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Abstract 

Road safety is a subject of significant concern and substantially affects individuals across the globe. Thus, real-time, 
and post-trip interventions have gained significant importance in the past few years. This study aimed to analyze 
different classification techniques and examine their ability to identify dangerous driving behavior based on a dual-
approach study. The analysis was based on the investigation of important risk factors such as average speed, harsh 
acceleration, harsh braking, headway, overtaking, distraction (i.e., mobile phone use), and fatigue. In order to achieve 
the objective of this study, data were collected through a driving simulator as well as a naturalistic driving study. To 
that end, four classification algorithms, namely support vector machines, random forest (RFs), AdaBoost, and multi-
layer perceptron (MLP) neural networks were implemented and compared. In the simulator experiment, RFs and MLPs 
emerged as the top-performing models with an accuracy of 84% and 82%, respectively, demonstrating its ability 
to accurately classify driving behavior in a controlled environment. In the naturalistic driving study, RF and AdaBoost 
maintained robust performance, with high accuracy (i.e., 75% and 76.76% respectively) and balanced precision 
and recall. The outcomes of this study could provide essential guidance for practitioners and researchers on choosing 
models for driving behavior classification tasks.
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1  Introduction
Despite global and extensive efforts to mitigate crashes, 
casualties have not disappeared—with significant social 
consequences constantly emerging. According to the 
World Health Organization (WHO), 1.19 lives are lost 
each year due to road crashes, becoming the 8th cause of 

death for all ages and the 1st for people aged between 5 
and 29 years old [1]. Considering the evolution in trans-
port and the complexity of modern transportation sys-
tems, an opportunity is offered for safer driving behavior, 
which of course poses certain challenges and risks. In line 
with this direction, the WHO and the European Union 
have set a 50% reduction goal in road crashes for the dec-
ade 2021–2030 focusing on using new technologies.

1.1 � Main motivation
Driving behavior is a complex issue that is affected by 
a wide range of factors, including driver’s characteris-
tics as well as environmental and traffic variables. How-
ever, human error stands out as the most significant 

*Correspondence:
Thodoris Garefalakis
tgarefalakis@mail.ntua.gr
1 Department of Transportation Planning and Engineering, National 
Technical University of Athens, 5 Heroon Polytechniou Str., 15773 Athens, 
Greece
2 School for Transportation Sciences, Transportation Research Institute 
(IMOB), UHasselt, Agoralaan, 3590 Diepenbeek, Belgium



Page 2 of 13Garefalakis et al. European Transport Research Review           (2024) 16:65 

contributor to road crashes [2]. Cognitive processes such 
as attention, perception, and decision-making each play 
an essential role in how drivers adapt to changing road 
conditions and make split-second decisions. Understand-
ing these factors and their interrelationship is essential 
for developing effective road safety interventions and 
integrating emerging technologies to mitigate human 
errors and reduce the number of road crashes. Emerg-
ing technology systems can significantly reduce the like-
lihood of such collisions by reducing cognitive overload 
and thus removing human involvement in driving tasks 
[3].

The research motivation for this study is to explore 
ways to predict and analyze the dangerous driving behav-
ior using simulator and naturalistic driving data. An 
analysis framework based on statistical and machine 
learning models, verified the significance of risky driving 
behavior classifications for a crash prediction model, was 
developed.

1.2 � Innovative aspects
Based on the integration of emerging technologies in the 
European Union’s commitment to improve road safety 
and minimize road fatalities, the European H2020 project 
i-DREAMS aims to define, develop, test, and validate a 
‘Safety Tolerance Zone’ (STZ) [4]. Through a smart sys-
tem, i-DREAMS aims to identify the level of ‘STZ’, by 
monitoring and evaluating risk indicators related to the 
complexity of the driving task as well as the ability to 
cope with the challenges posed by it, and thus support 
drivers to operate within safe boundaries. The STZ is 
classified into three risk levels:

•	 Normal level: Conditions suggest a low likelihood 
of a crash, with the driver operating safely within 
acceptable boundaries.

•	 Dangerous level: Conditions indicate an increased 
risk of a crash. Although a crash is not imminent, 
the likelihood has increased, requiring heightened 
awareness and potentially corrective actions from the 
driver.

•	 Avoidable accident level: Conditions are critical, with 
a high probability of collision unless immediate eva-
sive action is taken by the driver. The need for action 
in this phase is urgent.

Nevertheless, it is important to note that headway lev-
els, the Dangerous level, and the Avoidable accident level 
are also closely related to speeding. In our analysis, we 
found that many headway events occur due to speeding, 
where drivers maintain insufficient headway at higher 
speeds. This significantly increases the risk because the 

time available to react is reduced, and the stopping dis-
tance required in an emergency is greater.

Risky driving behavior is intrinsically connected to the 
STZ concept, which categorizes driving scenarios based 
on the probability of a collision. Within this framework:

•	 Normal driving behavior corresponds to the Normal 
Level of STZ, where the risk is low, and the driver 
maintains safe driving practices.

•	 Risky driving behavior encompasses the Dangerous 
Level and the Avoidable Accident Level of STZ. At 
the Dangerous Level, the driver’s actions increase the 
likelihood of a crash, necessitating corrective meas-
ures. At the Avoidable Accident Level, immediate 
evasive actions are required to prevent an imminent 
collision.

The challenge lies in accurately defining and identifying 
risky driving behavior. The current literature on Collision 
Warning Systems includes variables of interest such as 
acceleration/deceleration, Time Headway (TH) and Time 
to Collision (TTC) along with respective thresholds. 
Based on the conceptualization of this work, a number of 
indicators were considered for the definition of the STZ 
levels.

1.3 � Contributions/objectives
Based on the above framework, the aim of this paper is 
to develop and evaluate different classification mod-
els in order to predict risky driving behavior, leveraging 
two distinct data sources: simulator data and naturalis-
tic driving data. This dual-source methodology not only 
enhances the diversity and richness of the dataset but 
also allows for a comprehensive evaluation of machine 
learning models in both controlled and real-life driv-
ing conditions, thereby advancing our understanding of 
driver behavior across different contexts.

