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Abstract—Conformance checking allows auditors to detect pro-
cess deviations automatically, resulting in numerous deviations,
with only a few being relevant. Identifying notable items amidst
this large data set is challenging. Machine learning techniques
offer potential solutions, but questions about the required number
of labeled deviations and the impact of label quality remain.
Our study investigates these factors’ effects on Decision Trees
and Random Forests. Results demonstrate these models’ effec-
tiveness in identifying notable items within imbalanced deviation
populations. Achieving 90% precision and recall is feasible with
about 400 to 600 labeled deviations, depending on the notable
items’ population fraction. A higher fraction of notables reduces
the required labeled deviations. Varying label quality produced
similar results. Additionally, classifications identifying at least
90% notable items are linked to less complex processes.

Index Terms—Auditing, Conformance Checking, Deviation
Classification, Machine Learning, Notable Item, Process Devi-
ation, Process Mining

I. INTRODUCTION

Auditors are responsible for investigating a company’s fi-
nancial reports and disclosures and assuring that the statements
truly represent the company’s financial state. To achieve this,
auditors delve into the company’s business environment, often
gaining insights through examining its business processes.
Analyzing business processes offers numerous benefits to
the audit [[1]. Employing automated process analysis tech-
niques in auditing allows for a detailed examination of the
company’s adherence to established procedures. In particular,
conformance checking is used to detect mismatches between
recorded transactions and a normative process model. The
result is a comprehensive list of process deviations [2].

The main advantage of data-driven process analysis in an
audit context lies in its ability to screen the entire set of
business transactions [3|]. Although this bears the potential to
identify all deviating transactions without the need for upfront
sampling in auditing, a challenge arises in managing a large
number of detected deviating transactions in the subsequent
audit steps. It is known that the set of detected process
deviations comprises a large set of (justifiable) exceptions
and a small set of notable items. Only the notable items are
deviations that are relevant to the auditor. In general, notable
items only make up for about 5% of the total number of
deviations [4]].
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Identifying notable items within the pool of process de-
viations is a complex task that, if done manually, becomes
practically impossible [5]. Moreover, human limitations in
processing vast amounts of information, particularly in ac-
counting, further complicate the situation [|6]. Case studies
have demonstrated that auditors can be overwhelmed by
information overload resulting from a substantial set of process
deviations [7]. Therefore, the main challenge is to find a prac-
tical approach for processing the identified deviations while
maintaining the advantage of including the full population of
transactions in the audit.

Machine learning techniques can be used to address this
challenge by automating the identification of notable items
within the full set of detected deviations [8]]. Despite attempts
to tackle this challenge through clustering, prioritization, and
machine learning techniques (e.g., [S[], [9], [10]), in the end,
these methods still largely hinge on sampling approaches.
This prevents auditors from thoroughly assessing the entire
population of deviating transactions. It is important to note
that existing methods are predominantly of a conceptual nature
with limited empirical evidence to support the theoretical
claims. Consequently, several questions remain unanswered.
How many labeled deviations are required for such frame-
works to work? What about the quality of the provided labels;
to what extent does this affect a model’s performance?

If one wants to pursue full-population testing in auditing,
a labeled set of process deviations is a general requirement
to train a machine learning model. However, if a substantial
amount of data needs to be manually labeled, the economic
feasibility of this approach comes into question. In extreme
cases, the requirement for extensive manual labeling could
negate the advantages of applying machine learning to classify
process deviations.

To bring full-population-based auditing closer to reality,
it is, therefore, essential to understand the required number
of labeled process deviations to train a classifier. This paper
provides this understanding. The contribution of this paper is
as follows:

1) We demonstrate that achieving precision and recall of

90% is feasible with about 400 to 600 labeled deviations.
The required quantity depends on the fraction of notable



items present within the respective full population of
deviations.

2) We find that both DTs and RFs exhibit comparable
precision, but RFs outperform DTs in recall.

3) We find that varying label quality between 75 and 95%
does not affect performance.

4) Classifications identifying at least 90% notable items
appear to be associated with less complex processes
compared to those identifying fewer notable items.

The remainder of this paper is structured as follows: Sect.
outlines and explains the experimental design. Sect.
shows the study results. Sect. discusses the results. Sect.
provides some process mining work related to this study.
Sect. concludes the paper.

