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Figure 1: In our evaluation of an augmented reality cleaning application, we tested four types of visual instructions: breadcrumbs,
ghost examples, paths, and outlines. These instructions were provided in either full or as a single step.

ABSTRACT

Cleanroom cleaning is a surface coverage task where the pattern
should be followed correctly, and the entire surface should be cov-
ered. We investigate the efficacy of augmented reality (AR) by imple-
menting various pattern guidance designs to enhance a cleanroom
cleaning task. We developed an AR guidance system for cleaning
procedures and evaluated four distinct pattern guidance methods:
(1) breadcrumbs, (2) examples, (3) middle lines, and (4) outlines. We
vary the instructions on the entire surface or as a single step. To
measure performance, accuracy, and user satisfaction associated
with each guidance method, we conducted a large-scale (n=864)
between-subjects study. Our findings indicate that single step in-
structions proved to be more intuitive and efficient than full in-
structions, especially for the breadcrumbs. We also discussed the
implications of our results for the development of AR applications
for surface coverage and pattern optimization.

CCS CONCEPTS

« Human-centered computing — Empirical studies in inter-
action design; Mixed / augmented reality.
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1 INTRODUCTION

Virtual reality (VR) and augmented reality (AR) have gained traction
across various sectors for training [5, 30, 35] and assistance [9, 13].
These technologies are increasingly being used to perform a wide
range of manual tasks and to train dexterity skills. However, guiding
continuous movement and supporting fine-grained dexterity skills
has proven to be cumbersome and has gained interest from the
research community. To address the concern of conveying clear
and effective instructions to the user, previous work explored the
most efficient type of instruction to guide users in motion activities
in terms of efficient execution [4, 15, 18, 31]. We build upon these



works and further investigate how to guide manual labour activities
that cover an entire surface, such as room painting, spray painting,
vacuuming, cleaning, sanding, and plastering, among others.

This paper focuses on motion adherence by studying the efficacy
of different instruction types (listed on Figure 1) to allow for full
surface coverage. We specifically explore the guidance for a proof-
of-concept AR cleanroom cleaning use case. It is important to cover
the entire surface area within cleanrooms to avoid contamination
of the processes performed in the room [24]. To be able to cover the
surface completely, the pattern that users need to follow with the
cleaning mop will have to go across the entire surface and require
user movement during the activity (see Figure 1). These patterns
are hard to continue abiding by for new cleaners, so we believe AR
instructions can support them during this operation.

We present the following contributions:

e Design, implementation and validation of a proof-of-concept
AR-based surface coverage guidance and progression sys-
tem.

e A large-scale study to understand the efficacy of commonly
presented motion guidance instructions in achieving full
surface coverage.

o A set of validated visualization patterns on how to present
instructions for manual labor activities, either fully or only
when necessary, and how this affects performance and us-
ability.

We first analyze existing research on motion guidance and skill
training, and focus on use cases that use AR for floor treatment
tasks. We then present the design of our system, which is done
in collaboration with cleanroom cleaning experts, and detail the
coverage implementation and the four pattern guidance methods
we considered (presented in Figure 1). Finally, we present the design
of our study, the measured results, and discuss their implications.

2 RELATED WORKS

Our work explores using AR to guide users in surface coverage
tasks, aiming to cover an entire surface with an optimal pattern in
a single motion, avoiding repetition. Previous studies have exam-
ined extended reality (XR) enhancements for guiding users during
motion and training new skills. We review these studies and their
relevance to our investigation of pattern guidance on surfaces.

2.1 XR Motion Guidance

For sequential path-following tasks (one motion after the other), Liu
et al. [15] studied how precues of the next motion in the sequence
and glyphs can be used to increase the intelligibility of the path to
follow. They found that adding solid path visualizations was most ef-
ficient for guidance; however, precues efficiency dropped after four
sequence levels. If no path guidance was present, this performance
drop would already occur for levels higher than one, indicating
their need. In a later work, Liu et al. [17] also explored how goal-
based and action-based instructions, together with precues, help
users achieve required translations and rotations in sequential mo-
tion tasks. Goal-based instructions were found to be most efficient
to support users in achieving tasks correctly. However, precues
were not useful for most of the participants, highlighting the need
to study the effects of precueing upcoming steps more in-depth.
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Within our work, we specifically study instructions within contin-
uous motion, where rather than smaller sequential tasks, we have
one long pattern of continuous motion that needs to be followed
as accurately as possible. However, we extend upon the work of
precues by providing more or less information on the full pattern
depending on the current state of the task.

We are not the first to explore pattern guidance for tasks executed
on top of a surface area. For motion skills such as calligraphy, Yang
et al. [30] proposed a system called Fust Follow Me where a ghost
representation in a HMD shows how specific motions should be car-
ried out so that users can simply follow them. Similarly, Nomoto et
al. [20] studied how adding visuo-haptic feedback can help support
a precise motor control task, such as drawing, by moving a dummy
hand toward the correct target to force users to adjust their move-
ments accordingly. Prior work of Narita and Matsumaru [19] has
looked at enhancing calligraphy-stroke learning using augmented
reality projection, where a teacher’s brush stroke is mirrored to
the participant to replicate the calligraphy pattern. In general, it
was found that adding the teacher’s brush strokes improved the
participant’s calligraphy results. In terms of task speed, Ceyssens
et al. [4] studied how different AR instructions would help users
achieve the correct speed of motion for a line-tracing task. They
presented static and dynamic instructions in the form of glyphs,
graphs, and an example orb similar to the teacher’s brush stroke
of Narita and Matsumaru [19]. They found that only the example
orb would cause participants to achieve the correct target speed.
When looking at live guidance of full-body motions, Yu et al. [34]
explored in three studies how adding path guidance helps commu-
nicate the desired postures and movements to users. They found
that first-person instructions outperformed those shown outside
of the participant’s body (such as a mirror, third-person, and top-
down view), where simple path glyphs were presented for the arm
movement. They also found that providing a ghost arm to replicate
the desired movement of the body outperformed providing instruc-
tions, both in terms of conducting the correct translation, motion
pattern, and speed of movement. Within our work, we do not focus
on communicating speed to the user; we primarily focus on pattern
guidance on how it improves the accuracy of surface coverage.

2.2 Skill Training with XR

XR has been widely explored to train users to acquire new skills
or knowledge [11]. In operation contexts, the entire spectrum of
mixed reality has extensively been used to train operators to per-
form new procedures in manual assembly operations [5], with
many use cases of virtual reality [29] and augmented reality [1, 27]
previously explored. When it comes to training specific skills with
serious games, Backlund et al. [2] proposed a system called “Sidh”
to train firefighters for fire extinguishing scenarios by projecting
fire onto a digital CAVE around the user. Lerner et al. [14] looked at
how VR can be used to simulate emergency medical care scenarios
and train people in how to perform certain medical procedures.
For motor skill training, Ricca et al. [23] studied whether adding
the digital hand within VR improved the task performance and
usability of a pick-and-place type task, compared to only visualiz-
ing the tool interactions. They found no performance difference
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between the digital hands and no hands conditions, however par-
ticipants preferred seeing the hands to get a better overview of the
procedure. For gesture training, Jeanne et al. [10] studied how 3D
visual cues can be used to guide users along the correct path of a
gesture and teach them how to perform it correctly. They found
that providing a path during the training phase to follow provided
better results during the activity itself but worse than their pro-
posed guidance EBAGG in the post-training phase where no more
guidance was given. Looking more in-depth at the visual feedback
techniques for bare-hands interaction in VR, Vosinakis et al. [26]
compared different feedback visualizations within VR to traditional
desktop methods for grasp-and-release tasks. They found that col-
oring objects in VR gave more clarity on the interaction than using
connecting lines, halos, or shadows, with user performance also
being higher in VR.