To achieve this object, data were collected through 
a driving simulator and a naturalistic driving study and 
four classification algorithms, namely support vec-
tor machines (SVMs), random forest (RFs), AdaBoost 
and multilayer perceptron (MLP) neural networks were 
implemented.

The main contributions of this paper are as follows:

1.	 Based on the collected driving behavior data, the 
simultaneous application of both types of simula-
tor and naturalistic driving data has been achieved. 
The introduction of new data sources enriches the 
model input features and compensates for the lack of 
dynamic data in traditional road safety research, thus 
effectively improving the accuracy of crash predic-
tion.
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2.	 Headway indicators were used to classify risky driv-
ing behavior. The contribution of the degree of dif-
ferent levels of headway to the risky driving behavior 
is shown and provides a reference for traffic manage-
ment departments to develop effective traffic safety 
measures and reduce the likelihood of crashes.

1.4 � Various parts of the manuscript
The paper is structured as follows. In the beginning, an 
overview of this paper’s objective and the gaps it seeks 
to fill is provided. This is followed by the description of 
the research methodology, encompassing the theoretical 
foundations of the models utilized. Moreover, the collec-
tion process (i.e., simulator and field trials) and the pro-
cessing of the dataset are described. Finally, the results of 
the analysis are presented accompanied by relevant con-
clusions on the different data collection approaches and 
road safety in general.

2 � Literature review
Driving Simulator Studies (DSS) and Naturalistic Driv-
ing Studies (NDS) are the two main approaches that have 
been extensively employed in driving behavior analysis 
research [5]. These research methodologies have pro-
vided valuable insights into the multifaceted nature of 
risky driving behaviors and have become indispensable 
tools for understanding the factors that contribute to 
road safety challenges. A recent study [6] has examined 
the use of both methodologies to analyze the impact of 
mobile phone conversation on the task of driving. Results 
showed that DSS tend to reveal an increased risk of crash 
due to mobile phone use, while the NDS, suggested a 
reduction in crash risk. The benefit of each approach is 
different, and it would be helpful to compare them in 
order to draw comprehensive conclusions. For instance, 
DSS presents a valuable opportunity for collecting a wide 
range of driving scenario data efficiently in well-con-
trolled environments [7]. On the other hand, NDS has a 
higher degree of realism reflecting more accurately the 
natural driving situation [8].

Due to their high accuracy, machine learning-based 
models are widely used in the field of road safety and are 
exploited to predict risky driving behavior. Given this 
context, recent studies [9–15] utilized models such as 
random forest (RFs), multilayer perceptron (MLP), sup-
port vector machines (SVMs), eXtreme gradient boosting 
(XGBoost), decision trees (DT), gradient boosting (GB) 
and logistic regression (LR).

Various methodologies have been proposed in recent 
studies to assess and predict risky driving behavior, 
each employing diverse approaches and algorithms. For 
instance, Shangguan et  al. [11] devised a framework 

encompassing feature extraction, clustering techniques, 
feature importance analysis, and the utilization of 
machine learning algorithms including RF, XGBoost, 
SVM, and MLP. This framework achieved an accuracy 
exceeding 85% in predicting driving risk statuses, which 
are defined as safe, low-risk, medium-risk, and high-
risk based on factors like speed variations, headway 
distance, speed, and acceleration. Similarly, Yang et al. 
[14] exploited a driving simulator dataset, to develop a 
framework for classifying driving behaviors into differ-
ent safety levels. They applied clustering techniques to 
identify three distinct levels of driving behavior: nor-
mal, low-risk, and high-risk. The study defined risky 
driving behaviors as actions like harsh acceleration and 
harsh braking. By using classification algorithms such 
as SVM, Decision Tree, and Naive Bayes, they achieved 
the highest accuracy of 95% with the Decision Tree 
model in evaluating these safety levels. Additionally, 
Shi et  al. [12] developed a framework integrating fea-
ture selection, risk level labeling, and addressing imbal-
anced datasets. They defined risky driving behaviors 
using 1300 features related to speed, headway distance, 
and acceleration, achieving an overall accuracy of 89% 
with the XGBoost model.

Furthermore, Zhang et  al. [15] successfully classified 
driving behaviors by utilizing low-level sensors, combin-
ing smartphone and OBD data, and applying an SVM 
algorithm, resulting in an accuracy of 86.67%. Another 
study by Papadimitriou et al. [10] quantified the correla-
tion between dangerous driving and mobile phone usage 
through logistic regression, with a marked accuracy of 
70%. Lastly, Ghandour et al. [9] classified driving behav-
ior based on psychological states, employing machine 
learning techniques, and identified Gradient Boosting 
as the optimal method for level prediction within this 
context.

Previous studies have often focused on either simulated 
or naturalistic environments, but a holistic understanding 
of driving safety lacks. Simulated scenarios provide con-
trolled conditions that allow for targeted analysis, while 
naturalistic studies capture the complexity and variabil-
ity of real-world driving. By combining these approaches, 
can overcome the limitations associated with singular 
methodologies, offering a more nuanced and valid assess-
ment of driving behavior safety.

Based on the gaps in the literature, the adopted 
approach recognizes the variation in driving behavior 
across simulated and real-world conditions. By exploiting 
the advantages of both methodologies, a more robust and 
generalizable classification model is pursued. Through 
the dual approach (i.e., driving simulator study and natu-
ralistic driving study), a holistic overview of the topic is 
pursued.
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3 � Methods and materials
3.1 � Driving experiment and data collection
For the purpose of the study, a simulator experiment and 
a naturalistic driving study were carried out in order to 
collect and analyze data from Belgian car drivers. The 
value of the two data sources is that they address driv-
ing behavior in controlled conditions and a specific 
environment (i.e., simulator experiment) as well as in a 
real-world context (i.e., naturalistic driving study). Both 
approaches have certain limitations. While in the first 
case simulator data are difficult to apply to real-world 
conditions, on the other hand, the absence of experimen-
tal control in the context of natural driving (ND) data 
collection inherently limits the possibility of establishing 
unambiguous causal relationships between specific vari-
ables and road user behavior [16].