II. EXPERIMENTAL DESIGN

This section outlines the experimental design objectives, the
process of generating synthetic data, and the training of the

machine learning classifier. Codes and data are available on
GitHut{l]

A. Research Goal and Design

The primary goal of our study is to determine how many
process deviations should be labeled as exceptions or notable
items to achieve a specific level of performance. To this end,
we create a synthetic dataset of process deviations that sim-
ulate an audit engagement setting. These deviations represent
cases where the process execution (i.e., trace) does not align
with the desired business process model. consequently, this
study focuses on control-flow deviations.

These deviations are categorized as either exceptions or
notable items. Exceptions are deviations from the desired
process model but align with a more loosely defined variant
of it. Notable items, on the other hand, are deviations that do
not conform to either the desired process model or its loosely
defined variant. We use DeclareMoGeS [11] to generate this
setup.

The generated data is the input to different classifiers. The
goal of the classifier is to distinguish between notable items
and exceptions. Our primary focus is on identifying notable
items (i.e. the minority class). The performance of these
classifiers is measured by precision and recall metrics because
they are the most meaningful in an auditing context. Precision
is expressed as the percentage of classified notable items that
are true notable items. Recall reflects the percentage of true
notable items identified as notable item by the classifier. We
put the performance threshold at 90% for precision and recall.

To gain insights into how many labeled deviations are
required to classify an imbalanced set of process deviations,
we perform a series of computational tests. Particularly, we
want to measure whether the following parameters have an
impact on the model’s performance:

« the training set size;
« the quality of the provided labels in the training set.
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The training set size is the number of labeled deviations
needed to train the classifier. To control for the quality of the
provided labels, we add noise to the generated training sets.
The percentage of noise added is a proxy of how accurate the
auditor is at providing correct labels. We add 5% label noise
in our initial setup.

Furthermore, we will compare classifications not reaching
the performance threshold of 90% to classifications reaching
this threshold with regard to some context variables, such as
the complexity of the underlying process model from which
the deviations are discovered. The complexity of the process
model is expressed as the number of constraints and activities
in the model, as we use declarative process models to start
from.

B. Data Generation

The data used to train the classifier was synthetically
generated. We opted for synthetic data because this allows
to unveil causal patterns between features in the dataset [[12].
Figure |1| shows a visual representation of the synthetic data
generation process after model generation. The steps followed
to achieve the final training sets are explained in the following
paragraphs.

1) Generating Synthetic Process Models: To generate train-
ing data on deviations, we need process models from which
to deviate. Declarative process models were selected to start
from, given their flexibility in describing business processes
and their alignment with the auditing context. Auditors often
conceptualize processes in terms of rules.

Declarative process models consist of constraints that define
the boundaries within which a process has to be executed
[13]. For example, a constraint might be “Response(create
order, approve order)”, meaning that each created order should
eventually be followed by an approval within one process
execution. If an execution complies with the constraint, then
the constraint is satisfied. If not, the constraint is violated. A
process execution fits a model if and only if it satisfies all
constraints in the model.

As a first step, sets of declarative process models were
generated. Each generated set of models includes three models
that are hierarchically related to each other in terms of allowed
process behaviour:

e The world model represents how the process actually
operates in reality, encompassing all behaviors, including
those outside the auditor and normative models explained
below.

e The auditor model is more restrictive and focuses on
identifying notable items, which are deviations consid-
ered genuinely incorrect. This model often includes the
auditor’s implicit knowledge, which is not documented.

e The normative model is the most restrictive, identifying
all deviations, including both notable items and excep-
tions. This model typically comprises explicit, docu-
mented knowledge and is in practice used for confor-
mance checking.
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Fig. 1: Visual representation of data generation process after model generation

We generated 100 model sets of hierarchical process models
using the DECLARE Model Generator and Specializer Declare-
MoGeS [11]. First, 100 normative models are generated. These
models comprised 10 to 26 constraints and 10 to 26 activities.
We define our initial models as broadly as possible to ensure
that the findings of our study can be extrapolated to settings
that meet our specifications.

For each normative model, an associated auditor model and
a world model are generated. Each successive model is less
restrictive than the previous one: the auditor model allows
for more behaviors than the normative model, and the world
model further loosens behaviors allowed by the auditor model.
All models within the same set contain the same number of
activities, but the constraints in each more restrictive model
specifically limit the behaviors permitted by the less restrictive
models [14].