2.3 Augmented Reality Cleaning

There have been some examples of augmenting cleaning operations
within XR. Recently on the consumer market, Dyson unveiled plans
for the “CleanTrace” app to highlight in AR where users have vacu-
umed!. Within research, Yu et al. [32] used a Microsoft Hololens 2
to visualize contaminated spots and highlight (using hand-tracking)
the areas the user has already cleaned using a cloth in hand. Another
example is by Fukawasa and Nakayama [7], who used projection
augmented reality onto a floor to clean, to build a guidance system
for cleaning that specific surface area with a cleaning mop, sim-
ilar to what we propose. They also presented several instruction
areas on top of the surface to indicate the pattern that should be
conducted for each area (such as wiping, scrubbing, and sweeping).
Compared to their works, we are particularly interested in the ex-
ploration of surface cleaning guidance for professional contexts,
where a singular motion is ideal to perform the task (compared to
repetitive motions).

3 AUGMENTATION OF CLEANING
OPERATION

Here we describe the design and implementation of our proof-of-
concept enhanced cleaning operation with AR. We also discuss the
principles used in the design of our pattern guidance methods to
guide users toward the correct adoption of the practices.

3.1 Understanding the problem

To get a better understanding of the needs within a cleaning op-
eration, we interviewed two cleanroom cleaning companies that
train and guide cleaning operators. These companies gave us an
overview of the standard cleaning procedures within cleanrooms
and what important steps they teach to new operators. From these
interviews, We identified the following measures of importance to
consider within our guidance system:

o Cleaning should always occur according to previously es-
tablished patterns (see Figure 2a) according to room size to
ensure you end back where you started.

!https://www.dyson.com/discover/innovation/new-machines/dyson-cleantrace (Last
Accessed: 12/08/2024)
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Figure 2: The pattern and implementation with (a) the clean-
ing motion (black arrows) used to ensure proper overlap, the
green area shows what is cleaned, and dark green lines repre-
sent overlap, (b) shows the full setup of the implementation.

e During cleaning according to the pattern, overlap should
occur between the previously cleaned area and the newly
cleaned area between 10 and 20% (see darker lines between
the arrows on Figure 2a).

e Cleaning should always happen backward to ensure no
walking over cleaned surfaces.

e The mop should always move in one direction to ensure
dirt is not left on the sides or behind the mop from build-up.

o Cleaning should not happen too fast to allow for proper
soaking of the solution, and not too slow to take forever to
clean one room (ideal speed around 0.3 meters per second).

The cleanroom cleaning companies also highlighted the difficulty
for (new) cleaners to be able to follow these measures without
guidance, especially covering the entire surface accurately in a
singular motion and knowing when and where to turn exactly. This
motivates a huge part of our research on providing assistance for
surface coverage tasks.

3.2 Apparatus & Tracking Methodology

A full overview of the hardware and setup we used to create our
guidance system and study can be seen on Figure 2b. To develop
an AR enhancement of the cleaning operation, we made use of the
Magic Leap 22 AR glasses. These glasses use inside-out tracking
with an internal ToF depth sensor and RGB-D camera to perform
continuous SLAM (Simultaneous Localization and Mapping) of the
environment around the user. To track the cleaning mop during the
cleaning procedure, we 3D printed a mount for the Magic Leap 2
controller, which uses inside-out tracking with IR LEDs and an on-
board lightweight SLAM tracker. One downside of the controller’s
inside-out tracking is potential deviations in the positional tracking
when the primary HMD device does not recognize the controller
and sync the SLAM tracking. To balance these issues, we attached
an ARUco marker [8] on the other side of the cleaning mop, which
is used as a reference marker for the positional tracking (optimized
settings for slow and accurate tracking). To build the application,
we made use of Unity, which is directly supported by Magic Leap 2.

2Magic Leap 2: https://www.magicleap.com/magic-leap-2 (Last Accessed: 12/08/2024)
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3.3 Surface Coverage Highlights

3.3.1 Design of Surface Coverage. To support operators during
the cleaning operation, we created an initial design of the live
feedback mechanism together in discussion with the companies.
To highlight the area to clean, the idea is to showcase a heatmap of
the surface area to clean, where green highlights whether you have
cleaned correctly, and red indicates that a mistake has occurred
there (e.g., cleaned too fast, cleaned with the wrong side of the
mop, walked over the cleaned area). Whenever mistakes occur, a
warning should be given to users in their field of vision so they
can correct these errors faster. A second heatmap is shown on
top of the previous surface to highlight which areas have been
cleaned multiple times (such as the required overlap). Using this
augmentation, it becomes possible to get an idea of the areas that
have been cleaned, what areas have been missed, where overlap
happened, and where mistakes have occurred.

3.3.2 Implementation of Surface Coverage. For the heatmap imple-
mentation, we made use of a quad in Unity, which serves as the
“painting canvas” for cleaning the floor area. An example of this
heatmap quad in Unity can be seen on Figure 3b, where the mop is
shown cleaning the areas and showing the overlaps as discussed
in subsubsection 3.3.1. The canvas is 2 x 2 meters in real life. To
paint the pixels of the canvas, we cast the corners of the cleaning
mop onto the quad (see Figure 3a) and fill in all the pixels between
the corners and the contour of the mop on top of the canvas. We
also keep track of every pixel of the canvas, whether it is consid-
ered “cleaned”, “uncovered, or “faulty” (when going too fast or
cleaning in the wrong direction). The color of each pixel is then
decided based on their value: green for “cleaned”, transparent for
“uncovered”, and red for “faulty”. Cleaning a “faulty” pixel with
the correct cleaning method transitions it to a “cleaned” pixel. A
second heatmap floats slightly above the original canvas to show
the overlap of cleaned areas. All pixels that are cleaned a second
time are communicated over to this second heatmap and are then
considered as overlapped pixels. An algorithm runs continuously
across the second heatmap to identify clusters of covered pixels,
decide the width and height of these clusters (based on the shape),
and decide the level of overlap and the color to give it. A yellow
color indicates an overlap of less than 10%, light green indicates
an overlap between 10 and 20%, and orange indicates an overlap
above 20%. Finally, the boundaries are visualized in cyan to inform
users what area can be cleaned. To optimize the processing speed
without sacrificing too much information, the canvas has a texture
of 512x512 pixels.

3.4 Pattern Guidance Methodology

Only providing highlights of covered surface area would not be
sufficient in professional environments, where failing to adhere to
patterns correctly can result in poor task execution in cleanroom
environments. We need additional conditions to be met, such as cov-
ering a large surface area in a single motion, ensuring users cover
the entire surface, and introducing proper overlap with previously
cleaned areas. However, we currently do not have an understand-
ing of which visualization type is best to guide users to meet these
conditions. To address these concerns, we study several designs
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(a) Cleaning mop (b) Cleaning the platform with the mop
Figure 3: Surface coverage implementation, with (a) the clean-
ing mop projection onto the platform and (b) the mop clean-
ing the platform where green shows what has been cleaned
correctly, red where cleaned wrongly (in this case too fast)
and yellow, light green or orange show overlap on top.

FULL

SINGLE
STEP

Figure 4: The visualizations tested based on the methodology
of breadcrumbs, ghost example, middle line, and outline.
“FULL” visualizations cover the entire surface, and “SINGLE
STEP” visualizations only show the next part of the pattern.

based on literature and game design practices to visualize a pattern
and guide users in executing the full pattern (see Figure 4).

One common design seen in guidance visualization consists
of “single step” instructions, a subset of the full instructions that
only shows the information required to perform the current step,
and showing little to no information on the future steps that are
to be performed [12, 21, 28]. Single step instructions lower the
distractions of the user by lowering the amount of information
(clutter) during the task [16]. This makes single step instructions
a viable option to perform motion guidance for surface coverage,
where focus on the task at hand should be optimized. To test the
efficacy of our guidance visualizations, we consider both the full
overview and single step versions, which are described below.