Within the framework of the simulator experiment, 
and to determine the three safety levels (i.e., the target 
variable of the classification process), various indicators 
such as speed, time to collision (TTC), and time head-
way (TH) were considered. Click or tap here to enter text. 
However, only the TH-based categorization of STZ con-
sistently aligned with relevant studies, where dangerous 
behavior is a rarer phenomenon compared to safe driv-
ing behavior. The range of values for the headway corre-
sponding to each safety level is:

•	 ‘Normal’ Level: Headway ≥ 2 s
•	 ‘Dangerous’ Level: Headway ≥ 1.4 s and Headway < 2        

s
•	 ‘Avoidable Accident’ Level: Headway < 1.4 s

Headway is a vital parameter in analyzing traffic flow 
and safety, representing the time or distance between 
vehicles, which directly influences the likelihood of rear-
end collisions [17].

Moreover, modern automotive industries are increas-
ingly incorporating collision warning systems that rely 
heavily on Time Headway (TH) measurements. These 
systems utilize sensors to continuously monitor the dis-
tance to the vehicle ahead and calculate the TH. If the 
TH drops below a predefined threshold (typically two 
seconds), the system alerts the driver to increase the 
following distance. This threshold is based on extensive 
research indicating that shorter headways significantly 
increase the risk of rear-end collisions due to insufficient 
reaction time. Previous studies have shown that a time 
headway ranging from 1.1 to 1.7 s is considered a man-
ageable margin [18]. However, numerous driver training 
programs advocate that maintaining at least a 2-s dis-
tance from the vehicle ahead is essential for safe follow-
ing and preventing collisions, commonly referred to as 
the “2-s rule” [19].

Following the initial definition of the STZ, the analy-
sis aimed to investigate key risk factors influencing driv-
ing behavior, with a focus on variables that play a crucial 
role in assessing road safety. The initial set of variables 
included average speed, harsh acceleration, harsh brak-
ing, headway, overtaking, distraction (i.e., mobile phone 
use), and fatigue. However, to improve the performance 
of the models, feature selection process was employed. 
Specifically, through the permutation feature importance 
technique the significance of each variable in predicting 
driving behavior was evaluated. The permutation feature 
importance technique calculates the prediction error by 
permuting the feature value. This approach severs the 
connection between the feature and the objective, allow-
ing one to discern the model’s dependence on the feature 
by evaluating its prediction error after the feature’s value 
has been permuted [20]. An added benefit of Permuta-
tion Feature Importance is its time-saving aspect, as it 
eliminates the need for model retraining, potentially sav-
ing a significant amount of time. Moreover, this method 
offers another advantage by taking into account all inter-
actions with other attributes.

Following this approach, three variables emerged 
as particularly influential, demonstrating a substan-
tial impact on the model’s predictive capabilities. These 
selected variables were chosen for further analysis to 
ensure consistency in both approaches. Table 1 provides 
a detailed description of the chosen variables:

The chosen variables allow for a meaningful explora-
tion of driving behavior, minimizing unnecessary com-
plexity and ensuring a focused and effective investigation.

3.1.1 � Simulator driving experiment
The simulator experiment was carried out with the con-
tribution of 36 drivers and was based on principles that 
have been comprehensively documented in the literature 
[21, 22]. These principles, encompass defining outcomes, 
predictors, and hypotheses, determining sample size and 
statistical power, choosing the design type, allocating risk 
scenarios among participants, deciding on drive dura-
tions to prevent simulator sickness, preventing order and 
learning effects, and accounting for confounding factors.

In context of the simulator study, 36 drivers were par-
ticipated with an average age of 42  years of whom 70% 

Table 1  Description of the selected features emerged through 
permutation importance

Variable Description Units Type

Speed Vehicle speed Kilometers per hour Numeric

Distance travelled Distance driving Meters Numeric

Speed Limit Current speed limit Kilometers per hour Numeric
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were men and 30% were women. From the design per-
spective, the scenarios had minimal rapid changes in 
direction and acceleration. The total duration of the 
simulator did not exceed 2  h, and the duration of each 
drive did not exceed 1  h. Drives with more demanding 
scenarios were kept shorter than regular drives. Although 
there were no set rules for the duration of the drives, the 
general practice was to set them between 5 and 25 min 
with 10-min breaks in between. It had been shown that 
simulator sickness increased with the drive duration in 
one trial but decreased with successive trials in multiple 
sessions [23]. As such, a few practice drives prior to the 
main drive were designed to help reduce the effects of 
simulator sickness. However, these practice drives could 
have resulted in adaptation (or learning effects), which 
is a type of contamination that may have influenced the 
results. Overall, the simulator’s high fidelity to real-world 
dynamics, encompassing precise auditory, visual, and 
motion cues, mitigated simulator sickness by aligning 
participants’ sensory impressions with their expectations 
in a realistic driving context. Based on the above, it was 
possible that during and after the pilot driving, the driver 
experienced mild or intense discomfort, dizziness or 
nausea. In such cases, the experiment trials were stopped 
if symptoms of simulator sickness were apparent or if the 
participant reported feeling unwell.

Eligibility criteria included being between 20 and 
65  years old, no history of motion sickness and no use 
of medication that could impair driving performance. 
Participants were given detailed instructions before the 
experiment, which included a demonstration of the driv-
ing simulator and a practice session. The instructions 
emphasized the importance of driving as naturally as 
possible and following the simulated traffic rules.

The experiment was based on the DriveSimSolu-
tions (DSS) driving simulator which was developed for 
the purposes of the i-DREAMS project and conducted 
from December 2020 to January 2021. The simulator 
was design based on a Peugeot 206 based on the Peugeot 
206 model, incorporating various genuine components 
such as the complete dashboard, operational instrument 
panel, and the driver’s seat to accurately emulate the 
cockpit of this particular vehicle. The simulator oper-
ates on the STISIM Drive 3 software, showcased on three 
49-inch screens with 4K resolution, delivering a 135° field 
of view. The experiment was implemented based on three 
scenarios as shown in the Table 2.

