The common cytokines among the three algorithms were 192 

CCL26, CXCL10, ICAM-1, IL-10, IL-17C, IL-27, SAA, and Tie-2 (Fig. 3F). 193 

As a sensitivity analysis, we applied the same three regression models (1000 repeats of each 194 

algorithm) on the patients’ normalized dataset, but iteratively excluded one disease group (HI, 195 

AID, or systemic AI consecutively) (Fig. S3A-I). Consistent with the analyses performed on 196 

the full dataset, MUVR was most selective. Except for CCL22 and IL-16 (selected in the 197 

analysis without systemic AI) (Fig. S3G-I), MUVR only identified cytokines that were equally 198 

retained by the other algorithms in every comparison. Sensitivity analyses further revealed that 199 

the relative importance of some biomarkers was significantly influenced by the composition of 200 

the patient cohort. Examples include Tie-2 and MIP-3α, both of which show heightened 201 

importance when analyzing data without HI (Fig. S3B) and AID (Fig. S3E), respectively. SAA 202 

was not withheld without systemic AI (Fig. S3H-I), whereas it was ranked first in the other 203 

scenarios (Fig. S3B, Fig. S3E).  204 

Selection of cytokines with highest importance 205 

When aggregating the data of the original and sensitivity analyses, no common cytokines were 206 

found (i.e., none were retained by each algorithm and with each comparison) (Fig. 4A). To 207 

identify the most robust set of cytokines, we mined all machine learning data and aimed to 1) 208 

select highly specific biomarkers, and 2) prioritize those with consistent importance across 209 

algorithms. To rationalize this process and to select robust variables, we first selected cytokines 210 

that were retained in the original analysis and by at least two out of three comparisons in the 211 
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sensitivity analyses. This allowed for the inclusion of CXCL10 and SAA, which were deemed 212 

important by all algorithms, except for the sensitivity analyses without AID and AI, respectively 213 

(Fig. 4A). Next, we sorted the cytokines based on variable importance, considering the median 214 

of metrics as determined by the different algorithms (Fig. 4B). In addition to CXCL10 and 215 

SAA, and using the summed ranks as an overall importance indicator, we identified superior 216 

performance of IL-27, ICAM-1, and CCL26. In contrast to SAA and CXCL10, these three 217 

additional biomarkers showed consistent performance across all sensitivity analyses and were 218 

preferentially selected using all three regression methods (Fig. S4A-B). The mean ranking of 219 

the top five cytokines was equal to or less than 8.4, indicating that these cytokines, on average, 220 

were ranked in the first quartile across all analyses and using all three regression models (Fig. 221 

S4C).  222 

Logistic regression modelling 223 

Using the five prioritized cytokines (CCL26, CXCL10, ICAM-1, IL-27, and SAA) as predictor 224 

variables, binomial logistic regression modelling allowed for the characterization of a 225 

statistically significant signature for each patient group (P-values of 1.34e-4, 2.20e-7, and 226 

2.21e-7, and pseudo-R² values of 0.56, 0.66, and 0.89 for HI, AID, and AI, respectively) (Fig. 227 

4C). Analyzing cytokines individually, we found that patients with high ICAM-1 levels showed 228 

a significantly increased risk (adjusted odds ratio) of HI (P=0.028). Although patients with HI 229 

showed clearly elevated SAA levels compared to healthy controls, the relative amount of SAA 230 

as opposed to patients with other types of systemic inflammation was decreased (P=0.048). 231 

This feature contrasts with patients with AID, who showed a trend for lower ICAM-1 232 

(P=0.091), and reduced CXCL10 (P=0.032) levels, but an elevated odds ratio for SAA 233 

(P=0.003). Patients with systemic AI showed significantly reduced odds ratios for SAA 234 

(P=0.014) and a trend for higher CXCL10 levels (P=0.118). A direct comparison of the 235 

normalized data in our patients confirmed significantly lower IL-27 and CCL26 in systemic AI 236 
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compared to AID, and even higher values in HI. We found low CXCL10 in AID compared to 237 

both HI and systemic AI and high ICAM-1 in HI compared to AID and AI. The highest SAA 238 

was found in AID (Fig. S4D). Besides that SAA correlated positively with CRP, none of the 239 

five cytokines showed a strong correlation with routine laboratory tests, indicating that this 240 

selection method has the potential to add more specificity to clinical data (Fig. S4E).  241 

Performance of the models and included cytokines 242 

By iterative calculation of the area under the curve (AUC) for each model, we confirmed that 243 

the statistical significance of the models was associated with excellent predictive power for 244 

AID (mean AUC 0.91) and systemic AI (0.94), and good performance for HI (0.81) (Fig. 4D). 245 

To corroborate these findings, we used the five prioritized variables as inputs for unsupervised 246 

hierarchical clustering and PCA. Performing k-means partitioning on hierarchically clustered 247 

data revealed an adequate separation of patient groups (Fig. 4E). In addition, PCA with the five 248 

prioritized cytokines separated the majority of the patients into three distinct clusters 249 

corresponding to their known diagnosis (Fig. 4F).  250 

We verified our selection by assessing the degree of statistical significance of the 5-plex panel 251 

in comparison with more restrictive and extensive selections of cytokines (using the order of 252 

cytokines by their sum of ranks to add or exclude cytokines) (Fig. S4F). This analysis 253 

confirmed that the 5-plex assay showed a higher statistical significance (P<0.001) than smaller 254 

sets of cytokines, particularly because of better performance of the HI signature. Adding more 255 

biomarkers as predictor variables allowed for small improvements in the P-value only for HI, 256 

but less significance (and thus increased inaccuracy) was found for AID and systemic AI (Fig. 257 

S4G). We concluded that the five prioritized cytokines were the most favorable selection 258 

because they exhibited excellent statistical significance and are good candidates for future 259 

validation studies on larger cohorts owing to their narrow selection.  260 
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Finally, to explore possible overfitting of our models, we verified the degree of multicollinearity 261 

in the 5-plex panel. First, we assessed the Spearman correlation coefficients between each 262 

variable pair, verifying that none of the cytokines showed consistent positive or negative 263 

correlations in each patient group (Fig. S4H). Second, for each cytokine in each model, we 264 

estimated the variance inflation factor (VIF), where a VIF >10 was considered unacceptable. 265 