In the less restrictive model, any constraints that could
be relaxed were relaxed. For instance, consider a normative
model with 10 constraints. One of these constraints is “Chain
Response(create order, approve order) " ’, which means that if
an order is created, then immediately afterward, it should be
approved. This constraint can be relaxed in the auditor model
to “Response(create order, approve order)” ~ imposing that
the creation of an order should eventually be followed by an
approval. This process of relaxing constraints is applied to all
constraints in the normative model. If a less restrictive version
of a constraint does not exist, the original constraint is retained.

2) Constructing Imbalanced Full Population: We generated
synthetic event logs with Declare4Py [15], employing the
models that were generated in the previous step. To generate
the logs, the least restrictive model from each model set was
used, the world model. Each world model resulted in an event
log consisting of 10 000 traces, each containing 8 to 15
events. We select these specifications to be as realistic and
comprehensive as possible, ensuring that the findings of our
study can be applied to similar contexts.

Subsequently, the event logs were subjected to two confor-
mance checks:

1) First Conformance Check: Comparing the event log
against the normative model to identify process devi-
ations. Here, process deviations are defined as transac-
tions that do not comply with the normative model. A
transaction consisting of multiple events is considered as
a whole; thus, deviations are assessed at the case level,
not the event level.

2) Second Conformance Check: Comparing the set of de-
viating traces against the auditor model to distinguish
between exceptions (conform with the auditor model)
and notable items (not conform with the auditor model).

This process provided 100 full populations of labeled pro-
cess deviations. To simulate the real-world auditing environ-
ment, where a large set of deviations contains only a small
percentage of notable items, we adjusted the data to create
imbalanced datasets. We applied three different percentages of
notable items in the data (1%, 2%, and 5%) to each full pop-
ulation, theoretically resulting in 300 adjusted (imbalanced)
datasets (3 x 100). However, it was not possible to construct
the desired imbalance for every population. For example,
if the number of notable items or exceptions was initially
zero, achieving the desired imbalance was impossible. In such
cases, the dataset was excluded from the experiments. In total,
18 datasets were excluded for this reason. Therefore, this
step resulted in 282 imbalanced full populations of deviating
transactions.

3) Constructing Training Set with Noise: From each im-
balanced population, we draw a maximum of 100 samples
(282 x 100). A sample was constructed by picking random
instances from the full population given a certain sample
size. The sample sizes varied uniformly between 100 and
1000 deviations. In some cases, it was impossible to draw
the requested sample because the requested size was larger
than the population size. This step resulted in 24 163 samples,
which we refer to as our labeled (deviation) samples.

Each deviating transaction in the labeled sample was trans-
formed into a format suitable for classification. Each constraint
from the normative model was included as a boolean feature



indicating whether the constraint was violated (1) or not (0).
The labels (‘notable item’ or ‘exception’) were included for
training purposes.

To ensure realism, we introduced label noise to the labeled
sample. Label noise refers to the situation where the labels in
the sample are not the ground truth [[16]]. A small percentage of
labels was flipped to simulate potential misclassifications by
auditors, meaning that some transactions labeled as notable
items were actually exceptions and vice versa. We inject 5%
label noise into the labeled sample. This translates to an
auditor who is 95% accurate in providing correct labels. The
result of this step is 24 163 noisy training sets.

C. Training Machine Learning Model

Given the imbalance in the 24 163 final training sets, we
used Random Oversampling to balance each set before classi-
fication. This resulted in balanced training sets, with each set
consisting of an equal number of notable items and exceptions.
Subsequently, all training sets were used to train a classifier.
We assessed the classifier’s performance on the remaining
set of deviations from the imbalanced population from which
the training set was drawn. We measured performance using
precision and recall.

DTs and RFs were chosen as classifiers. DTs were selected
for their interpretability, which is crucial in auditing to ensure
the classifications made by the classifier are understandable.
However, since they may be more sensitive to training set
variability, we also assessed performance on RFs. RFs are
expected to reduce sensitivity to training data variability.
Therefore, we expect RFs to provide more stable and reliable
performance metrics than DTs.