Each participant performed three separate drives.

•	 Drive 1: No interventions
•	 Drive 2: Interventions
•	 Drive 3: Interventions with modifying condition

3.1.2 � Naturalistic driving study
The design and implementation of the on-road study was 
conducted following certain principles from the existing 
literature focusing on testing interventions to assist driv-
ers in operating within safe boundaries. Data collection 
for the ND study was conducted into four phases and 
focused on monitoring driving behavior and the impact 
of real-time interventions (e.g., in-vehicle warnings) and 
post-trip interventions (e.g., post-trip feedback & gamifi-
cation) on driving behavior. Although the NDS data col-
lection was divided into four phases, the combined data 
(of all phases) were utilized for the classification process. 
The description of the four phases as well as the drivers 
and trips that were collected are outlined in the following 
Table 3:

In order to gather a range of vehicle and driver-related 
driving attributes, devices such as Mobileye system [24], 
a dash camera and the Cardio gateway (CardioID [25]) 
were used in order to record driving behavior (e.g., speed, 
acceleration, deceleration, steering). More specifically, 
the Mobileye system is as a network sensor and a cam-
era-based system mounted on the windshield that meas-
ures parameters, like headway monitoring, traffic sign 
recognition, lane position monitoring and pedestrian 
recognition. The system can be connected to the CAN 
bus and enables the integration with several ADAS eco-
system products.

The Cardio gateway is a system based on sensors 
which is connected to the Mobileye equipment through 
the CAN bus of the vehicle and can transfer data 
through different communication technologies (BLE, 
CAN, I2C, SPI, WiFi). CardioID also provided a web 
API to support data access. The API completely fol-
lowing the REST architectural style, and the data were 
available in JSON format. In addition, Cardio Watch 
was also used to provide more reliable data about 

Table 2  Characteristics of the scenarios implemented during 
the driving simulator experiment

Scenario Road section (m) Number of 
lanes

Speed 
limits 
(km/h)

A 0–6300 1 × 1 70

6300–11,300 2 × 2 90

11,300–16,500 2 × 2 120

B 0–6100 2 × 2 90

6100–12,000 2 × 2 120

12,000–18,200 1 × 1 70

C 0–6000 2 × 2 120

6000–11,000 2 × 2 90

11,000–17,200 1 × 1 70
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car drivers’ fatigue and sleepiness compared to Car-
dio Wheel which required both hands on the steering 
wheel to provide fatigue index data.

Lastly, OSeven provided a state-of-the-art android-
based smartphone application that also monitors and 
collect driving behavior of individuals using a variety of 
parameters. The app uses different smartphone sensors to 
collect such data. The app was used by drivers recruited 
for on-field trials. Drivers recruited for the field-trials 
were required to install this app on their smartphone. A 
standard procedure was followed every time a new trip 
is retrieved by the application: the application collects in 
real-time the data from the sensors of the mobile phone 
and then data processing takes place. All the variables 
in the analyzed data were derived from a combination 
of machine learning methods (data fusion, clustering 
and classification). Since OSeven has strict data sharing 
policies, further information cannot be provided at the 
moment. Nevertheless, additional details for data extrac-
tion regarding the OSeven application can be found in 
Papadimitriou et al. [10].

•	 Phases: while Phase 1 established a baseline by moni-
toring driving behavior post-i-DREAMS system 
installation, Phase 2 introduced in-vehicle real-time 
warnings, adapting to drivers’ behaviors identified 
during Phase 1. Consequently, Phase 3 integrated 
post-trip feedback via the i-DREAMS smartphone 
app alongside in-vehicle warnings, creating a more 
comprehensive intervention framework. Finally, 
Phase 4 expanded upon the feedback mechanism by 
incorporating gamification features. Additionally, 
providing web-dashboard support further enhanced 
participant engagement and intervention effective-
ness throughout the trial.

•	 Drivers: refers to the total number of individuals par-
ticipating as drivers in each phase of the study. Each 
driver contributes to the dataset through their trips 
and interactions with the interventions.

•	 Trips: indicates the total count of trips recorded 
during each phase of the study. A trip is defined as 
a single journey made by a driver from one location 
to another. Also, the cumulative duration of all trips 
combined during each phase, measured in minutes

It should be noted that in this study, a simulated envi-
ronment was utilized to closely approximate the condi-
tions and driving routes observed in the ND study. In 
terms of road scene design, the simulator environment 
was carefully constructed to replicate key features of the 
ND study routes, including similar roadway types such 
as highways and urban streets, along with comparable 
environmental elements like road signage, lane markings, 
and intersections. For the on-road testing, a selection of 
real-world routes was chosen to mirror those observed 
in the ND study, based on factors such as roadway type, 
typical traffic density, and the complexity of the driving 
environment.

In addition, traffic configuration was designed to align 
with the conditions observed in the ND study. In both 
simulated and on-road settings, traffic scenarios were 
created with similar volume and speed, as well as the 
presence of common driving challenges, such as merging, 
lane changes, and intersections, to reflect the real-world 
conditions experienced by drivers. Traffic in the simula-
tor was programmed dynamically, with variability in the 
speed and behavior of surrounding vehicles to mimic the 
unpredictable nature of real-world traffic.

To ensure alignment with the ND study routes, specific 
on-road testing routes were chosen for their resemblance 
to those used in the ND study. This selection involved 
analyzing key route metrics from the ND study, such as 
average speed, traffic density, and road type distribu-
tion, to identify routes that best captured similar driving 
experiences. Lastly, scenarios in the simulator were care-
fully calibrated to match the spatial and temporal aspects 
observed in the ND study, ensuring that the experiment 
remained valid and comparable with real-world findings.

3.2 � Classification algorithms
According to the literature review, four classification 
models were applied to achieve the objective of this 
research, namely (1) support vector machines, (2) ran-
dom forest, (3) AdaBoost, and (4) multilayer percep-
tron. All models were implemented using the scikit-learn 
library, with hyperparameters optimized through Grid-
SearchCV to ensure each model’s configuration was tai-
lored to the dataset.