3.4.1 Breadcrumbs. To guide users along a path, in game design
and literature, trails are often created with repeated visuals for users
to follow toward a specific target area. This concept is called “bread-
crumbs” or “footprints”[25]. In our case, we consider breadcrumbs
to highlight the pattern to follow by showing intermediate points
that need to be achieved (see BREADCRUMBS on Figure 4). When
users follow the pattern correctly, the breadcrumbs disappear as
they are passed over with the mop. In our design, every breadcrumb
shows the ideal orientation and position of the cleaning mop at that
point in time and is the same size as the original mop. For every
area in between, the user must try to stay at the correct location
with no guidance until the next breadcrumb. We expect this should
allow them to focus on the cleaning activity since no instruction
is visible between breadcrumbs. The breadcrumbs cover the entire
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canvas for the full version of this instruction. For the single step
version, only the next step is shown. When the mop approaches
and becomes close to achieving the step, the step after the next will
also be shown preemptively.

3.4.2 Example. For this instruction, we make use of the “ghost”
metaphor [4, 19, 30], which is an example mop that carries out
the pattern correctly for the user to see. In the full version of this
instruction, the example continuously moves across the surface
area, and users have to follow the movement of this example. For
the animation speed of the example, we chose the ideal cleaning
speed 0.3 m/s mentioned by the cleaning companies we contacted,
which adds an additional layer of information (correct speed). For
the single step version of the instruction, the example will always
be right in front of the cleaning mop. When the cleaning mop moves
correctly, the example will also move forward. If the cleaning mop
stops moving, the example also stops. The example instructions
are shown under the category EXAMPLE on Figure 4. Since the
example is there as a reference to use during the cleaning procedure,
we expect that users can copy its movement of whenever they see
it to get the ideal result.

3.4.3 Middle. To provide guidance on paths to follow, the most
intuitive, well-known, and studied instruction is a line in the middle
that directly shows the motion to follow (the MIDDLE instruction
of Figure 1). In most of the literature, this instruction is primarily
used for tasks with small motions, often consisting of a singular
straight line [15, 18, 34]. Our guess is that using only a singular
line to inform the pattern to follow makes users potentially more
lenient on how accurately they keep the line in the middle of the
mop and forget corners or edges as a result. For the full version of
the instruction, the line shows the pattern across the entire surface.
The single step version shows the middle line for the next 0.6 meters
(2 seconds according to the ideal speed).

3.4.4 Outlines. For our final instruction method, we test an alter-
native to the MIDDLE instruction, where instead of in the middle,
we show two lines to represent the outer edges of the cleaning mop
(see OUTLINES on Figure 4). With this instruction method, users
can balance the cleaning mop between the edges and keep a simple
overview of how much the mop deviates from the intended path.
The full version of this instruction covers the entire surface area
with the outlines, including the required overlaps. The single step
version works the same as the MIDDLE instruction, where the lines
are shown for the next 0.6 meters from the current cleaning point.

4 USER STUDY

We evaluate the implemented pattern guidance instructions in a
user study designed to test their efficacy for full surface cover-
age. Since the ideal pattern of surface coverage was already pre-
established by the interested cleaning companies, we chose to keep
this pattern within our study. We also focus our study on the efficacy
of the patterns for full surface coverage. We omitted the cleanroom
cleaning errors from the implementation to avoid complicating
the procedure and influencing the pattern following results. This
includes making the heatmap red when cleaning too fast, going
in the wrong direction, or walking on top of the cleaned surface.
These errors would most likely cause users to stop their current

motion to cover these areas again, which causes bias in the results
on whether they follow the pattern correctly with the visualizations.
We did keep the rendering of the cleaned areas and overlaps since
these are our core concepts to test for the assistance of the cleaning
instructions included with the pattern guidance.

4.1 Hypotheses

H; By providing instructions as a single step, pattern under-
standability improves.

One of the results we want to measure in our study is the efficacy of
providing instructions as a single step for surface coverage. In prior
research of short singular motions, single steps have already been
shown to be easier to understand due to less clutter (information
you do not currently need yet) [16]. We pose H; to verify these
claims and translate them over to surface coverage activities.

Hj Less surface coverage is achieved with instructions that do
not show where the edges of the mop should be.

In the design of our instructions, we already mentioned the expected
limitation of the MIDDLE instruction (see subsubsection 3.4.3) in
terms of communicating the exact orientation and position of the
cleaning mop. To verify these claims, we test with H whether other
instructions that communicate the full position and orientation of
the edges of the cleaning mop are more efficient at covering the
entire surface.

Hj Instruction adherence is optimized by instructions that do
not overlap with themselves.

Since we also need to ensure overlaps within our surface cover-
age use case, we had to design the instructions to communicate

these overlaps as well. For this reason, some of the instructions

(BREADCRUMBS-FULL, OUTLINES-FULL) overlap with themselves,
which we expect can cause confusion for the users on the correct

part of the instruction to follow, hence we test for Hs.

Hy Instructions that cause users to look closer at the cleaning
mop, achieve better surface coverage results.

Instructions should not distract users from the real activity to en-
sure they carry it out correctly. We anticipate that some of the
instructions cause users to look away from the cleaning activity.
Looking away does not necessarily imply a bad execution of the ac-
tivity, but we anticipate that an effect might persist in this behavior,
hence we verify this by testing Hy.

4.2 Study Procedure

For the procedure of our study, we conducted a large-scale between-
subjects design study where every participant only had one chance
to cover the entire surface area with the assistance of the visual-
ization assigned to them. Before conducting the experiment, they
would be informed what the ideal cleaning pattern is, why it is
important to follow such a pattern, and how the cleaning guidance
system of the heatmap works (green coverage and overlaps). We
also instruct them that during cleaning, they will need to replicate
the pattern as accurately as possible and focus on covering the
entire surface area, rather than being as fast as possible. Afterward,
they are given the headset, which shows a starting point (footprint)
at the corner of the canvas where they must stand. Once they stand
on the footprint and face the correct direction, a gray rectangle
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Figure 5: The configurations tested, the rectangle shows
where the mop starts and the footprint where the user starts.

appears in front of them to indicate where they need to place the
cleaning mop to start cleaning (at this point, this is outside the sur-
face). These pre-study instructions can be seen on Figure 5, which
also shows the variations of the pattern and the starting points
we use. These variations are pseudo-randomized across the entire
study, where we ensure all variations are present for all visual-
izations. Once the cleaning mop is placed correctly, the pattern
visualization loads and show the user how they need to clean the
surface. After they have finished cleaning the entire surface, they
are prompted to fill in a final questionnaire. In this questionnaire,
we first ask about their cleaning expertise. Afterward, we asked on
a Likert-scale questionnaire (1-5) how understandable the pattern
visualization was, how easy it was to follow the pattern, and how
well the surface was fully cleaned. Lastly, we ask the participants
whether they see uses for a tool like this in their daily lives.

4.3 Participants

For our study, we collaborated with a biotech company that was
not part of the original design phase of this research. We con-
ducted trials with 864 employees (365 male, 499 female) of varying
backgrounds and ages (M=40.687, SD=11.58). In total, 62 had no
cleaning experience, 367 cleaned sometimes at home, 409 partic-
ipants cleaned often at home or other locations, and 25 cleaned
professionally. We had to omit 15 trials from the performance mea-
sures due to unreliable tracking measurements caused by controller
tracking malfunctions. The distribution of the participants for every
visualization can be seen on Table 1.