III. RESULTS

In this section, we present our experimental findings. We
investigated how the quantity and quality of labeled process
deviations impact the performance of DTs and RFs. Subse-
quently, we compare high-performance to low-performance
classifications.

A. Effect of Training Set Size on Performance

As described in the previous section, we created 282 pop-
ulations of process deviations. These populations averaged
5451 deviations, with the smallest consisting of 160 deviations
and the largest consisting of 9963 deviations. From each
population, 100 labeled deviation samples were randomly
drawn to serve as training sets. The size of the labeled samples
varied between 100 and 1000 deviations, with an average of
540 deviations. Altogether, 24 163 training sets were used
for classification. Each training set was used once to classify
process deviations from its respective population, ensuring the
independence of each run.

For each of the 24 163 training sets, the performance of a
DT and RF classifier was measured in terms of precision and
recall. Every classification was repeated ten times to obtain
an average result for the metrics. We investigated the effect of
the training set size on the classifier’s precision in identifying

notable items for different levels of notable item prevalence in
the population. We define 90% as the threshold for satisfactory
performance in an auditing setting.

Figure [2] visualizes our findings for DTs (subfigures (a)
and (c)) and RFs (subfigures (b) and (d)). Each bar in
the figures represents the average performance the classifier
achieves for a given training set size (see legend) and a given
fraction of notable items present in the population (see X-
axis). By considering the fraction of notable items present in
the population, we can provide a nuanced view of the number
of labeled deviations needed.

Our findings show that the precision generally increases
with the increase in training set size. Smaller training set sizes
consisting of 100 to 200 deviations exhibit lower precision,
especially if only 1 to 2% notable items are present in
the population from which the training set was drawn. As
the training set size increases, the precision stabilizes and
remains high across different fractions of notable items in
the population of process deviations (Figure |2 (a) and (b)).
Both the DT and RF models reach a precision of 90% for
a training set consisting of at least 200 labeled deviations.
Most classifications resulted in a precision near 1, meaning
that if the model predicts a deviation as anomalous, it is almost
always correct.

Recall also improves with the increase in training set
size. For very low fractions of notable items present in the
population (1 to 2%), smaller training set sizes (100 to 400
deviations) result in a recall below the threshold of 90%.
Larger training sets consisting of more than 600 labeled
deviations achieve high recall across all notable item fractions
in the population (Figure E] (c) and (d)).

Some differences are noticeable between the recall of the
DT and RF model. For DTs, more data has to be labeled to
reach a recall of at least 90% (at least 400 deviations for all
notable item fractions), while with RFs less effort is required.
For deviation populations comprising 1 to 2% notable items,
this translates to at least 400 deviations. For populations with
2 to 5% notable items, this is at least 200 deviations. For
populations with 5 to 8% notable items, a set size of only 100
to 200 deviations suffices.

Figure (3| visualizes the difference in variation between the
DT and RF models. The variation is smaller for the RF
classifier than it is for the DT classifier. Since recall reflects
the percentage of true notable items identified as notable items
by the classifier, auditors might prefer a higher value for this
metric. Therefore, RFs are preferred in this context.

Overall, an increased number of training samples improves
both precision and recall. This suggests that the DT and RF
model benefit from having more data to learn from, leading
to better predictions. However, it is noticeable that when a
larger percentage of notable items is present in the process
data, fewer data need to be labeled to identify the notable
items. In other words, the auditor has to put in less effort to
label deviations if the process results in more notable items.
Conversely, more streamlined processes with fewer notable
items require more attention because the auditor has to label
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Fig. 2: Performance classifier for different fractions of notable items in training set

more data to ensure a reasonable number of notable items are
identified.

B. Effect of Label Quality on Performance

To test the effect of label quality on performance, we
constructed additional experimental setups. Besides the initial
setup in which 5% label noise was injected into the training
set, we constructed new setups with 10, 15, and 25% label
noise, each decreasing the quality of the provided labels. Each
training set in each setup is constructed as explained in Section
[ but then for the respective noise level.

By changing the label noise, we want to test to what
extent auditors who provide less accurate labels affect the
performance of DT and RF models Figure [] shows our
findings.

The figures show that precision and recall stay stable across
different noise levels. We also conducted this analysis for
different percentages of notable items present in the training
set, but the observation stayed the same. Furthermore, the
figures also confirm our previous finding that after labeling
about 400 process deviations, the performance of the machine-

learning models stabilized in terms of precision. For recall, this
stabilization occurs later.