Table 3  Description of each phase of the naturalistic driving study

Phases Description Drivers Trips

Phase 1 Monitoring (baseline measurement; no interventions) 39 1173 trips (23,725 min)

Phase 2 In-vehicle intervention 43 1549 trips (31,414 min)

Phase 3 Post-trip feedback on the smartphone 51 1973 trips (40,121 min)

Phase 4 Post-trip feedback on smartphone + gamified web platform 49 2468 trips (52,077 min)
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The use of machine learning (ML) models in experi-
mental studies, such as driving simulator studies (DSS), 
offers significant advantages despite smaller sample 
sizes compared to naturalistic driving studies (NDS). 
ML models enhance predictive accuracy by identify-
ing complex, non-linear relationships and key features 
influencing driving behavior that traditional methods 
might overlook [26]. The dual-source methodology, 
combining DSS and NDS data, enriches the dataset 
and enables a comprehensive evaluation of ML models, 
thereby advancing the understanding of driving behav-
ior in both controlled and real-world conditions. This 
approach addresses the limitations inherent in each 
data source, leading to more robust and generalizable 
findings.

3.2.1 � Support vector machines (SVM)
SVMs are supervised machine-learning models used for 
data analysis, and pattern detection and apply to both 
classification and regression problems [27]. The context 
of the SVM model is to develop a hyper-plane in a multi-
dimensional space to separate different class boundaries 
[28]. The key advantage of SVMs is that they can handle 
high-dimensional datasets [29]. The GridSearchCV tool 
from the scikit-learn library was employed to test various 
combinations of kernel types (linear, poly, rbf, sigmoid, 
regularization parameters C (1, 10, 50, 100, and kernel 
coefficients gamma (scale, auto. The configuration that 
provided the optimal balance of accuracy and generali-
zation was identified with (a) kernel type = ‘rbf ’, (b) reg-
ularization parameter C = 50; and (c) kernel coefficient 
gamma = ‘scale’.

3.2.2 � Random forest (RF)
The RF classifier is an ensemble approach that trains sev-
eral decision trees in parallel employing bootstrapping 
and aggregation, often known as the bagging technique 
[30]. The bootstrapping technique concerns simultane-
ously training multiple decision trees using different sub-
sets of the dataset. By aggregating the outcomes of these 
individual decision trees, the final decision is reached. 
Additionally, RF offers the advantage of overcoming 
the common overfitting problem associated with deci-
sion trees [11], making it a preferred choice for identify-
ing risky driving behavior. During the Grid Search, the 
number of trees (100, 200, 300, 400) and the criteria for 
splits (gini, entropy) were varied. The optimal hyperpa-
rameters were: (a) the number of estimators/trees of the 
forest = 200 and (b) the function to measure the quality of 
a split (criterion) = ‘entropy’, verified through cross-vali-
dation to ensure effectiveness across diverse data subsets.

3.2.3 � AdaBoost
The AdaBoost algorithm is extensively used due to its 
high speed, low complexity, and good compatibility 
[31]. AdaBoost represents an ensemble technique that 
trains and deploys sequential trees using the boosting 
methodology, which involves linking a series of weak 
classifiers, each of which aims to improve the classifica-
tion of samples previously misclassified by the previous 
weak classifier [30]. This approach effectively combines 
these weak classifiers into a series to produce a strong 
classifier. Through the GridSearchCV method, various 
numbers of estimators (100, 200, 300, 300, 400, 500) 
were tested, with the ideal maximum number of esti-
mators determined to be 500.

3.2.4 � Multilayer perceptron (MLP)
The MLP is a feed-forward neural network complement 
and consists of three types of layers: (1) the input layer, 
(2) the output layer, and (3) the hidden layer [32]. The 
main advantage of the MLP algorithm is its ability to 
handle non-linear problems with large datasets while 
providing quick predictions. GridSearchCV facilitated 
the exploration of different network architectures, test-
ing numbers of hidden layers (1–3), neurons per layer 
(100, 200, 300, 500), activation functions (relu, tanh), 
and regularization parameters (alpha values: 0.0001, 
0.001, 0.01, 0.1). The most effective configuration fea-
tured (a) number of hidden layers = (500, 500, 500,), (b) 
activation function = ”relu” and (c) alpha parameter of 
the regularization term = 0.0001.

A consistent methodological framework was applied 
in the implementation of GridSearchCV across all 
classification models to ensure comparability and 
methodological rigor. Each model utilized a uniform 
cross-validation strategy, ensuring that the evaluation 
of model performance was consistent. While the spe-
cific hyperparameters tested were customized to each 
model’s unique characteristics and theoretical require-
ments, the approach to selecting the optimal param-
eters (based on achieving the best cross-validation 
performance) remained consistent across models. This 
structured yet flexible approach allowed for the rigor-
ous tuning of each model while maintaining a stand-
ardized evaluative methodology [33]. To facilitate 
understanding of the hyperparameter tuning process, 
Table  4 summarizes each model, the hyperparameters 
explored, the defined search spaces, and the optimal 
hyperparameters identified through the GridSearchCV 
method. This table provides a concise overview of the 
systematic tuning approach applied across all models, 
enhancing comparability and interpretability.
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3.3 � Evaluation metrics
The three-level classification of driving behavior (i.e., 
“Normal”, “Dangerous” and “Avoidable Accident”) is a 
multi-classification problem. In order to assess the effec-
tiveness of classification algorithms, the dataset is initially 
segmented into training and testing datasets. The training 
dataset is structured as Xtraining = {(xn, yn), n = 1, N}, with xn 
representing predictor variables and yn taking values from 
the set {0, 1, 2} as the target variable. Through model train-
ing, it gains the capacity to accurately classify new data 
instances. The classification model’s performance can eas-
ily be demonstrated with a confusion matrix, where one 
axis represents the actual class and the other denotes the 
predicted class. A tenfold cross-validation method was 
employed, dividing the dataset into 10 equal parts. Each 
fold was used once as a validation set while the remaining 
nine folds served as the training set. This random division 
did not account for stratification by driver or trip groups. 
The rationale was to maintain statistical integrity and 
ensure randomness, allowing each data point an equal 
probability of inclusion in training or validation sets. This 
approach aimed to capture the overall diversity and varia-
bility of driving behavior, providing a comprehensive evalu-
ation of the model’s performance. The metrics utilized to 
evaluate the models are accuracy, precision, recall, f1-score, 
and false alarm rate defined by Eqs. (1) to (5):