We established a maximum VIF of 6.071 in our analysis (ICAM-1 in the HI model). Despite 266 

these results, the statistical significance of our selection in each binomial model could not be 267 

confirmed by multinomial logistic regression (data not shown). Given that we corrected for 268 

highly correlated proteins prior to unbiased variable selection (excluding CXCL9 and CRP), 269 

and that our review for multicollinearity was favorable, we presume that the relatively small 270 

sample size of our cohort may be accounted for [26]. Future research in larger patient cohorts 271 

should thus allow the verification of the statistical significance of our panel using multinomial 272 

regression models.     273 

 274 

 275 

276 



  14 

Discussion 277 

From a clinical perspective, the diagnosis and treatment of patients with systemic inflammatory 278 

diseases is challenging. Its broad and age-dependent differential diagnosis and non-specificity 279 

of clinical symptoms and routine laboratory abnormalities frequently lead to delays or 280 

misclassifications in diagnosis, contributing to additional morbidity and mortality [27]. 281 

Distinguishing between different sources of systemic inflammation is important, as they require 282 

different approaches in further diagnostics and, if falsely indicated, may lead to opposing and 283 

potentially harmful treatments (e.g., corticosteroids in infection). Performing an efficient and 284 

relevant work-up for patients with suspected systemic inflammation is thus of pivotal 285 

importance in order to avoid patients visiting multiple clinicians, having various 286 

(mis)diagnoses, undergoing unnecessary tests and incorrect treatments and increased medical 287 

expenses [28,29]. In addition to disease awareness and paucity of clinical criteria, an important 288 

determinant of the challenges in these patient groups is the lack of robust functional tests [30]. 289 

Confronted with the challenges encountered in daily clinical practice, we established a cohort 290 

of 44 patients with various systemic inflammatory diseases and analyzed 55 inflammatory 291 

cytokines in their blood samples. From this, we proposed a panel of five cytokines that we 292 

identified using three unbiased machine learning methods, that showed robust performance in 293 

logistic regression modelling and dissected patient groups by unsupervised hierarchical 294 

clustering and dimensionality reduction algorithms.  295 

Our 5-plex panel comprises a unique combination of proteins. Nevertheless, previous studies 296 

have linked these five cytokines to multiple inflammatory pathways and/or human diseases. 297 

Serum amyloid A (SAA) is the most well-studied protein of the selection. SAA is a nonspecific 298 

acute-phase protein predominantly synthesized in the liver. For more than 40 years, SAA has 299 

an unwavering presence in medical literature because of its association with amyloidosis 300 
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[31,32]. A large and ever-growing body of literature has linked elevated SAA levels to a 301 

plethora of autoimmune and autoinflammatory diseases, as extensively reviewed recently [33]. 302 

Interestingly, in AID populations, SAA was found to not always correlate directly with elevated 303 

CRP levels [34–36]. In our cohort, the highest SAA level was found in patients with AID, 304 

making it an independent predictor of AID (and it related to significantly low odds for HI or 305 

systemic AI). It should be noted that patients with HI also showed a clear SAA elevation, but 306 

the relative increase was lower, which might be related to higher proportion of patients on 307 

corticosteroids in this group. In systemic AI, low SAA could be correlated with the absence of 308 

a clear acute phase response, whereas routine laboratory tests did not suggest a similar 309 

association in HI.  310 

CCL26 is primarily secreted by non-hematopoietic cells and is chemotactic to eosinophils. It 311 

is a prototypical Th2 related cytokine with well-described roles in eosinophilic oesophagitis 312 

[37] and asthma [38]. In this context, the CCR3 agonist effects of CCL26 have been best 313 

studied, but its antagonistic effects on CCR1, CCR2, and CCR5 have led to the hypothesis that 314 

CCL26 may have broader and immunomodulatory roles [39]. More recent research has 315 

experimentally confirmed that CCL26 has chemorepulsive properties on monocytes [40] and 316 

CCL26 has been found to be elevated in COVID-19, including an association with severity 317 

[41,42]. Thus, it may be no surprise that the highest CCL26 level in our cohort was found in 318 

patients with HI.  319 

The intercellular adhesion molecule (ICAM)-1 is an extensively studied transmembrane 320 

glycoprotein of the immunoglobulin superfamily. As an adhesion molecule typically expressed 321 

on the vascular endothelium, ICAM-1 plays a prominent role in cell trafficking [43]; however, 322 

additional roles in the onset and resolution of inflammation, immune cell effector functions, 323 

and tumorigenesis have recently emerged [44]. In line with our cohort, where elevated ICAM-324 

1 is a predictor of HI, experimental evidence points towards ICAM-1 being a macrophage 325 
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activation marker [45,46] and having a non-redundant role in macrophage efferocytosis [47]. 326 

Correspondingly, soluble ICAM-1 levels were drastically elevated in patients with systemic 327 

inflammatory response syndrome [48].  328 

Most of our patients showed elevated IL-27 levels compared to healthy controls, which is in 329 

line with the diverse roles that IL-27 plays in innate and adaptive immune responses [49,50]. 330 

As an IL-12 cytokine family member produced by antigen-presenting cells upon Toll-like 331 

receptor binding, it is not surprising that IL-27 has been described as a biomarker for bacterial 332 

infection [51,52]. IL-27 has a dominant role in Th1 differentiation. However, immune 333 

regulatory properties (induction of Th17 cells and IL-10) have also been associated with IL-27 334 

[49]. Hence, interest in IL-27 has increased in the context of AI [53,54]. In our cohort, not all 335 

patients with systemic AI presented with elevated IL-27 levels, although elevated levels in HI 336 

might be related to the high degree of immune dysregulation and Th1 skewing in these patients.  337 