C. High- versus Low-Performance Classifications

Context variable Classifier t-statistic  p-value
Fraction notable items in train. set DT 28.312 <0.01
Fraction notable items in train. set RF 28.167 <0.01
# process activities DT -0.568 0.570
# process activities RF -0.536 0.592
# constraints normative model DT -1.832 0.067
# constraints normative model RF -1.576 0.115
# constraints auditor model DT -1.059 0.290
# constraints auditor model RF -0.796 0.426

Table 1: Results of t-tests comparing high-precision (> 0.9)
to low-precision (< 0.9) classifications

To gain insight into what distinguishes high-performance
classifications from those reaching a lower performance, we
compare classifications reaching the performance threshold
of 90% to classifications not reaching the threshold. The
comparison is based on some contextual parameters, such as
the fraction notable items in the training set, the number of
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Context variable Classifier  t-statistic =~ p-value
Fraction notable items in train. set DT 47516 <0.01
Fraction notable items in train. set RF 47.516 <0.01
# process activities DT -11.306 <0.01
# process activities RF -15.732 <0.01
# constraints normative model DT -24.701 <0.01
# constraints normative model RF -19.259 <0.01
# constraints auditor model DT -28.260 <0.01
# constraints auditor model RF -19.801 <0.01

Table 2: Results of t-tests comparing high-recall (> 0.9) to
low-recall (< 0.9) classifications

activities occurring in the underlying process, the number of
constraints present in the normative process model, and the
number of constraints present in the auditor process model.

We define high-precision (low-precision) classifications as
classifications for which the DT and RF models reached
at least (did not reach) 90% precision. Similar definitions
are applied for high-recall and low-recall classifications. We
conducted t-tests to reveal differences among the groups. The
findings of our analyses are shown in Tables [I] and [2] for,
respectively, precision and recall.

Regarding high-precision and low-precision classifications,
no significant differences are visible in terms of the number of
activities present in the underlying process, the number of con-
straints in the normative model, and the number of constraints
in the auditor model. However, high-precision classifications
significantly differ from low-precision classifications in the
fraction of notable items present in the training set used to train
the classifier (p < 0.01). A higher precision seems associated
with training sets with more notable items. These findings
apply to classifications made by both the DT and RF models.

Regarding recall, more differences are visible. Similarly to
precision, high-recall classifications significantly differ from

low-recall classifications in the fraction of notable items
present in the training dataset (p < 0.01). Furthermore, high-
recall classifications significantly differ from low-recall clas-
sifications in terms of the number of activities occurring in
the underlying process (p < 0.01), the number of constraints
in the normative model (p < 0.01), the number of con-
straints occurring in the auditor model (p < 0.01). High-recall
classifications concern processes with fewer activities, fewer
constraints in the normative model, and fewer constraints in
the auditor model than low-recall classifications. Since the
number of activities in a process and the number of constraints
in a process model indicate how complex a process is, we
could state that both for the DTs and RFs, a higher recall is
associated with less complex processes than it does for more
complex processes.

IV. DISCUSSION

The findings of our study are particularly of interest to
auditors. Continuous Auditing research pleads to automate
some audit tasks such that the auditor can focus on tasks for
which human expertise is of substantial value [17]. One of the
proposed automations concerns the identification of process
deviations, which can be accomplished by applying confor-
mance checking. Despite good intentions, this automation does
not really result in the desired effect of the auditor focusing on
expert tasks. Conformance checking results in a set of process
deviations that is too large to process manually [4].

Frameworks have been proposed to solve the challenge
introduced by conformance checking output, but they have
not found a way to practice because some questions remain
unanswered. One of the most prevalent questions concerns
the number of labeled deviations needed to reach satisfactory
performance of a machine learning model to classify all
deviating transactions.

Our study provides a nuanced answer to this question.
Firstly, the number of labeled deviations required to achieve
satisfactory performance depends on the proportion of notable
items within the population. When notable items are more
prevalent, fewer labeled samples are needed to achieve high
precision and recall. This implies that in scenarios where
notable items are expected to be more frequent, auditors can
effectively use machine learning models with relatively less
labeled data to maintain certain performance.