Table 1: Amount of participants for every visualization.

| | BREADCRUMBS | EXAMPLE | MIDDLE | OUTLINES |
| FULL | 103 | 105 | 104 | 102 |
| STEP | 108 | 110 | 106 | 111 |

4.4 Data Collection

We take several measurements during the study to attempt to an-
swer our hypotheses. For every frame of the application, we tracked
the position and orientation of the mop, where the instructions
are visible, and a ray cast of where the eyes are looking (using the
built-in eye tracker from the Magic Leap 2). All the data is set to
be relative to the platform to clean, and we automatically align
the results according to the given pattern (from Figure 5). We also
saved snapshots of the state of the heatmap (cleaned surface) after
every participant finished cleaning in the form of a 512x512 image.
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We used the think-aloud protocol during the study and asked sev-
eral questions related to their performance after the activity (see
subsection 4.2) to measure the usability of the instruction.

5 RESULTS

Since we conducted a between-subject design study, we performed
the following tests to verify the significance of the results: Shapiro-
Wilkinson to test if the data follows a normal distribution. If normal
distribution can be assumed and we find that homogeneity of vari-
ances (through Bartlett’s test) can be assumed, we perform ANOVA.
Otherwise, we use Kruskal-Wallis to test for significance. We use the
Pairwise Wilcoxon rank sum test with Holm correction as post-hoc
test and calculate the individual effect sizes.

Since participants were asked to focus on accuracy rather than
speed, the completion time became more varied (M=52.37 seconds,
SD=19.57 seconds) across participants. However, since our hypothe-
ses are not directly related to completion time, we do not discuss
these results in depth.

5.1 Pattern Replication

To analyze whether users could follow the pattern correctly with
the guidance visualizations, we use a technique called “Dynamic
Time Warping” (DTW) [3]. This technique is used to calculate how
far patterns are apart from each other, not by time, but by trying
to match their sequences. Since we do not want the DTW distance
to be based on the amount of data points (participants that take
longer have more data points, thus a higher distance), we compare
the visualizations based on the normalized DTW distance (distance
divided by the amount of reference and query points). We compare
the pattern of every participant to a singular baseline pattern (also
used to render the instructions). The results of the pattern repli-
cation across the visualizations are shown on the top of Figure 6
(DTW Distance). Here we notice that the STEP versions of the
instructions generally have lower DTW distances than the FULL in-
structions, with the largest gap in BREADCRUMBS and EXAMPLE.
When testing the DTW distances for normality, we found they did
not follow a normal distribution and found a significant difference
(72=80.62, df=7, p<.001) using Kruskal-Wallis. The post-hoc test re-
vealed a significant difference between BREADCRUMBS-FULL and
EXAMPLE-FULL with all other visualizations (not with each other).
We have listed the full results of the significance, and effect sizes, on
Table 2 in Appendix A. Here we conclude that pattern replication
was the worst for the BREADCRUMBS-FULL and EXAMPLE-FULL.

5.2 Cleaning Coverage

When comparing the cleaning results of the visualizations, we
primarily look at how covered the surface was. Figure 7 shows
the aggregated cleaning performance across all participants which
shows how well the surfaces were covered. It is noticeable how the
worst performance is achieved around the corners, especially for
the FULL conditions and OUTLINES-STEP. To analyze the clean-
ing coverage statistically, we calculated how many pixels of the
surface were cleaned (percentage-wise, where 100% implies the
full surface is cleaned and 0% nothing is cleaned). The results of
the percentages across the visualizations can be found on Figure 6
(Surface Coverage), where we see generally higher results for the
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Figure 7: Coverage of the surface for every visualization across all participants, the colors are calculated based on every cleaned
pixel, the corners we analyze separately are indicated by the numbered black squares and are upscaled for clarity

STEP conditions, in particular for the BREADCRUMBS-STEP and
EXAMPLE-STEP conditions. We found the cleaning coverage to
be non-normally distributed and found a significant difference be-
tween the visualizations (§?=18.88, df=7, p=.0086). The post-hoc
test reveals a significance between the OUTLINES-FULL and the
BREADCRUMBS-STEP (p=.027, Z= 3.30, r=.23), EXAMPLE-STEP
(p=.014, Z=3.48, r=.24), and MIDDLE-STEP (p=.037, Z=3.19, r=.22).
From these results, we can state that OUTLINES-FULL had a worse
cleaning coverage compared to the STEP conditions of the other vi-
sualizations. Even though we found a significant difference between
some visualizations, in general, coverage of the cleaning activity
across the entire surface was quite high (scale of the graph was
between 95-100%). This is because small misses are not represented
when scaling it up to a full surface.

To gain an additional understanding of the surface coverage
performance, we analyze the results of the corners of the platform
(1/8th of the total surface size) where most cleaning errors usually
take place. We combine the results of the four corners for every
participant together to gather the results listed on Figure 6 (Corner
Coverage). Here we see again a better performance for the STEP
versions of the visualizations. When testing the results for nor-
mality, we found that it does not follow a normal distribution and
that there is a statistical significance (§2=24.01, df=7,p=.00113). The
post-hoc test then revealed a significance between BREADCRUMBS-
STEP and MIDDLE-FULL (p=.043, Z=3.16, r=.22), OUTLINES-FULL

(p=.0017, Z=4.02, r=.28), and OUTLINES-STEP (p=.05, Z=3.10, r=.21).
From these results, we can conclude that corners were covered most
accurately by the BREADCRUMBS-STEP visualization, where the
second most accurate are EXAMPLE-STEP and MIDDLE-STEP.

5.3 Eye Tracking

To test how actively users look at the mop, we compute the eye-mop
distance by raycasting the gaze from the camera and intersecting it
with the height of the cleaning platform. We then take the Euclidean
distance across the X-Z axes from the center of the mop to the gaze
intersection to get an idea of where participants are looking on the
surface. For every participant, we take the median eye-mop distance
from the entire activity to get one value to represent the measures
for that participant. The results of this measure can be seen on
Figure 6 (Eye-Mop Distance). Again, we notice how the values are
lower for the STEP conditions compared to the FULL conditions. In
particular, the BREADCRUMBS-STEP and EXAMPLE-STEP report
the lowest eye-mop distance compared to all other visualizations.
We found that the eye-mop data does not follow a normal dis-
tribution. When performing the Kruskal-Wallis test, we found a
significant difference (72=82.77, df=7, p<.001) across the full re-
sults, whereas the post-hoc test revealed a significant difference
between the BREADCRUMBS-FULL and all STEP visualizations. We
also found significance for BREADCRUMBS-STEP and EXAMPLE-
STEP with the MIDDLE and OUTLINES visualizations and between
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Figure 8: Likert-Scale Questionnaire ratings for the visual-
izations (1 Absolutely Disagree, 5 Absolutely Agree).

EXAMPLE-STEP and EXAMPLE-FULL (all details can be found on
Table 3 in Appendix A). Combining these significance tests with
the results we found for the eye-mop distance, the EXAMPLE-STEP
visualization outperforms all others in terms of eye proximity to
the mop, followed by BREADCRUMBS-STEP, then all other STEP
conditions, and then finally the FULL conditions.

5.4 Questionnaire

Of the 863 participants (before performance removal), 132 found
the tool useful for use at home, 293 found the tool useful for work
contexts, and 438 did not see the need for such a tool. Those with an
interest in the tool at home were particularly fond of seeing where
the user had cleaned but saw no need for the cleaning pattern. We
evaluate three statements related to the cleaning activity that were
asked to participants in the post-study questionnaire in the form of
a Likert-Scale of 1-5 (Absolutely Disagree-Absolutely Agree): "The
cleaning pattern was easy to understand’, "The cleaning pattern
was easy to follow", and "The surface is completely cleaned". The
results of these Likert-Scale questions are shown on Figure 8. For
the ratings of these statements, it is noticeable how MIDDLE-FULL
continuously had the highest reported ratings. For the first two
statements, the STEP versions of the instructions had the second
best ratings, with very similar results to each other, while the other
FULL instructions had the lowest ratings. Finally, for the final state-
ment "The surface is completely cleaned", all visualizations had
similar results, except for the MIDDLE-FULL instruction. When
we checked the results for normality, we found that none of the
statement ratings followed a normal distribution. We will cover the
results of each of these statement ratings more in-depth.