CXCL10 is another molecule functionally categorized as a Th1 cytokine. CXCL10, also known 338 

as IFN-γ-induced protein 10 (IP-10), is a chemokine downstream of type I and type II interferon 339 

signaling that regulates chemotaxis of CXCR3+ immune cells [55–57]. It has pleiotropic effects 340 

and is associated with infectious [58] and autoimmune disease [59]. It is expected that CXCL10 341 

is significantly elevated in our patients compared to HCs, although heterogeneity exists between 342 

disease groups. Compared to other patients, we had arguments for less prominent inflammation 343 

in our patients with systemic AI (who showed low CRP and relatively low levels of most 344 

prioritized cytokines). However, this finding was in sharp contrast to CXCL10 levels. CXCL10 345 

was clearly increased in patients with systemic AI compared to patients with AID and HCs and 346 

exhibited a trend for elevated odds of systemic AI.  347 

It is noteworthy that certain 'classical' cytokines, such as IFNγ and IL-18, commonly associated 348 

with hyperinflammation, were not prioritized by our methods. While this may seem unexpected, 349 
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we propose that it reflects the strength of our unbiased approach. The absence of these cytokines 350 

in our selection does not imply they lack relevance in the pathophysiology of specific 351 

inflammatory conditions; rather, it indicates that they are less effective in distinguishing 352 

between the disease states examined in this study.This study has several limitations. First, data 353 

were generated from a stringent selection of patients with active disease, and blood samples 354 

were obtained only from treatment-naïve patients and/or those with maximal clinical 355 

inflammation. In daily practice, inflammatory cytokine profiles may be pharmacologically 356 

altered or under the dynamic influence of the natural disease course, potentially leading to 357 

variations in their blood protein levels. Second, we attempted to include a broad spectrum of 358 

inflammatory diseases; however, our cohort did not include the full clinical heterogeneity of 359 

the three disease groups. Additional nuances in cytokine signatures could be present between 360 

or within the disease groups, which we could not probe in sufficient detail because of our sample 361 

size. Similarly, the input variables (selection of assays) may have been subject to a selection 362 

bias. We included the broadest possible assay list for the technology that we used; however, 363 

given that these are commercially available and preconfigured kits, they may have been selected 364 

for specific characteristics outside the scope of scientific research. Evidently, our analyses 365 

reveal associative data, whereby altered presence of cytokines in the systemic circulation could 366 

be causative but could also represent secondary host responses to active disease. Cytokines 367 

found to be highly accurate in our regression models may be nonspecific or insensitive to other 368 

patients in alternative clinical settings. Finally, we excluded cytokines with a large majority of 369 

data points below the limit of detection. The low sensitivity of certain biomarkers does not 370 

exclude the possibility that they can be biologically relevant in subdetectable concentrations 371 

and/or in compartments other than the systemic circulation. Further research is needed to 372 

investigate the relevance of cytokine measurements to distinguish among other inflammatory 373 

states, such as infection and/or malignancy. 374 
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In conclusion, based on a representative cohort of patients, we delineated a 5-plex cytokine 375 

panel that could differentiate between patients with HI, AID, and systemic AI. Our unique 376 

signature consisted of CCL26, CXCL10, ICAM-1, IL-27, and SAA, all of which play diverse 377 

roles in inflammatory pathways and human diseases. We propose that future studies include 378 

prospective validation of this 5-plex cytokine panel in larger groups to provide answers to the 379 

remaining questions and address the specificity and sensitivity of the proposed selection. These 380 

results will contribute to a better understanding of the pathophysiology and improve early 381 

diagnosis and management of patients with systemic inflammation. 382 

383 
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Methods 384 

Selection of patients and controls 385 

Pediatric and adult patients with known systemic inflammatory diseases were included in this 386 

study. Patient diagnoses were confirmed by medical experts and based on universal clinical 387 

criteria and/or genetic investigations. Age-matched individuals volunteered to serve as healthy 388 

controls (HCs). HCs denied prior medical history and had no infection or vaccination at the 389 

time of sampling or in the previous six weeks. The biological sex and age of all the participants 390 

were recorded. Because we used matched HCs, sex was not considered as a biological variable. 391 

We documented the confirmed diagnosis (including genetic results), current clinical status 392 

(symptoms of ongoing inflammation), and current medications (with or without an 393 

immunomodulatory effect). Patients could not participate if probable or confirmed infections 394 

contributed to disease activity. 395 

Patients, HCs, and/or their legal representatives provided written informed consent for study 396 

participation, in accordance with the 1975 Declaration of Helsinki. Ethical approval for 397 

collection, biobank storage, and analysis of data and materials from patients and healthy 398 

individuals was granted by the main Ethical Committee of the Ghent University Hospital 399 

(BB190105), as well as by local committees of participating centers. The demographic and 400 

clinical data of the participants were registered in an in-house stored, protected, and 401 

anonymized data file. 402 

Blood sampling 403 

Venous blood was collected from patients and HCs in serum tubes. Within 60 min of sampling, 404 

clotted blood tubes were spun at 4°C, and cell-free serum was aliquoted and stored in a 405 

temperature-monitored freezer at −80°C until analysis. When multiple samples were available 406 

from the same patient, we used serum obtained when the patient was treatment-naive and/or at 407 
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maximal inflammation (according to clinical assessment and routine laboratory parameters). 408 

Only samples from patients with known inflammatory diseases obtained during active disease 409 

flares were included, excluding partial or complete remission status from the analyses. In some 410 

patients, retrospective samples were retrieved from our biobank after confirmation of a specific 411 

diagnosis. The oldest included sample was dated January 3th, 2017 (2052 days of storage). The 412 

median age of sample storage was 201 days, and 85% of the included samples were stored for 413 

less than 1000 days. 414 

Cytokine quantification 415 

Cytokines were quantified in freshly thawed sera using electrochemiluminescence technology 416 

with Meso Scale Discovery (MSD; Meso Scale Diagnostics, Rockville, Maryland, USA). All 417 

consumables, antibody sets, and multiarray plates were used as provided in the MSD assay kits. 418 

We used seven different human V-plex kits, including the Proinflammatory Panel 1 (K15049D; 419 

measuring IFN-γ, IL-1β, IL-2, IL-4, IL-6, IL-8, IL-10, IL-12p70, IL-13, and TNF), Cytokine 420 

Panel 1 (K15050D; GM-CSF, IL-1α, IL-5, IL-7, IL-12/IL-23p40, IL-15, IL-16, IL-17A, TNF-421 

β, and VEGF-A), Cytokine Panel 2 (K15084D; IL-1RA, IL-3, IL-9, IL-17A/F, IL-17B, IL-17C, 422 

IL-17D, and TSLP), Chemokine Panel 1 (K15047D; Eotaxin, Eotaxin-3, IL-8, IP-10, MCP-1, 423 

MCP-4, MDC, MIP-1α, MIP-1β, and TARC), TH17 Panel 1 (K15085D; IL-17A, IL-21, IL-22, 424 

IL-23, IL-27, IL-31, and MIP-3α), Angiogenesis Panel 1 (K15190D; FGF (basic), PlGF, Tie-2, 425 