(1)Accuracy =
TP + TN

TP + FP + FN + TN

(2)Precision =
TP

TP + FP

(3)Recall =
TP

TP + FN

(4)f1− score =
2× (Precision)× (Recall)

(Precision)+ (Recall)

where true positives (TP) denote instances from class 
i that were classified correctly within it. True negatives 
(TN) represent instances not belonging to class i, cor-
rectly excluded from it. False positives (FP) indicate 
instances not belonging to class i but incorrectly classi-
fied within it. False negatives (FN) signify instances from 
class i that were erroneously not classified within it.

4 � Results
As mentioned above, the categorization of the target 
variable (e.g., output variable in the modelling process) 
of STZ level was based on certain headway thresholds. 
Furthermore, based on the analysis of the importance 
of the features in the dataset, the most important ones 
were selected as input variables (e.g., Speed, Distance 
travelled, Speed Limit) in the modelling process. Build-
ing upon these foundational steps, the dataset underwent 
preprocessing to enhance its suitability for modeling. 
This included performing tenfold cross-validation, where 
in each fold the dataset was divided into 90% for training 
and 10% for testing. Additionally, the adaptive synthetic 
sampling method (ADASYN) was applied to address 
class imbalance. Furthermore, the labels were scaled 
using the MinMaxScaler to standardize their ranges and 
improve model performance. With these preprocessing 
techniques applied, the models were trained and evalu-
ated on the respective datasets. The subsequent subsec-
tions present the results of this analysis, highlighting the 
impact of these preprocessing steps on the performance 
and effectiveness of the machine learning algorithms 
deployed.

This study aimed to comprehensively assess the per-
formance of four machine learning classifiers (i.e., SVM, 
RF, AdaBoost, and MLP) across two distinct datasets (i.e., 
Simulator experiment dataset and Naturalistic Driving 
study dataset). Due to the phenomenon of “accuracy par-
adox” [34] the evaluation was conducted based on several 
metrics, such as accuracy, precision, recall, false alarm 

(5)False alarm rate =
FP

FP + TN

Table 4  GridSearch Hyperparameter Tuning Summary

Model Hyperparameters Search space Best Hyperparameters

SVM Kernel type, Regularization parameter (C), Kernel 
coefficient (gamma)

Kernel: [‘linear’, ‘poly’, ‘rbf’, ‘sigmoid’], C: [1, 10, 50, 
100], gamma: [‘scale’, ‘auto’]

Kernel: ‘rbf’, C: 50, gamma: ‘scale’

RF Number of trees (Estimators), Split criterion Estimators: [100, 200, 300, 400], Criterion: [‘gini’, 
‘entropy’]

Estimators: 200, Criterion: ‘entropy’

AdaBoost Number of estimators Estimators: [100, 200, 300, 400, 500] Estimators: 500

MLP Number of hidden layers, Neurons per layer, Acti-
vation function, Regularization parameter (alpha)

Hidden layers: [1, 2, 3], Neurons: [100, 200, 300, 
500], Activation: [‘relu’, ‘tanh’], Alpha: [0.0001, 0.001, 
0.01, 0.1]

Hidden layers: (500, 500, 500), 
Activation: ‘relu’, Alpha: 0.0001
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rate, and F1-score, as otherwise the evaluation of accu-
racy alone would be misleading.

Due to the fact that risky driving is less common than 
normal driving and since the classification algorithms 
operate on the assumption of equal distribution of sam-
ples, the Adaptive Synthetic (ADASYN) [35] technique 
was applied to address the imbalanced problem.

4.1 � Classification models on simulator experiment dataset
Considering Fig.  1 and Table  5, overall, the four algo-
rithms had insightful and satisfactory results in terms of 
accuracy and recall. Among the different algorithms, RF 
stands out with the highest accuracy of 84.00%, indicat-
ing its ability to accurately classify driving behaviors in a 
controlled environment. RF also achieves a well-balanced 
f1-score 63.42%, demonstrating its robustness and ver-
satility. The MLP model also performs admirably with 
an accuracy of 81.28%, highlighting its capability in the 
simulator framework, achieving a competitive f1-score 
(61.79%).

Furthermore, the AdaBoost model achieves reasonable 
accuracy (75.08%) but has lower f1-score (55.87%) com-
pared to RF and MLP. Although SVM shows a high recall, 
its lower accuracy (68.67%) and f1-score (53.22%) suggest 
a trade-off with precision. This implies that while SVM is 
effective at identifying true positive instances, it tends to 
include more false positives.

4.2 � Classification models on naturalistic driving dataset
The results of the naturalistic driving study were similar 
to those of the simulator experiment. As illustrated in 
Fig.  2 and summarized in Table  6, RF achieved an ade-
quate accuracy of 75.00%, demonstrating a robust perfor-
mance in classifying real-world driving behavior. In the 
Naturalistic Driving Dataset, MLP maintains its strong 
performance with an accuracy of 73.26% but faces chal-
lenges with lower precision and recall, which is reflected 
in the f1-score (52.65%).

AdaBoost, scored the highest accuracy (76.76%) main-
taining a competitive performance consistent with the 
simulator data, achieving the highest f1-score (60.19%). 
Finally, SVM maintains its proficiency in recall, show-
ing consistency in capturing true positives. Lastly, SVM 
achieves an accuracy of 72.05% and an f1-score of 56.37%, 
which is relatively competitive but falls behind compared 
to the other models.

5 � Discussion
Overall, the findings of this study provided valuable 
insights while supporting its objective, which was the 
investigation of various classification models utilizing 
two distinct data sources. These findings are essential for 
advancing the understanding of driving behavior across 
various contexts, ultimately contributing to the develop-
ment of safer and more efficient transportation systems.