5.4.1 The cleaning pattern was easy to understand. Here, we found
a significant result (§2=85.85, df=7, p<.001), and the post-hoc test re-
vealed a significance between the results of BREADCRUMBS-FULL
and all other visualizations. We also found a significant difference
between OUTLINES-FULL and BREADCRUMBS-STEP, MIDDLE-
FULL, MIDDLE-STEP, and OUTLINES-STEP. Finally, we found
a significant difference between MIDDLE-FULL and EXAMPLE-
FULL. Full statistical test results are listed on Table 4 in Appendix B.
Based on these results, we can testify that the BREADCCRUMBS-
FULL made the pattern the hardest to understand from all the
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visualizations, and OUTLINES-FULL was the second hardest to
understand. In contrast. the MIDDLE-FULL instruction was the
easiest to understand from all the visualizations, followed by the
STEP versions of the instructions (where no significance was found
between them and the MIDDLE-FULL).

5.4.2  The cleaning pattern was easy to follow. For this statement,
we found a significant result (72=96.47, df=7, p<.001) where the post-
hoc test revealed statistical significances between BREADCRUMBS-
FULL and all other visualizations (except for EXAMPLE-FULL)
and a significance between EXAMPLE-FULL and the other vi-
sualizations (except OUTLINES-FULL). We also found a signifi-
cance between OUTLINES-FULL and OUTLINES-STEP and found
a significance between MIDDLE-FULL and all other visualizations
(except MIDDLE-STEP and OUTLINES-STEP), where MIDDLE-
FULL outperformed these visualizations. The full statistical values
can be found on Table 5 in Appendix B. From these results, we
found the worst ratings for the BREADCRUMBS-FULL condition,
with the second-worst ratings coming from EXAMPLE-FULL, with
OUTLINES-FULL following afterward. MIDDLE-FULL was rated
the easiest to follow, with all the STEP conditions following after
(EXAMPLE-STEP last).

5.4.3 The surface is completely cleaned. For this statement, we
found an overall significant difference (§?=17.42, df=7, p=.01487)
and the post-hoc test revealed a significance between BREADCRUMBS-
FULL and OUTLINES-STEP (p=.05, Z=3.12, r=.22). While the MIDDLE-
FULL seems to have had the highest-rated performance (according

to Figure 8), we can only reliably conclude from our findings that
OUTLINES-STEP outperforms BREADCRUMBS-FULL in terms of
perception of how covered the surface is.

6 DISCUSSION

Within our large-scale study, we found several significant findings
that allow us to reason on our hypotheses. First and foremost, the
STEP instructions continuously performed better than the FULL
instructions for all the measures we tested (not always signifi-
cant). In particular, the worst pattern and cleaning performance was
achieved with the BREADCRUMBS-FULL condition and EXAMPLE-
FULL second-worst. The best performance for the surface coverage
and cleaning coverage was achieved with BREADCRUMBS-STEP
condition. However, for the questionnaires, the MIDDLE-FULL con-
dition had the highest ratings, followed by all the STEP conditions
(better than the FULL counterparts). We expect that the perceived
usability of the MIDDLE-FULL was because it was the clearest
method to see the entire surface pattern before the activity. This did
not guarantee better execution for the activity measures, often be-
ing outperformed by other visualizations (BREADCRUMBS-STEP
significantly for corner coverage). From our results, we can safely
accept Hj stating that "By providing instructions as a single step,
pattern understandability improves.", highlighting the positive influ-
ence of presenting instructions as a single step for motion guidance,
similar to what was seen for other types of activities [12, 21, 28].
For the coverage of the surface area and the corners, we only
found significant differences indicating that the OUTLINE-FULL
was worse for full surface coverage and that BREADCRUMBS-STEP
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was better at getting users to clean the corners of the activity (signif-
icantly compared to MIDDLE-FULL). In other words, we could find
no supporting evidence for Hy stating that "Less surface coverage
is achieved with instructions that do not show where the edges
of the mop should be", which primarily questions the efficiency
of the MIDDLE instruction for surface coverage. Hence we reject
hypothesis Hy. This finding is important for the design of future
instructions aimed at getting users to follow a pattern while still
covering the outer edges of the activity, specifically since paths
without edges such as MIDDLE are easy to understand (see ques-
tionnaire results on subsection 5.4) and are often already present
within other guidance research [17, 18, 33, 34]. However, it is im-
portant to note that better results will most likely be achieved with
other instructions such as BREADCRUMBS-STEP, especially for
activities that require the pattern to cover large surface areas.

Another hypothesis we explored within our study is H3 "Instruc-
tion adherence is optimized by instructions that do not overlap
with themselves", where overlapping visualizations are primarily
the BREADCRUMBS-FULL and OUTLINES-FULL. For surface and
corner coverage, OUTLINES-FULL performed the worst, while for
pattern replication and usability, BREADCRUMBS-FULL performed
the worst. The STEP conditions, which have by default no overlap,
also continuously performed better. Based on these results, we ac-
cept hypothesis Hs. In other words, when overlap is required during
activities, instructions should not incorporate overlaps themselves
since it can confuse users which part of the instruction needs to
be followed at the time of movement. Providing information as a
single step for such cases is a good alternative. The information to
force users towards overlap is not lost, and usability improvements
have been found (as shown by BREADCRUMBS-STEP).

The final hypothesis we defined within our study is Hy, which
states, "Instructions that cause users to look closer at the cleaning
mop, achieve better surface coverage results". For the distance of
the gaze intersection to the mop, we found that users looked closest
at the mop with the EXAMPLE-STEP and BREADCRUMBS-STEP
instructions (in that order) and generally with the STEP instructions.
We also found EXAMPLE-STEP and BREADCRUMBS-STEP to have
the highest reported surface and corner coverage. Due to these
performance increases, we accept the hypothesis Hy. From these
findings, we highlight the importance of not using instructions
that take the user’s gaze away from the motion activity they are
performing since this can directly affect the efficacy of the motion
they perform, which is in line with previous observations [6, 22].

7 FUTURE WORK

Within this work, we have presented an AR cleaning system that can
be used to highlight areas that were cleaned and how to guide clean-
ing patterns. Our participants were of very mixed backgrounds,
with most having no professional cleaning experience. Of these
participants, there were mixed responses towards the idea of using
the technology at home or in work situations. This shows that,
while skepticism remains, the interest in the adoption of the tech-
nology for such use cases is also present. In future work, it would be
interesting to explore how the cleanroom operators feel about the
technology and whether they think it can benefit their daily lives.
While we saw performance increases with the STEP instructions,

we did not test how much information the STEP instructions should
present to achieve the ideal results. Future work should still ex-
plore how far ahead STEP instructions should be to keep distraction
limited but also increase perceived usability (as shown by MIDDLE-
FULL). We believe that, while we only covered a cleaning use case
here, our findings can aid in the design of other surface coverage
use cases (e.g., painting, plastering, vacuuming). Verifying these
claims for other use cases in future research would be beneficial in
expanding the number of tasks that can be supported with AR. In
our study, we only analyzed measures related to the performance of
pattern replication and surface coverage and omitted the errors that
could occur (walked over cleaned surface, cleaned too fast, cleaned
in the wrong direction). When errors occur, ideally the pattern guid-
ance visualization should adapt to suggest the new ideal pattern
to follow. However, to avoid error bias in our study, we did not
study these adaptations. We also did not study yet how to combine
other metrics such as communicating the correct speed with the
visualizations. Future research should consider how to combine
other metrics with the pattern guidance visualizations, including
how error handling should occur, to optimize user guidance.