VEGF-A, VEGF-C, VEGF-D, and VEGFR-1/Flt-1), and Vascular Injury Panel 2 (K15198D; 426 

CRP, ICAM-1, SAA, and VCAM-1) kits. IL-18 and MIG levels were quantified using separate 427 

antibody sets (B21VJ and F210I, respectively) and a 2-SECTOR U-plex Development Pack 428 

(K15227N). The assays were performed according to the manufacturer’s instructions. Sera was 429 

diluted as proposed by the manufacturer, being 1:2 for analytes measured in Proinflammatory 430 

Panel 1, Cytokine Panel 1 and Angiogenesis Panel 1 kits, 1:4 for the Chemokine panel 1, 431 

Cytokine panel 2, Th17 panel and the U-plex (IL-18 and MIG) kits, and 1:1000 for the Vascular 432 
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injury Panel 2 kit. Phosphate-buffered saline (PBS; 14190250, Gibco) supplemented with 433 

0.05% Tween (P1379, Sigma-Aldrich) was used as wash buffer. Plates were read in MSD Gold 434 

Buffer on a MESO QuickPlex SQ 120MM using the Methodical Mind software (Meso Scale 435 

Diagnostics). 436 

Data cleaning and normalization 437 

For each cytokine, the background signal was defined as the sum of the mean and 2 × the 438 

standard deviation of the signal of two blank wells on each plate. This background signal was 439 

subtracted from the raw data for each cytokine, whereby a value of 1 was imputed for negative 440 

values to allow for normalization in subsequent steps. Cytokines with less than 20% of samples 441 

within the range defined by the lower (background signal) and upper detection limits (mean of 442 

the highest calibrator) were excluded from the dataset. Patients with more than 20% missing 443 

data (due to insufficient sample volume) were excluded from further analysis. For biomarkers 444 

that were measured in duplicate on different plates (i.e., IL-17A, VEGF-A and IL-8), one of 445 

both measurements was omitted based on the comparison of i) the number of samples within 446 

range of the calibrator (for IL-8 100% samples were within range at 1:2 dilution in 447 

‘Proinflammatory panel 1’ as opposed to 83.5% were within range at 1:4 in ‘Chemokine panel 448 

1’) or ii) the number of missing values (for VEGF-A n=1 missing in ‘Cytokine panel 1’ as 449 

opposed to n=4 missing in ‘Angiogenesis panel 1’, and for IL-17A none were missing in ‘Th17 450 

panel 1’ as opposed to n=1 missing in ‘Cytokine panel 1’). Before excluding these values, we 451 

verified that duplicate measurements were strongly correlated with one another (i.e., IL-8: 452 

Spearman rho 0,3482 (P=0,0019); VEGF-A: rho 0,9905 (P<0.0001); and IL-17A: rho 0,6264 453 

(P<0.0001)). For analyses requiring a complete dataset (such as principal component analysis 454 

(PCA) and regression models), missing values were imputed by an iterative PCA model using 455 

the CRAN package missMDA (v1.18). Prior to regression analyses, collinearity between 456 

predictor variables was verified using Spearman correlation test and calculation of Benjamini-457 
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Hochberg adjusted p-values. Pairs of biomarkers from patients and HCs with a Spearman rho 458 

>= 0.75 and an adjusted p-value <0.05 were considered to correlate strongly and to be ineligible 459 

for independent prediction of the outcome value. To compare data across age groups, the log2 460 

fold change over the median of age-matched HCs (infants (<1yo), children (1-18yo) and adults 461 

(>18yo) separately) was calculated for each cytokine signal of each sample. 462 

Machine learning analyses 463 

Unbiased variable selection was performed by three different algorithms in R. Random forest 464 

(RF) regression was done using Breiman’s random forest algorithm as available in the 465 

randomForest package (v4.7-1.1). For each iteration (n=1000), we grew 1000 trees with seven 466 

variables randomly sampled as candidates at each split. Twenty-two samples (63.25 %) were 467 

collected for each disease group. Variable importance was defined as the decrease in Gini index 468 

averaged over all trees. The top half of the variables, sorted based on the decrease in Gini index, 469 

were deemed important. Second, we used Multivariate methods with Unbiased Variable 470 

Selection in R (MUVR, v0.0.975) as described by Shi et al.[60]. For each MUVR, we 471 

performed 1000 repetitions and used random forests as the core modelling algorithm, defining 472 

eight outer cross-validation segments (the maximum of the smallest group), including 75% of 473 

the variables per iteration. Variables were ranked on variable importance of projection (VIP) 474 

(median for 1000 repetitions), where lower is better. The all-relevant model (“max” model) 475 

selected the number of variables. For the third algorithm, we used Boruta (boruta package 476 

v8.0.0), a wrapper method built around Random Forest Regression. The z-score of the Mean 477 

Decrease in Accuracy (default setting) was used as the performance metric, and a maximum of 478 

1000 iterations was performed. Variables were selected as important with a median z-score 479 

higher than the maximum shadow attributes (permuted copies were random and shuffled copies 480 

of all features). To summarize the three machine learning methods we used the scale function 481 
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in R. As an overall importance metric, ranks were calculated for each cytokine based on the 482 

median value of the corresponding metric in each algorithm and dataset.  483 

Logistic regression modelling 484 

Binomial logistic regression was performed on the normalized cytokine data with the glm 485 

function of the base stats package in R. The variables of patients in one disease group were 486 

compared with those of all other patients. Odds ratios were calculated as exponentiates of the 487 

coefficient estimates. The lower and upper bounds of the 95% confidence intervals were 488 

calculated using qnorm and the coefficient standard error. The significance of each model 489 

compared to a null modell (y~1) was calculated using chi-square. The McFadden Pseudo-R² 490 

and variance inflation factor (VIF) were retrieved for each model using jtools. Multinomial 491 

logistic regression analysis was performed using the nnet package. 492 

The area under the curve (AUC) was calculated on thousand iterations of random splitting the 493 

patient data in a training (75%) and test (25%) set (with verification that each set contained at 494 

least one patient of each disease group), performing quasibinomial logistic regression on the 495 

training set and calculating the AUC on the predicted outcome of the test set using the ROCR 496 

package.  497 

General statistics and data analysis 498 

All tests were two-sided and Benjamini-Hochberg corrections were applied for multiple testing 499 

when indicated. The specific statistical methods are described in the figure legends. Results 500 

with a P-value of less than 0.05 were considered significant. Significance levels were and 501 

denoted as *, P < 0.05; **, P < 0.01; ***, P < 0.001; and ****, P < 0.0001. All data analysis 502 

was performed in RStudio v2022.07.2 (R version 4.2.2). The following CRAN packages were 503 

used: caTools (v1.18.2), Boruta (v8.0.0), broom (v1.0.3), caret (v6.0-93), circlize (v0.4.15), 504 
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ComplexHeatmap (v2.12.1), corrplot (v0.92), cowplot (v1.1.1), doParallel (v1.0.17), dplyr 505 