Fig. 1  Classification metrics of the four machine learning models 
for the simulator experiment dataset

Table 5  Classification metrics for the Simulator Experiment dataset

Classifier Accuracy (%) Precision (%) Recall (%) False alarm rate (%) f1-score (%)

SVM 68.67 51.35 74.72 12.47 53.22

RF 84.00 59.41 70.27 11.47 63.42

AdaBoost 75.08 52.31 70.71 11.30 55.87

MLP 81.28 57.51 72.04 11.37 61.79

Fig. 2  Classification metrics of the four machine learning models 
for the naturalistic driving study dataset
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The evaluation of the four machine learning classifiers 
(SVM, RF, AdaBoost, and MLP) revealed varying perfor-
mance across the two datasets. In the simulator experi-
ment, RF emerged as the top-performing model with an 
accuracy of 84%, demonstrating its ability to accurately 
classify driving behavior in a controlled environment. 
Following the MLP model which also performed well 
scoring a notable 81.28% accuracy. Regarding, AdaBoost 
and SVM models, they underperformed compared to 
the other two, displaying a lower weighted accuracy and 
recall. In the naturalistic driving dataset, RF and Ada-
Boost maintained robust performance, with high accu-
racy (i.e., 75% and 76.76% respectively) and balanced 
precision and recall.

Furthermore, MLP while still effective, faced chal-
lenges with lower accuracy (73.26%) and recall (56.57%) 
compared to the simulator experiment. Finally, SVM, 
although competitive, lagged behind other models. These 
performance variations underscore the importance of 
selecting the right model based on data characteristics 
and precision-recall trade-offs, essential for real-world 
applications. Since, in the context of the current study, 
it is more dangerous to misidentify driving behavior as 
less dangerous, the recall metric is the most significant 
metric to consider. Thus, evaluating the results of both 
approaches (i.e., the Driving Simulator experiment and 
the Naturalistic Driving study), the RF model emerged as 
the most efficient one.

The f1-scores, found to be moderate in both the sim-
ulator and naturalistic datasets, are indicative of the 
unique challenges that each data type presents to clas-
sification models. Although the simulator dataset offers 
a controlled environment that assists in model consist-
ency, the nuanced nature of hazardous driving behaviors 
makes it difficult to achieve high f1-scores. In the natu-
ralistic dataset, real-world factors such as environmental 
unpredictability and varying traffic conditions introduce 
additional noise, resulting in slightly lower f1-scores in 
comparison. Furthermore, the precision and recall of 
both datasets are influenced by the class imbalance of the 
dataset, which has fewer instances of hazardous behavior 
than normal driving. In order to capture a broader spec-
trum of driving behaviors, future studies could improve 
f1-scores by incorporating more diverse input features, 

such as driver biometrics or environmental factors, and 
investigating deep learning approaches, such as long 
short-term memory (LSTM) networks.

The observed variations in classification model per-
formance between datasets derived from (A) simulator 
experiment and (B) naturalistic driving study, may be 
attributed to inherent dissimilarities in the data acqui-
sition environments. Naturalistic driving study data 
depicts real-world driving scenarios with dynamic and 
unexpected aspects, adding a higher level of complex-
ity than Simulator Experiment data, which is generated 
within a controlled virtual environment. The nuanced 
characteristics of real-world driving, such as diverse traf-
fic conditions, weather variations, and unanticipated 
events, may challenge the models’ ability to generalize 
effectively from the simulated environment. Differences 
in data distribution, noise levels, and the authenticity of 
driving behavior across the two sources may all contrib-
ute to observed model performance variances.

In the Simulator Experiment, Random Forest (RF) 
exhibited the highest accuracy at 84.00%, surpassing 
other classifiers, while in the Naturalistic Driving Study, 
AdaBoost achieved the highest accuracy at 76.76%. Nota-
bly, the precision of classifiers in the Simulator Experi-
ment generally tended to be lower compared to the 
Naturalistic Driving Study. The Simulator Experiment 
RF model demonstrated precision, recall, and f1-score 
of 59.41%, 70.27%, and 63.42%, respectively, while in the 
Naturalistic Driving Study, AdaBoost achieved precision, 
recall, and f1-score of 57.91%, 65.81%, and 60.19%. The 
controlled nature of the simulator might influence RF to 
generalize effectively, as it excels at capturing and lever-
aging the inherent structure within the data. On the other 
hand, the dynamic and unpredictable aspects of real-
world driving could have influenced the performance of 
AdaBoost in the Naturalistic Driving Study. These vari-
ations highlight the necessity of taking into account the 
contextual aspects of datasets when evaluating model 
performance, as well as the need for adaptable models 
that can efficiently address the complexities presented by 
many different types of experimental conditions.

Based on comparable driving behavior studies, the 
findings of this study were very similar to those described 
in the literature. For instance, Yang et  al. [36] achieved 

Table 6  Classification metrics for the naturalistic driving study dataset

Classifier Accuracy (%) Precision (%) Recall (%) False alarm rate (%) f1-score (%)

SVM 72.05 55.51 66.31 13.39 56.37

RF 75.00 56.77 66.28 12.97 59.03

AdaBoost 76.76 57.91 65.81 11.47 60.19

MLP 73.26 52.14 56.57 16.66 52.65
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an 80% accuracy, which is relatively close to the accuracy 
of the two approaches (84% and 75%), as well as better 
performance in terms of False Alarm Rate. However, in 
terms of recall the RF model of this research underper-
forms by 13% (for the simulator experiment) and 17% (for 
the naturalistic driving study). In another study by Song 
et  al. [13], the RF classifier exhibited a remarkable 90% 
accuracy, surpassing the performance in this study. This 
discrepancy may be attributed to differences in input var-
iables, as this study focused on driving behavior charac-
teristics while Song et al. [13] considered variables such 
as gender, age, and driver perception.

Compared with the predicted results, Gan et  al. [37] 
predicted that the accuracy rate was 75% when the data 
was 10,000. The model of this study achieved 80% predic-
tion result, indicating that if the sample size is increased, 
the prediction accuracy will be also improved. This also 
reflects the superiority of the prediction model in this 
paper.