8 CONCLUSION

We have implemented an augmented reality cleaning guidance
system focused on the typical processes within cleanroom cleaning
to help support cleaning operators. We have conducted a large-
scale study (n=864) using the guidance system, where we tried to
understand what the most efficient way is to communicate the ideal
cleaning pattern during the activity. We have found that presenting
instructions as a single step proves to be beneficial in terms of
optimizing pattern replication, cleaning coverage, activity focus,
and usability. While providing a line in the middle of the activity is
sufficient to achieve proper results, the best coverage is achieved
by only showing the next step in the form of a static example
(breadcrumb) where the user needs to move the cleaning mop.
Instructions that overlap with themselves should be avoided, as
these have a negative impact on the understanding of the task at
hand. Presenting the instructions as a single step also allows for
improvements in eye focus toward the cleaning mop, which impacts
how the motion activity is conducted. While our cleaning guidance
system proved to be effective in achieving full cleaning coverage
results, we expect our findings related to the pattern guidance to
be applicable for other pattern-following or surface coverage use
cases other than just cleanroom cleaning.

ACKNOWLEDGMENTS

This work was made possible with support from the projects XR-
Huis and MAXVR-INFRA subsidized by the Flemish Government
and the European Union. We also want to thank the two cleanroom
cleaning companies for providing design input and the employees
from the study company for their participation in the study.

REFERENCES

[1] Salvador S. Agati, Rudieri D. Bauer, Marcelo Da S. Hounsell, and Aleksander S.
Paterno. 2020. Augmented Reality for Manual Assembly in Industry 4.0: Gather-
ing Guidelines. In 2020 22nd Symposium on Virtual and Augmented Reality (SVR).
IEEE, 179-188. https://doi.org/10.1109/SVR51698.2020.00039 Place: Porto de
Galinhas, Brazil.


https://doi.org/10.1109/SVR51698.2020.00039

(71

(]

[10]

[11]

[12]

[13]

[14]

[15]

[16]

[17]

(18]

[19]

Per Backlund, Henrik Engstrom, Cecilia Hammar, Mikael Johannesson, and
Mikael Lebram. 2007. Sidh - a Game Based Firefighter Training Simulation.
In 2007 11th International Conference Information Visualization (IV "07). IEEE,
899-907. https://doi.org/10.1109/IV.2007.100 Place: Zurich, Switzerland.
Donald J. Berndt and James Clifford. 1994. Using dynamic time warping to
find patterns in time series. In Proceedings of the 3rd International Conference on
Knowledge Discovery and Data Mining (AAAIWS’94). AAAI Press, 359-370.
Jeroen Ceyssens, Bram Van Deurzen, Gustavo Rovelo Ruiz, Kris Luyten, and
Fabian Di Fiore. 2023. AR Guidance Design for Line Tracing Speed Control. In
2023 IEEE International Symposium on Mixed and Augmented Reality (ISMAR).
IEEE, 1055-1063. https://doi.org/10.1109/ISMAR59233.2023.00122 Place: Sydney,
Australia.

Lea M. Daling and Sabine J. Schlittmeier. 2024. Effects of Augmented Reality-,
Virtual Reality-, and Mixed Reality—Based Training on Objective Performance
Measures and Subjective Evaluations in Manual Assembly Tasks: A Scoping
Review. Human Factors: The Journal of the Human Factors and Ergonomics Society
66, 2 (Feb. 2024), 589-626. https://doi.org/10.1177/00187208221105135

Hans J. Eysenck and Warren Thompson. 1966. THE EFFECTS OF DISTRACTION
ON PURSUIT ROTOR LEARNING, PERFORMANCE AND REMINISCENCE.
British Journal of Psychology 57, 1 (May 1966), 99-106. https://doi.org/10.1111/j.
2044-8295.1966.tb01009.x

Mana Fukasawa and Yu Nakayama. 2022. Spatial Augmented Reality Assis-
tance System with Accelerometer and Projection Mapping at Cleaning Activities.
In ACM SIGGRAPH 2022 Posters. ACM, 1-2. https://doi.org/10.1145/3532719.
3543245 Place: Vancouver BC Canada.

S. Garrido-Jurado, R. Mufioz-Salinas, F.J. Madrid-Cuevas, and M.J. Marin-Jiménez.
2014. Automatic generation and detection of highly reliable fiducial markers
under occlusion. Pattern Recognition 47, 6 (June 2014), 2280-2292. https://doi.
0rg/10.1016/j.patcog.2014.01.005

Janet K. Gibbs, Marco Gillies, and Xueni Pan. 2022. A comparison of the effects
of haptic and visual feedback on presence in virtual reality. International Journal
of Human-Computer Studies 157 (Jan. 2022), 102717. https://doi.org/10.1016/j.
ijhcs.2021.102717

Florian Jeanne, Indira Thouvenin, and Alban Lenglet. 2017. A study on improving
performance in gesture training through visual guidance based on learners’
errors. In Proceedings of the 23rd ACM Symposium on Virtual Reality Software
and Technology. ACM, 1-10. https://doi.org/10.1145/3139131.3139144 Place:
Gothenburg Sweden.

Lasse Jensen and Flemming Konradsen. 2018. A review of the use of virtual reality
head-mounted displays in education and training. Education and Information
Technologies 23, 4 (July 2018), 1515-1529. https://doi.org/10.1007/s10639-017-
9676-0

Krithikashree Lakshminarayanan, Mayank Arvindbhai Patel, Zia Din, and Ling-
guang Song. 2023. Lessons Learned from Developing and Testing an Augmented
Reality Application for Just-in-Time Information Delivery to Improve Construc-
tion Safety. In Proceedings of the Canadian Society of Civil Engineering Annual
Conference 2022, Rishi Gupta, Min Sun, Svetlana Brzev, M. Shahria Alam, Kelvin
Tsun Wai Ng, Jianbing Li, Ashraf El Damatty, and Clark Lim (Eds.). Vol. 363.
Springer International Publishing, Cham, 229-245. https://doi.org/10.1007/978-
3-031-34593-7_15

Benedikt Lauber and Martin Keller. 2014. Improving motor performance: Selected
aspects of augmented feedback in exercise and health. European Journal of Sport
Science 14, 1 (Feb. 2014), 36-43. https://doi.org/10.1080/17461391.2012.725104
Dieter Lerner, Stefan Mohr, Jonas Schild, Martin Goring, and Thomas Luiz. 2020.
An Immersive Multi-User Virtual Reality for Emergency Simulation Training:
Usability Study. JMIR Serious Games 8, 3 (July 2020), e18822. https://doi.org/10.
2196/18822

Jen-Shuo Liu, Carmine Elvezio, Barbara Tversky, and Steven Feiner. 2021. Using
Multi-Level Precueing to Improve Performance in Path-Following Tasks in Vir-
tual Reality. IEEE Transactions on Visualization and Computer Graphics 27, 11
(Nov. 2021), 4311-4320. https://doi.org/10.1109/TVCG.2021.3106476

Jen-Shuo Liu, Barbara Tversky, and Steven Feiner. 2022. Precueing Sequential
Rotation Tasks in Augmented Reality. In Proceedings of the 28th ACM Symposium
on Virtual Reality Software and Technology. ACM, 1-11. https://doi.org/10.1145/
3562939.3565641 Place: Tsukuba Japan.

Jen-Shuo Liu, Barbara Tversky, and Steven Feiner. 2023. Cueing Sequential 6DoF
Rigid-Body Transformations in Augmented Reality. In 2023 IEEE International
Symposium on Mixed and Augmented Reality (ISMAR). IEEE, 356-365. https:
//doi.org/10.1109/ISMAR59233.2023.00050 Place: Sydney, Australia.

Jen-Shuo Liu, Portia Wang, Barbara Tversky, and Steven Feiner. 2022. Adaptive
Visual Cues for Guiding a Bimanual Unordered Task in Virtual Reality. In 2022
IEEE International Symposium on Mixed and Augmented Reality (ISMAR). IEEE,
431-440. https://doi.org/10.1109/ISMAR55827.2022.00059 Place: Singapore,
Singapore.