(v1.0.10), factoextra (v1.0.7), fastDummies (v1.6.3), flextable (v0.9.1), forcats (v1.0.0), 506 

forestmangr (v0.9.4), ggbreak (v0.1.1), ggforce (v0.4.1), ggplot2 (v3.4.1), ggpubr (v0.6.0), 507 

ggsignif (v.0.6.4), ggvenn (v0.1.9), gridExtra (v2.3), Hmisc (v4.8-0), jtools (v2.2.1), magrittr 508 

(v2.0.3), MASS (v7.3-58.1), missMDA (v1.18), MUVR (v0.0.975), nnet (v7.3.18), plyr (v1.8.8), 509 

randomForest (v4.7-1.1), RColorBrewer (v1.1-3), remotes (v2.4.2), reshape (v0.8.9), ROCR 510 

(v1.0-1), rstatix (v0.7.2), smplot2 (v0.1.0), stats (v3.6.2), tableone (v0.13.2), tibble (v3.1.8), 511 

tidyr (v1.3.0), tidyverse (v2.0.0) 512 
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Normalized cytokine and clinical data of individual patients is available in Supplementary 514 

Materials. 515 
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Figure 1: Fig 1A: Outline of the study, including the number of participants and quantified cytokines. Fig 1B-H: Stacked bar 714 

chart and box-and-whisker plots showing demographic parameters for patients and healthy individuals and routine laboratory 715 

investigations in patients subjected to multiplex protein quantification. Statistical significance was calculated using the 716 

Wilcoxon signed-rank test between groups of continuous data or Pearson's chi-squared test for differences in sex proportions 717 

(only B-H adjusted p-values <0.05 are shown and are indicated by *, P < 0.05; **, P < 0.01; and ***, P < 0.001. Fig 1I: 718 

Spearman correlation plot of normalized signal intensity (log2FC as compared to median of HCs) for each biomarker from 719 

patients; B-H adjusted p-values are hierarchically clustered and indicated by *, P < 0.05; **, P < 0.01; and ***, P < 0.001; 720 

the color of the squares represents the absolute value of the corresponding Spearman rho values. Four clusters based on 721 

hierarchical closeness are denoted in black rectangles. Fig 1J: First two components (PC1 and PC2) of the principal 722 

component analysis of all normalized biomarkers from patients; 95% confidence interval ellipses are shown for each group. 723 

The percentage of explained variance is denoted in the axes. Abbreviations used: hyperinflammation (HI), autoinflammatory 724 

disease (AID), systemic autoimmune disease (AI), healthy control (HC), white blood cell (WBC) counts, absolute neutrophil 725 

count (ANC), C-reactive protein (CRP), erythrocyte sedimentation rate (ESR) 726 

 727 
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Figure 2: Fig 2A: Hierarchically clustered heatmap showing the median log2FC differences between patient groups versus 729 

healthy controls (HC). Unadjusted P-values by Mann-Whitney U test are indicated by *, P < 0.05; **, P < 0.01; and ***, P < 730 

0.001. The bottom annotation shows the H statistic and P-values of test all variables between all disease groups (without HCs, 731 

unadjusted P-values by Kruskal-Wallis test). Fig 2B: Box-and-whisker plots showing normalized signal intensities in patients 732 

and HC (log2 fold change to the median of age-matched healthy controls). Only cytokines with significant differences among 733 

patient groups (unadjusted P-values <0.05 by Kruskal-Wallis test, indicated in the labels) or when comparing each patient 734 

group with HCs (unadjusted P-values by Mann-Whitney U test are indicated by *, P < 0.05; **, P < 0.01; and ***, P < 0.001) 735 

are presented. Cytokines with no significant differences are shown in Fig S2A. Fig 2C: Hierarchically clustered heatmap 736 

showing normalized individual patient data for biomarkers with significant differences (related to Fig 2B). Missing values 737 

(n=12) were imputed by missMDA using an iterative PCA algorithm. The labeling of patient groups and routine laboratory 738 

measurements for each individual are shown in the right annotation. Abbreviations used: hyperinflammation (HI), 739 

autoinflammatory disease (AID), systemic autoimmune disease (AI), healthy control (HC), white blood cell (WBC) counts, C-740 

reactive protein (CRP), erythrocyte sedimentation rate (ESR) 741 

 742 
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 743 

Figure 3: Fig 3A-C: Results of repeated runs (1000x) of machine learning methods applied to 36 cytokines (input) with patient 744 

groups as outcome variables. Box-and-whisker plots are ranked based on the median of the corresponding metric. For Random 745 

Forest (RF) regression, the decrease in Gini Impurity is shown (A). For Multivariate methods with Unbiased Variable Selection 746 
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in R (MUVR), the variable importance of projection (VIP) is plotted on an inverse scale (B). Biomarkers selected using the 747 

“all-relevant” model are colored. For Boruta, the z-score of the Mean Decrease in Accuracy is shown, whereby variables with 748 

a median z-score higher than the maximum shadow attributes are colored (C). Fig 3D: Hierarchically clustered heat map 749 

showing the median scaled metrics for each cytokine and each algorithm used (related to Fig 3A-C). Fig 3E: Venn diagram of 750 

cytokines selected as important by each algorithm (i.e., being present in the top half of RF, the all-relevant selection of MUVR, 751 

and scoring higher than the maximum shadow attributes in Boruta). Fig 3F: Heatmap showing which cytokines were selected 752 

as important by each algorithm (related to Fig 3E) 753 
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 754 

Figure 4: Fig 4A: Heatmap showing the summary of which cytokines were selected as important by every algorithm (RF, 755 