This finding appears contradictory. In practice, an auditor
is more satisfied when a process concerns fewer notable
items, and a higher assessed risk would usually invoke more
testing to provide assurance over the financial reports [18]],
[19]. However, our study indicates that a higher prevalence
of notable items in the population of deviations reduces the
auditor’s manual work as less manual labeling is needed to
create a proper training set for the classifier.

Secondly, our experiments showed a similar average recall
for Decision Trees and Random Forests. However, the recall
of Random Forests varied less, meaning that the percentage
of true notable items identified as notable items was about the
same across different classifications. In an auditing context,
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it is preferred that the ability to identify true notable items
remains consistent across individual audits.

Furthermore, classifications identifying more than 90% of
the notable items seem associated with less complex pro-
cesses than classifications identifying less than 90% notable
items. Simplified processes often coincide with robust internal
control systems. These controls act as checks and balances,
minimizing the occurrence of notable items or errors [19].
Consequently, when notable items do occur, they might be
more conspicuous and, therefore, easier to detect.

V. FUTURE RESEARCH

While this study demonstrates the feasibility of full popula-
tion testing in a synthetic audit environment, several research
avenues remain. Our first next step is to replicate this study on
real-life auditing data for validation purposes, and to expand
the notion of process deviations to other perspectives (beyond
control-flow).

Second, while Decision Trees and Random Forests achieved
over 90% recall and precision, advanced methods like deep
learning might offer better performance. However, the trade-
off between performance and explainability needs considera-
tion.

Lastly, examining the relative importance of notable items
is crucial, as their impact on financial statements or audit pri-
orities can vary. Developing methods to assess and incorporate
these differences could improve classifications.

VI. RELATED WORK

In this section, we contextualize our research based on some
related work.

A. Approaches to Handle Overload of Deviations

Handling the overload of detected deviations can be ap-
proached by drawing high-quality samples [20]-[23]], clus-
tering or prioritizing [5], [9], [10], or by conducting full
population tests [8], [24]. Our work distinguishes itself by
addressing a complementary problem: determining the number
of labeled deviations required to train a supervised machine
learning model to achieve satisfactory performance in auditing.
Rather than comparing our method to others, we aim to offer
guidelines on the minimal labeling effort required for full
population testing.

Unsupervised outlier detection methods [25] provide an
alternative approach to supervised classification in auditing.
They identify unusual patterns without labeled data, which
is useful in initial analyses. However, they may not capture
auditing-specific nuances. Supervised techniques leverage au-
ditors’ domain knowledge in labeled data for more precise,
contextually relevant distinctions, essential for accurate devi-
ation interpretation [26].

B. Hierarchy of Declarative Process Models

As part of our research design, we generated sets of hier-
archical process models to mimic an auditing context. More
specifically, we created DECLARE process models. DECLARE



is a declarative process language that describes a process by a
set of constraints or business rules. In contrast to procedural
process models, a DECLARE model allows for all process
behaviour that is not explicitly forbidden by the constraints
in the model. Since declarative process models are a set of
rules [[13]], This aligns well with how auditors conceptualize
processes.

The concept of hierarchy in process models has been
explored in previous research [14]], [27], [28]. Process model
hierarchies were crucial for our study, as they allowed us to
create models that progressively relax or tighten constraints,
mimicking the auditors’ challenge of identifying relevant no-
table items.

VII. CONCLUSION

Conformance checking provides auditors with a technique
to automatically detect process deviations but bears a chal-
lenge: the set of detected deviations is too large to process.
Machine learning could tackle this challenge. However, some
questions remain unanswered, hindering their practical appli-
cation. How many process deviations should be labeled to
reach a certain performance? And what about the quality of
the provided labels? This paper answers these questions by
training DT and RF models on synthetic yet realistic data.

We demonstrate that a precision and recall of 90% can be
attained with a limited number of labeled deviations. However,
the required quantity hinges on the proportion of notable items
within the detected process deviations population. RF models
emerged superior in achieving high recall due to their more
consistent performance. While the average recall of DTs and
RFs was similar, RFs are preferable in auditing contexts since
not only the average recall across all audits is of interest
but also the recall of each individual audit. Furthermore,
classifications identifying at least 90% notable items seem to
be associated with less complex processes compared to those
identifying fewer notable items.
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