Masashi Narita and Takafumi Matsumaru. 2015. Calligraphy-stroke learning
support system using projection. In 2015 24th IEEE International Symposium on
Robot and Human Interactive Communication (RO-MAN). IEEE, 640-645. https:
//doi.org/10.1109/ROMAN.2015.7333576 Place: Kobe, Japan.

[20]

[21]

[22

(23]

[24

[25]

[26]

[27]

[28

[29]

(31]

(32]

(34

(35]

Ceyssens et al.

Akira Nomoto, Yuki Ban, Takuji Narumi, Tomohiro Tanikawa, and Michitaka
Hirose. 2016. Supporting Precise Manual-handling Task using Visuo-haptic Inter-
action. In Proceedings of the 7th Augmented Human International Conference 2016.
ACM, 1-8. https://doi.org/10.1145/2875194.2875216 Place: Geneva Switzerland.
Junghwan Park, Meelim Kim, Mohamed El Mistiri, Rachael Kha, Sarasij Banerjee,
Lisa Gotzian, Guillaume Chevance, Daniel E Rivera, Predrag Klasnja, and Eric
Hekler. 2023. Advancing Understanding of Just-in-Time States for Supporting
Physical Activity (Project JustWalk JITAI): Protocol for a System ID Study of
Just-in-Time Adaptive Interventions. JMIR Research Protocols 12 (Sept. 2023),
e52161. https://doi.org/10.2196/52161

Jay Pratt and Richard A. Abrams. 1994. Action-centered inhibition: Effects of
distractors on movement planning and execution. Human Movement Science 13,
2 (June 1994), 245-254. https://doi.org/10.1016/0167-9457(94)90039-6

Aylen Ricca, Amine Chellali, and Samir Otmane. 2020. Influence of hand visu-
alization on tool-based motor skills training in an immersive VR simulator. In
2020 IEEE International Symposium on Mixed and Augmented Reality (ISMAR).
IEEE, 260-268. https://doi.org/10.1109/ISMAR50242.2020.00049 Place: Porto de
Galinhas, Brazil.

Tim Sandle. 2012. The CDC Handbook: A Guide to Cleaning and Disinfecting
Cleanrooms.

Maurice Suckling. 2020. If It Works, Break It. In Professional Techniques for
Video Game Writing (2 ed.), Wendy Despain (Ed.). CRC Press, 257-269. https:
//doi.org/10.1201/9780429196539-19

Spyros Vosinakis and Panayiotis Koutsabasis. 2018. Evaluation of visual feedback
techniques for virtual grasping with bare hands using Leap Motion and Oculus
Rift. Virtual Reality 22, 1 (March 2018), 47-62. https://doi.org/10.1007/s10055-
017-0313-4

Zhuo Wang, Xiaoliang Bai, Shusheng Zhang, Mark Billinghurst, Weiping He,
Peng Wang, Weiqi Lan, Haitao Min, and Yu Chen. 2022. A comprehensive
review of augmented reality-based instruction in manual assembly, training and
repair. Robotics and Computer-Integrated Manufacturing 78 (Dec. 2022), 102407.
https://doi.org/10.1016/j.rcim.2022.102407

Nicholas C. Wilson, Mehmet Kosa, Casper Harteveld, Mohsen Moghaddam,
and Kemi Jona. 2023. Exploring Extended Reality for Scaffolding Psychomotor-
Intensive Tasks in Complex Real-World Settings. 2077-2078. https://doi.org/10.
22318/icls2023.177665

Biao Xie, Huimin Liu, Rawan Alghofaili, Yongqi Zhang, Yeling Jiang, Flavio Destri
Lobo, Changyang Li, Wanwan Li, Haikun Huang, Mesut Akdere, Christos Mousas,
and Lap-Fai Yu. 2021. A Review on Virtual Reality Skill Training Applications.
Frontiers in Virtual Reality 2 (April 2021), 645153. https://doi.org/10.3389/frvir.
2021.645153

Ungyeon Yang and Gerard Jounghyun Kim. 2002. Implementation and Evaluation
of “Just Follow Me”: An Immersive, VR-Based, Motion-Training System. Presence:
Teleoperators and Virtual Environments 11, 3 (June 2002), 304-323. https://doi.
0rg/10.1162/105474602317473240

Xin Yi, Xueyang Wang, Jiaqi Li, and Hewu Li. 2023. Examining the Fine
Motor Control Ability of Linear Hand Movement in Virtual Reality. In 2023
IEEE Conference Virtual Reality and 3D User Interfaces (VR). IEEE, 427-437.
https://doi.org/10.1109/VR55154.2023.00058 Place: Shanghai, China.

Kevin Yu, Daniel Ostler, Jonas Fuchtmann, Anna Zapaishchykova, Maximilian
Berlet, Nassir Navab, Hubertus Feussner, and Dirk Wilhelm. 2021. Clean-AR:
Using Augmented Reality for Reducing the Risk of Contamination from Airborne
Disease Agents on Surfaces. Current Directions in Biomedical Engineering 7, 1
(Aug. 2021), 6-10. https://doi.org/10.1515/cdbme-2021-1002

Xingyao Yu. 2023. [DC] Limb Motion Guidance in Extended Reality. In 2023 [EEE
Conference on Virtual Reality and 3D User Interfaces Abstracts and Workshops
(VRW). IEEE, 967-968. https://doi.org/10.1109/VRW58643.2023.00326 Place:
Shanghai, China.

Xingyao Yu, Katrin Angerbauer, Peter Mohr, Denis Kalkofen, and Michael Sedl-
mair. 2020. Perspective Matters: Design Implications for Motion Guidance in
Mixed Reality. In 2020 IEEE International Symposium on Mixed and Augmented
Reality (ISMAR). IEEE, 577-587. https://doi.org/10.1109/ISMAR50242.2020.00085
Place: Porto de Galinhas, Brazil.

Shang Zhao, Xiao Xiao, Qiyue Wang, Xiaoke Zhang, Wei Li, Lamia Soghier,
and James Hahn. 2020. An Intelligent Augmented Reality Training Framework
for Neonatal Endotracheal Intubation. In 2020 IEEE International Symposium on
Mixed and Augmented Reality (ISMAR). IEEE, 672-681. https://doi.org/10.1109/
ISMAR50242.2020.00097 Place: Porto de Galinhas, Brazil.