MUVR, and Boruta) depending on which dataset was used (the original analysis on all patients or the sensitivity analyses on 756 

filtered patient sets). Fig 4B: Hierarchically clustered heatmap showing the median scaled metrics for each cytokine, each 757 

algorithm, and dataset used, including filtered datasets without patients presenting with hyperinflammation (HI), without 758 

autoinflammatory diseases (AID), or without systemic autoimmune disease (AI). The annotation on the right shows the sum of 759 

the rankings for each cytokine across all analyses. The five cytokines with the lowest ranks are shown in red. Fig 4C: Forest 760 
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plots of adjusted odds ratios (OR) and 95% confidence intervals (CI), presented on a logarithmic scale, as calculated by 761 

binomial logistic regression using the five prioritized cytokines as input and the disease groups (HI, AID, and systemic AI) as 762 

outcomes. Denoted P-values concern the model and were calculated using Chi-square test. P-values of each variable were 763 

calculated using the Wald test and are indicated by *, P < 0.05;  and **, P < 0.01. Fig 4D: Box-and-whisker plots of repeated 764 

calculation (1000x) of the area under the curve (AUC) with random generation of training and test sets of the five prioritized 765 

cytokines (CCL26, CXCL10, ICAM-1 IL-27, and SAA) and predicting the diagnosis using logistic regression modelling. Fig 766 

4E: Hierarchically clustered heatmap showing normalized patient data of selected cytokines and k-means partitioning in three 767 

clusters with the known diagnoses color-coded in the annotation on the right. Fig 4F: First two components (PC1 and PC2) 768 

of principal component analysis (PCA) of the five prioritized cytokines (CCL26, CXCL10, ICAM-1 IL-27, and SAA) of patients; 769 

label colors and numbers denote patients’ known diagnosis and identification, as presented in Supplementary data, 770 

respectively. Percentage of explained variance is denoted in the axes labels. 771 
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Tables 773 

 All patients HI AID Systemic AI 
P-

value 
HCs 

n 44 9 27 8  16 

Age (y), median 

(IQR) 

6.5 [3.76, 

13.33] 
11 [0.28, 15.61] 

5.9 [3.84, 

9.29] 

12.4 [9.67, 

14.08] 
0.123 

7.0 (0.8, 

14.3) 

Female sex, n (%) 26 (59.1) 5 (55.6) 13 (48.1) 8 (100.0) 0.031 8 (50) 

WBC (/µl), median 

(IQR) 

10960 [7045, 

15590] 

12890 [3370, 

20320] 

11500 [8610, 

16340] 

6240 [3935, 

7040] 
0.013  

ANC (/µl), median 

(IQR) 

6060 [3845, 

10620] 

8347.50 [1324.25, 

16473.25] 

7390 [5452, 

10620] 

3393 [2465, 

3927.50] 
0.005  

CRP (mg/l), median 

(IQR) 

69.3 [11.17, 

141.93] 

69.6 [20.40, 

127.10] 

88.4 [42.65, 

175.75] 
0 [0, 1.40] <0.001  

Ferritin (µg/l), 

median (IQR) 

478.5 [120, 

2480.75] 

12241 [2468, 

21425] 

215 [131, 

1281] 

78.5 [43.75, 

206.25] 
<0.001  

ESR (mm/h), 

median (IQR) 

35.5 [13.75, 

73.75] 
48.5 [29.25, 70] 

35.5 [14.75, 

81] 

23.5 [10.25, 

44.25] 
0.522  

Systemic steroid 

use, n (%) 
8 (18.2) 5 (55.6) 3 (11.1) 0 (-) 0.004  

Biological therapy, 

n (%) 
2 (4.5) 2 (22.2) 0 (-) 0 (-) 0.017  

 774 

Table 1: Demographic and routine laboratory data of patients and healthy controls (HC) included in the study. P-values were 775 

calculated using the Kruskal-Wallis test for continuous variables and Fisher’s Exact test for proportional data between patients 776 

with hyperinflammation (HI), autoinflammatory disease (AID) and systemic autoimmune disease (AI). 777 
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Supplementary data 779 

 780 

 781 

Figure S1: Fig S1A-D: Pairs of normalized biomarkers with the highest correlation as calculated by Spearman rho. Individual 782 

data points for patients and B-H adjusted P-values are shown. 95% confidence interval (yellow shade) around the regression 783 

line (grey) as determined by linear regression is shown. Fig S1E-F: First two components (PC1 and PC2) of principal 784 

components analysis of raw data (E) and normalized biomarkers (F) from healthy controls by age group (infants: <12 months, 785 

children 1-18y, adults 21-49y). Percentage of explained variance is denoted in the axes labels. Fig S1G: Factor map of 20 786 

most contributing variables to the first two components of normalized biomarker PCA (related to Fig S1F). Abbreviations 787 

used: principal component (PC) 788 
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 790 

Figure S2: Fig S2A: Hierarchically clustered heatmap showing the presence or absence of significant differences between 791 

groups of patients versus healthy controls (using unadjusted P-value <0.05 with Mann-Whitney U test) or among all three 792 

groups of patients (unadjusted P-value <0.05 using Kruskal Wallis test between HI, AID, and AI). Fig S2B: Box-and-whisker 793 
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plots showing the log2FC for patients and healthy controls (HCs) of cytokines without significant differences among patient 794 

groups or when comparing patient groups with HCs. Unadjusted P-values <0.05 by Kruskal-Wallis test among all disease 795 

groups are indicated in the labels. Unadjusted P-values by Mann-Whitney U test between each disease group and HCs are 796 

indicated below the comparison lines by *, P < 0.05; **, P < 0.01; and ***, P < 0.001. Fig S2C: Spearman correlation plot 797 

of normalized signal intensity (log2FC as compared to median of HCs) for selected biomarkers and demographic and routine 798 

laboratory data of patients; B-H adjusted p-values are hierarchically clustered and indicated by *, P < 0.05; **, P < 0.01; 799 

and ***, P < 0.001; the colour of the squares represent the absolute value of corresponding Spearman rho values. Fig S2D-800 

F: Pairs of normalized biomarkers and their associated routine laboratory markers with the highest correlation as calculated 801 

by Spearman rho. Individual data points for patients and B-H adjusted P-values are shown. 95% confidence interval (yellow 802 

shade) around the regression line (grey) as determined by linear regression is shown. Abbreviations used: Hyperinflammation 803 

(HI), Autoinflammatory disease (AID), Autoimmunity (AI), Healthy control (HC), White blood cells (WBC), C-reactive protein 804 