In contrast to the outcomes of this research, findings 
from the literature regarding the SVM classifier showed 
higher performance, especially with Yang et al. [14] hav-
ing an outstanding accuracy rate of 95%. Additionally, 
in contrast to the research of Shangguan et al. [11], this 
study’s accuracy metric findings for the MLP classifier 
were identical. Nonetheless, the MLP classifier that was 
developed in previous literature exhibited better perfor-
mance than the one employed in this study, with a nota-
ble 20% difference in the f1-score between them. Finally, 
regarding the AdaBoost model, it showed promising 
findings for real-world data. Since its application is lim-
ited in the literature, to the author’s knowledge, in the 
field of road safety it offers a robust approach.

From a broader perspective, the implications of this 
study extend to traffic safety management and policy-
making. The effective classification of driving behav-
ior can inform various interventions aimed at reducing 
road crashes. For instance, the findings can aid in refin-
ing vehicle design, improving road infrastructure, and 
implementing targeted traffic regulations. Addition-
ally, the development of advanced driver assistance sys-
tems (ADAS) can be guided by these insights, enhancing 
their ability to provide real-time warnings and post-trip 
feedback to drivers. The establishment of a Safety Toler-
ance Zone related to Time Headway (TH) is supported 
by research indicating that shorter headways are signifi-
cantly associated with a higher likelihood of rear-end 
collisions due to the reduced reaction time available for 
drivers to respond to sudden changes in traffic conditions 
[17, 38].

The findings of this study not only contribute to a bet-
ter understanding of driving behavior in various circum-
stances, but they also show the crucial importance of 

model selection and data features in establishing accu-
rate classifications. The findings highlight the RF model’s 
effectiveness, particularly in controlled environments, 
while also shining light on AdaBoost’s potential for real-
world driving data analysis.

In conclusion, the study’s outcomes highlight the 
necessity of considering the contextual aspects of data-
sets when evaluating model performance, as well as the 
need for adaptable models that can efficiently address the 
complexities presented by many different types of experi-
mental conditions. These insights may inform various 
interventions such as refining vehicle body structures, 
enhancing road surface conditions, revising speed limits, 
and identifying hazardous road sections. This study lays a 
foundation for future research exploring the integration 
of deep learning techniques and expanding the diversity 
of datasets to enhance the generalizability and applicabil-
ity of driving behavior models.

6 � Conclusions
The research aimed to develop and evaluate four classi-
fication models on two distinct data sources (i.e., simu-
lator experiment and naturalistic driving study) in order 
to predict risky driving behavior. This methodological 
approach has facilitated a comprehensive evaluation of 
machine learning models within controlled and real-life 
driving contexts. Consequently, this study has signifi-
cantly contributed to advancing the understanding of 
driver behavior across diverse scenarios (i.e., controlled, 
and real-world) as well as the ability of machine learning 
models to effectively capture driving behavior, as well as 
the performance of various models in the two distinct 
studies. RF model emerged as a strong performer, offer-
ing a balanced approach between precision and recall in 
both simulated and real-world driving scenarios. Given 
that misidentifying dangerous driving behavior as less 
dangerous would have serious implications for road 
safety, recall is a key metric with SVMs outperforming in 
capturing true positive instances in both datasets.

The findings of this study offer valuable guidance to 
researchers and practitioners in model selection for 
driving behavior classification tasks. Considering the 
dual-source methodology, drivers’ risky behavior can be 
assessed by comparing both simulator and field-trials 
data, highlighting key road safety factors.

The observed performance variations among classifi-
cation models have implications for real-world applica-
tions, especially regarding the potential misidentification 
of dangerous driving behavior. Discrepancies in accuracy, 
precision, and recall may compromise the reliable detec-
tion and classification of critical driving events, jeopard-
izing the effectiveness of automated systems designed 
to enhance road safety. Addressing these variations is 
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crucial for developing robust models with enhanced gen-
eralization capabilities.

In this context, future research could explore the util-
ity of deep learning techniques, such as long short-term 
memory (LSTM) [39, 40]. While this paper focuses on 
conventional machine learning models, it is important to 
note that deep learning (DL) models have shown signifi-
cant promise in surpassing traditional methods in similar 
applications. For instance, Saleh et al. [41] demonstrated 
that an LSTM-based model significantly outperformed 
traditional machine learning models in the classifica-
tion of driving behavior using sensor data fusion. Their 
study found that the proposed Stacked-LSTM model 
achieved an F1-measure score of 91%, which was more 
than a 10% improvement over the closest compared 
approaches using conventional ML models. This high-
lights that LSTM networks are especially efficient at 
tasks requiring temporal relationships and intricate 
sequential patterns. Additionally, Naji et  al. [42] found 
that deep learning models, particularly LSTM networks, 
outperformed traditional ML models (i.e., SVM, RF 
and MLP) in classifying the risk levels of near crashes, 
achieving a classification accuracy of 96%. To effectively 
apply DL models such as LSTM to datasets such as the 
one used in this study, an alternative dataset configura-
tion approach would be required to maintain the tem-
poral structure of the driving data recorded at 30-s 
intervals in order. The data should be arranged by driver 
and trip, and sequential segments of consecutive inter-
vals (e.g., sets of five 30-s intervals) should be applied 
as each input to the model. This is due to the efficiency 
of DL models in identifying sequential patterns. Conse-
quently, each trip should be regarded as a chronologically 
ordered sequence of intervals. DL models can leverage 
patterns over time to enhance prediction accuracy and 
reveal more complex driving behavior patterns. Further-
more, diversifying datasets, particularly by incorporat-
ing Naturalistic Driving study datasets involving drivers 
from different countries or transport modes, is crucial 
for a more holistic understanding of driver behavior. This 
diversity contributes to the development of models with 
robust generalization capabilities, ultimately enhancing 
their reliability and applicability in real-world scenarios. 
Addressing these research directions advances the field 
and contributes significantly to the development of auto-
mated systems that can effectively improve road safety 
measures.
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