https://doi.org/10.1109/IV.2007.100
https://doi.org/10.1109/ISMAR59233.2023.00122
https://doi.org/10.1177/00187208221105135
https://doi.org/10.1111/j.2044-8295.1966.tb01009.x
https://doi.org/10.1111/j.2044-8295.1966.tb01009.x
https://doi.org/10.1145/3532719.3543245
https://doi.org/10.1145/3532719.3543245
https://doi.org/10.1016/j.patcog.2014.01.005
https://doi.org/10.1016/j.patcog.2014.01.005
https://doi.org/10.1016/j.ijhcs.2021.102717
https://doi.org/10.1016/j.ijhcs.2021.102717
https://doi.org/10.1145/3139131.3139144
https://doi.org/10.1007/s10639-017-9676-0
https://doi.org/10.1007/s10639-017-9676-0
https://doi.org/10.1007/978-3-031-34593-7_15
https://doi.org/10.1007/978-3-031-34593-7_15
https://doi.org/10.1080/17461391.2012.725104
https://doi.org/10.2196/18822
https://doi.org/10.2196/18822
https://doi.org/10.1109/TVCG.2021.3106476
https://doi.org/10.1145/3562939.3565641
https://doi.org/10.1145/3562939.3565641
https://doi.org/10.1109/ISMAR59233.2023.00050
https://doi.org/10.1109/ISMAR59233.2023.00050
https://doi.org/10.1109/ISMAR55827.2022.00059
https://doi.org/10.1109/ROMAN.2015.7333576
https://doi.org/10.1109/ROMAN.2015.7333576
https://doi.org/10.1145/2875194.2875216
https://doi.org/10.2196/52161
https://doi.org/10.1016/0167-9457(94)90039-6
https://doi.org/10.1109/ISMAR50242.2020.00049
https://doi.org/10.1201/9780429196539-19
https://doi.org/10.1201/9780429196539-19
https://doi.org/10.1007/s10055-017-0313-4
https://doi.org/10.1007/s10055-017-0313-4
https://doi.org/10.1016/j.rcim.2022.102407
https://doi.org/10.22318/icls2023.177665
https://doi.org/10.22318/icls2023.177665
https://doi.org/10.3389/frvir.2021.645153
https://doi.org/10.3389/frvir.2021.645153
https://doi.org/10.1162/105474602317473240
https://doi.org/10.1162/105474602317473240
https://doi.org/10.1109/VR55154.2023.00058
https://doi.org/10.1515/cdbme-2021-1002
https://doi.org/10.1109/VRW58643.2023.00326
https://doi.org/10.1109/ISMAR50242.2020.00085
https://doi.org/10.1109/ISMAR50242.2020.00097
https://doi.org/10.1109/ISMAR50242.2020.00097

Evaluation of AR Pattern Guidance Methods for a Surface Cleaning Task

A REPORTED STATISTICAL SIGNIFICANCES OF MEASUREMENTS

Table 2: Dynamic Time Warp normalized distance P-values of the pairwise Wilcoxon rank sum test results, bold highlights
significance and parentheses give the Z values and effect sizes (r) for the significant values.

BREADCRUMBS-FULL ~ BREADCRUMBS-STEP EXAMPLE-FULL EXAMPLE-STEP MIDDLE-FULL MIDDLE-STEP OUTLINES-FULL
BREADCRUMBS-STEP ~ 8.3€-06 (Z=5.09, r=0.35) - - - - - -
EXAMPLE-FULL 1.00000 3.0e-06 (Z=5.29, r=0.36) - - - - -
EXAMPLE-STEP 3.9e-07 (Z=5.66, r=0.39) 1.00000 1.1e-07 (Z=5.88, r=0.40) - - - -
MIDDLE-FULL 0.00079 (Z=4.10, r=0.29) 1.00000 0.00028 (Z=4.35, r=0.30) 1.00000 - - -
MIDDLE-STEP 5.5e-05 (Z=4.70, r=0.33) 1.00000 3.2e-05 (Z=4.82, r=0.33) 1.00000 1.00000 - -
OUTLINES-FULL 0.00456 (Z=3.65, r=0.26) 1.00000 0.00376 (Z=3.71, r=0.26) 0.40412 1.00000 1.00000 -
OUTLINES-STEP 2.2e-07 (Z=5.76, 1=0.39) 1.00000 8.9¢-08 (Z=5.92, r=0.40) 1.00000 1.00000 1.00000 0.54815

Table 3: Eyes projection and mop distance P-values of the pairwise Wilcoxon rank sum test results, bold highlights significance
and parentheses give the Z values and effect sizes (r) for the significance.

BREADCRUMBS-FULL BREADCRUMBS-STEP EXAMPLE-FULL EXAMPLE-STEP MIDDLE-FULL MIDDLE-STEP OUTLINES-FULL
BREADCRUMBS-STEP  1.1e-06 (Z=5.49, r=0.39) - - - - - -
EXAMPLE-FULL 0.14062 0.16694 - - - - -
EXAMPLE-STEP 3.5e-12 (Z=7.41, r=0.52) 0.22787 0.00011 (Z=4.56, r=0.32) - - - -
MIDDLE-FULL 0.63067 0.01522 (Z=3.35, r=0.24) 1.00000 3.0e-06 (Z=5.28, r=0.37) - - -
MIDDLE-STEP 0.03156 (Z=3.12, r=0.22)  0.03156 (Z=3.13, r=0.22) 1.00000 2.4e-06 (Z=5.33, r=0.37) 1.00000 - -
OUTLINES-FULL 0.42716 0.00267 (Z=3.83, r=0.28) 1.00000 4.6e-08 (Z=6.03, r=0.43) 1.00000 1.00000 -
OUTLINES-STEP 0.00382 (Z=3.73,r=0.26) 0.03167 (Z=3.09, r=0.22) 1.00000 1.6e-06 (Z=5.40, r=0.38) 1.00000 1.00000 1.00000

B REPORTED STATISTICAL SIGNIFICANCES OF QUESTIONNAIRE RATINGS

Table 4: Likert-Scale Ratings of "The cleaning pattern was easy to understand" P-values of the pairwise Wilcoxon rank sum test
results, bold highlights significance, and parentheses give the Z values and effect sizes (r) for the significant values.

BREADCRUMBS-FULL BREADCRUMBS-STEP EXAMPLE-FULL EXAMPLE-STEP MIDDLE-FULL MIDDLE-STEP OUTLINES-FULL
BREADCRUMBS-STEP  5.5e-09 (Z=6.35, r=0.46) - - - - - -
EXAMPLE-FULL 0.00016 (Z=4.49, r=0.33) 0.29405 - - - - -
EXAMPLE-STEP 1.1e-07 (Z=5.86, r=0.42) 1.00000 1.00000 - - - -
MIDDLE-FULL 4.8e-10 (Z=6. 1.00000 0.02881 (Z=3.16, r=0.23) 0.71993 - - -
MIDDLE-STEP 3.1e-09 (Z=6.44, r=0. 1.00000 0.15532 1.00000 1.00000 - -
OUTLINES-FULL 0.00184 (Z=3.92,r=0.29) 0.03544 (Z= 3.08, r=0.23) 1.00000 0.20823 0.00181 (Z=3.94, r=0.30) 0.01545 (Z=3.35, r=0.25) -
OUTLINES-STEP 6.1e-10 (Z=6.69, r=0.48) 1.00000 0.12272 1.00000 1.00000 1.00000 0.00984 (Z=3.49, r=0.26)

Table 5: Likert-Scale Ratings of "The cleaning pattern was easy to follow" P-values of the pairwise Wilcoxon rank sum test
results, bold highlights significance, and parentheses give the Z values and effect sizes (r) for the significant values.

BREADCRUMBS-FULL ~ BREADCRUMBS-STEP EXAMPLE-FULL EXAMPLE-STEP MIDDLE-FULL MIDDLE-STEP OUTLINES-FULL
BREADCRUMBS-STEP ~ 1.8e-06 (Z=5.38, r=-0.39) - - - - - -
EXAMPLE-FULL 0.48466 0.03202 (Z=3.07, r=0.22) - - - - -
EXAMPLE-STEP 2.4e-06 (Z=-5.32, 1=0.38) 1.00000 0.04665 (Z=2.94, r=0.21) - - - -
MIDDLE-FULL 2.8e-12 (Z=7.44, r=0.55)  0.01524 (Z=3.32, 1=0.24) 3.9¢-07 (Z=5.66, r=0.42) 0.00901 (Z=3.48, r=0.25) - - -
MIDDLE-STEP 5.7¢-08 (Z=5.99, r=0.44) 0.90943 0.00206 (Z=3.87, r=0.28) 0.88774 0.26313 - -
OUTLINES-FULL 0.00077 (Z=4.12, r=0.31) 0.72977 0.72977 0.87939 8.3e-05 (Z=4.62, r=0.35) 0.15893 -

OUTLINES-STEP 4.2e-10 (Z=6.74, r=0.49) 0.72977 0.00012 (Z=4.54, r=0.33) 0.54308 0.72977 1.00000 0.02033 (Z=3.22, r=0.24)