(CRP), erythrocyte sedimentation rate (ESR) 805 
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 806 

Figure S3: Results of sensitivity analyses using the same machine learning methods as presented in Figure 3 but whereby the 807 

data were filtered by consecutively leaving out one patient group. Results are presented, from top to bottom, for the analysis 808 

without patients presenting hyperinflammation (HI), without autoinflammatory diseases (AID) or without autoimmunity (AI). 809 

Fig S3A,D,G: Venn diagram of cytokines selected as important by each algorithm (i.e., being present in the top half of RF, the 810 

all-relevant selection of MUVR and scoring higher than the maximum shadow attributes in Boruta). Fig S3B,E,H: 811 

Hierarchically clustered heatmap showing the median scaled metrics for each cytokine and each algorithm used. Fig S3C,F,I: 812 

Heatmaps showing which cytokines were selected as important (presence) by each algorithm (related to Fig 3S3A,D,G) 813 
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 814 

Figure S4: Fig S4A-C: Ranking of cytokines as an importance metric to summarize machine learning methods with separate 815 

color coding for the sum of all ranks found by each algorithm (Fig S4A) and dataset used (Fig S4B), including filtered datasets 816 
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without patients presenting hyperinflammation (HI), without autoinflammatory diseases (AID) or without autoimmunity (AI). 817 

The mean ranking across all analyses in shown in Fig S4C. The first quartile (Q1) of mean ranking is denoted. Fig S4D: Box-818 

and-whisker plots showing normalized signal intensity of prioritized cytokines. Unadjusted P-values <0.05 by Kruskal-Wallis 819 

test are indicated in the labels. Unadjusted P-values by Mann-Whitney U test between patient groups are indicated by *, P < 820 

0.05; **, P < 0.01; and ***, P < 0.001. To compare, healthy control (HC) data is displayed, but, for clarity, P-values between 821 

patient groups and HCs are not presented here (these can be found in Fig. 2B or Fig. S2B). Fig S4E: Spearman correlation 822 

plot of normalized signal intensity (log2FC as compared to median of HCs) for prioritized cytokines, demographic variables 823 

and routine laboratory tests from patients; B-H adjusted p-values are hierarchically clustered and indicated by *, P < 0.05; 824 

**, P < 0.01; and ***, P < 0.001; the colour of the squares represent the absolute value of corresponding Spearman rho 825 

values. Fig S4F: Statistical significance of different logistic regression models and the average significance as calculated by 826 

chi square test. The prioritized cytokines are those incorporated in “D”. The order of adding cytokines was based on the sum 827 

of ranks as presented in Fig S4A-C. Fig S4G: Fold change (ratio of P-values) of statistical significance of different logistic 828 

regression models as calculated by chi square test and color coded by patient group. The most prominent drop in P-value 829 

(ratios <1) occurred by adding SAA to IL-27 and ICAM-1 (= C model / B model) and after adding CXCL10 to the first four 830 

cytokines (= E model / D model). Fig S4H: Hierarchically clustered heatmap showing correlation between the five prioritized 831 

cytokines by patient group. The colour of the squares represent the absolute value of corresponding Spearman rho values. B-832 

H adjusted p-values are denoted in each corresponding cell . Abbreviations used: Hyperinflammation (HI), Autoinflammatory 833 

disease (AID), Autoimmunity (AI), Healthy control (HC) 834 
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Demo-

graphics 
Diagnosis Disease activity at sampling Routine laboratory test at sampling Therapy at sampling 

ID Age (y) Sex Group Specify Describe 
WBC 

(/µl) 

ANC 

(/µl) 

ESR 

(mm/u) 

Ferritin 

(µg/l) 

CRP 

(mg/l) 
Steroids + dose Biologics Other 

1 0.79 F HI 
primary HLH 

(UNC13D) 
fever, pancytopenia, hepatosplenomegaly 1920 1359 NA 2519 69.6 

Dexa 1.5mg/24h = 

5mg/m² 
- 

antibiotics, blood 

transfusions 

2 0.14 M HI 
primary HLH 

(PRF1) 
fever > 10 days, pancytopenia, severe hepatomegaly 370 64 NA 2468 8.1 Dexa 5mg/m²/12h - 

ciclosporin, etoposide, 

antibiotics 

3 0.01 M HI 
neonatal HLH - 

negative genetics 

fever, hepatosplenomegaly, seizures, severe hepatitis, 

thrombocytopenia 
14980 10875 NA 140949 20.4 - - antibiotics 

4 0.28 M HI 
HLH - negative 

genetics 

fever, hepatomegaly, erythematous skin rash, encephalopathy, 

crackled lips, skin desquamation, coagulopathy, 

thrombocytopenia, histiocytosis on bone marrow 

12890 5820 NA 1674 127.1 
Dexa 3.2mg/24h = 

10mg/m²/24h 
- 

IVIG 48h before, 

antibiocs 

5 55.27 F HI 

secondary HLH 

(EBV driven 

hepatosplenic T 

cell lymphoma) 

fever, oral aphthosis, weight loss, liver histiocytosis, 

mediastinal adenopathy, EBV positive PCR in blood, ANA+, 

COVID+ 

3370 1220 9 12241 12.2 
hydrocortison 

15mg/24h 

infliximab 

stop since 5 

weeks 

AZA stop since 2 weeks 

6 15.61 F HI 

MAS, underlying 

sJIA (DD DRESS 

on sulfasalazine) 

fever, myalgia, abdominal pain, erythematous skin rash, 

hemodynamic shock 
21220 16191 NA 631 114 - - 

sulfasalazine, NSAIDs 

on demand 

7 11.00 F HI 
MAS, underlying 

sJIA 
fever > 10 days, salmon pink rash,  arthralgia wrist and ankle 21000 19300 97 21425 253.9   NSAIDs 

8 13.51 F HI 

Kikuchi 

syndrome 

(underlying 

sJIA) 

fever, cervical adenopathy, myalgia, coagulopathy 20320 17320 61 14320 10 - - antibiotics 
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9 27.89 M HI 
MAS, underlying 

AOSD 

fever, erythematous skin rash, polyarthralgia, thoracal pain, 

encephalopathy, seizures, bone marrow histiocytosis 
11690 NA 36 23806 39.1 

MP 64mg/24h, 5 day 

pulse MP 500mg/24h 

untill 72h before 

sampling 

anakinra 

100mg/24h, 

sarilumab 

latest 3 

weeks before 

colchicine 0.5mg/12h, 

antibiotics 

10 12.07 F AID 
sJIA - NLRP3 

VUS 

relapsing-remitting fever, abdominal pain, headache, cervical 

adenopathy, erythematous rash on hands and legs 
5880 5050 15 202 19.7 MP 10mg/24h - 

cyclosporine 70 

mg/12h 

11 7.27 F AID sJIA fatigue, polyarthralgia 11810 9250 50 196 49.2 
P 10 mg/24h =  

0.5mg/kg/24h 
- 

NSAIDs, MTX 15 

mg/w 

12 13.59 M AID sJIA prolonged fever, arthralgia knees, generalized urticaria 28590 23870 66 11833 289.2 - - antibiotics 

13 9.00 M AID sJIA 
fever >2 weeks, intermittent erythematous skin rash on legs, 

myalgia 
7900 6960 123 4907 211.2 - - 

IVIG 2g/kg 48h 

before, antibiocs, LD 

ASA 

14 5.99 M AID sJIA 
8 days fever (in total >12 days), arthritis, pink rash (papular 

too) 
17600 14890 103 1032 248.6 - - - 

15 14.03 M AID sJIA 
5 weeks fever, malaise, myalgia, arthralgia, pink rash, mild 

splenomegaly 
16200 10720 114 1281 70.8 - - - 

16 1.16 F AID sJIA 
3 week fevers, rash since few months, likely arthritis hips, 

swollen hands/feet 
29400 8293 76 2380 134.9 - - NSAIDs 

17 6.06 F AID sJIA fever 10d, maculopapular erythematous rash, ri wrist arthritis 22900 18464 >120 1259 221.8 - - NSAIDs 

18 9.57 F AID sJIA fever > 12 days, salmon pink rash,  myalgia, PIP-arthritis 6600 6250 28 1753 69 - - - 

19 4.77 F AID sJIA persistent fever, arthritis both knees, shoulders, wrists 11460 7390 96 650 116.6 - - NSAIDs 

20 12.19 F AID sJIA 
fever over 10 days, muscle weakness, abdominal pain, arthritis 

ankles 
5860 3080 119 555 268.8 - - NSAIDs, antibiotics 

21 6.49 F AID sJIA 
fever over 7 days, arthralgia shoulder, ankle, hip, throat pain, 

generalized erythematous skin rash 
12640 10520 NA 3560 328.4 - - NSAIDs, antibiotics 
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22 2.84 M AID sJIA 
generalized erythematous skin rash, spiking fever during 10 

days, joint pains, morning stiffness 
16480 8899 73 8503 113.7 - - NSAIDs 

23 42.23 M AID AOSD persistent fatigue, throat ache, subfebrile 7600 5140 2 402 3.4 - - 
NSAIDs, colchicine 

0,5mg/12h 

24 1.25 M AID NLRP3 GOF fever, cervical adenopathy 10960 5980 28 134 172.1 - - 

azithromycine 

3x/week, SCIG 

0.15g/kg/week 

25 3.66 F AID Blau syndrome 

erythematous skin ichtyosis (arms and legs; biopsy shows non-

caseating granulomatosis) with bodgy tenosynovitis at wrists 

and midfoot 

14500 5530 10 45 0 - - - 

26 13.26 M AID FMF recurrent pain crises (abdominal, thoracal), fever 7950 4660 36 215 105.1 - - NSAIDs 

27 3.41 F AID FMF fever, generalized urticarial exanthema, abdominal pain 9500 3920 NA NA 24.8 - - colchicine 1mg/12h 

28 5.92 M AID PFAPA fever, tonsillitis, cervical adenopathy 14180 11070 36 146 88.4 - - - 

29 3.79 M AID PFAPA fever since 5 days, tonsillitis, cervical adenopathy 9280 3770 NA NA 179.4 
MP 1mg/kg 1 dose 4 

days before 
- - 

30 5.16 M AID PFAPA recurrent fever, throat pain, aphthosis, good response medrol 11500 8536 27 44 36.1 - - - 

31 3.90 M AID PFAPA 
recurrent fever with oral aphthosis and cervical adenopathy 

and inguinal adenopathy 
10800 7250 29 172 163 - - - 

32 6.44 M AID PFAPA 
atypical PFAPA with recurrent fever, vomiting, abdominal 

pain, throat pain, cervical adenitis 
16700 14200 35 131 74.8 - - colchicine 

33 4.15 M AID PFAPA 
recurrent fever with oral aphthosis, throat pain, cervical 

adenopathy 
29700 26580 14 80 78.1 - - NSAIDs 

34 1.89 F AID PFAPA 

recurrent fever (5-7d) without symptoms initially but after time 

with oral apths and throat pain and good responsive towards 

steroids 

12600 8290 7 17 61.3 - - - 
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35 5.73 F AID PFAPA 

recurrent 2-3d fever (40), abdominal pain (coughing too 

today), later on throat pain and oral aphts, great response to 

steroids 

9220 6060 5 32 20.3 - - - 

36 4.27 F AID PFAPA recurrent fever, 2-4 days, aphthosis, throat pain 8000 5374 8 54 28.8 - - - 

37 11.07 F AI JDM 
outspoken limb muscle weakness due to severe myositis, mild 

skin signs, later calcinosis 
10100 5440 14 246 6.9 - - NSAIDs 

38 17.79 F AI JDM muscle pain, fatigue, little power, rash 6240 3610 48 70 0 - - - 

39 3.57 F AI JDM Gottron, muscle pain and less power, MRI normal 4180 2150 2 35 0 - - - 

40 13.66 F AI SLE AI hepatitis, arthritis elbow 3 days few weeks back NA 3406 13 NA 0 - - - 

41 13.86 F AI SLE 
pericardial effusion, pleuritis, vasculitis skin, mild flexion 

contracture knees 
3690 1880 43 NA 5.6 - - desloratadine 

42 9.97 F AI scleroderma polyarthritis, scleroderma 6590 3380 33 87 0 - - - 

43 14.74 F AI scleroderma polyarthritis, raynaud, scleroderma 7490 4880 116 261 0 - - - 

44 8.77 F AI 
linear 

scleroderma 
linear scleroderma finger since May 2020 2570 2570 2 12 0 - - - 

 836 

Table S1: Demographic and clinical data of patients  837 


