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works and further investigate how to guide manual labour activities

that cover an entire surface, such as room painting, spray painting,

vacuuming, cleaning, sanding, and plastering, among others.

This paper focuses on motion adherence by studying the e�cacy

of di�erent instruction types (listed on Figure 1) to allow for full

surface coverage. We speci�cally explore the guidance for a proof-

of-concept AR cleanroom cleaning use case. It is important to cover

the entire surface area within cleanrooms to avoid contamination

of the processes performed in the room [24]. To be able to cover the

surface completely, the pattern that users need to follow with the

cleaning mop will have to go across the entire surface and require

user movement during the activity (see Figure 1). These patterns

are hard to continue abiding by for new cleaners, so we believe AR

instructions can support them during this operation.

We present the following contributions:

• Design, implementation and validation of a proof-of-concept

AR-based surface coverage guidance and progression sys-

tem.

• A large-scale study to understand the e�cacy of commonly

presented motion guidance instructions in achieving full

surface coverage.

• A set of validated visualization patterns on how to present

instructions for manual labor activities, either fully or only

when necessary, and how this a�ects performance and us-

ability.

We �rst analyze existing research on motion guidance and skill

training, and focus on use cases that use AR for �oor treatment

tasks. We then present the design of our system, which is done

in collaboration with cleanroom cleaning experts, and detail the

coverage implementation and the four pattern guidance methods

we considered (presented in Figure 1). Finally, we present the design

of our study, the measured results, and discuss their implications.

2 RELATED WORKS

Our work explores using AR to guide users in surface coverage

tasks, aiming to cover an entire surface with an optimal pattern in

a single motion, avoiding repetition. Previous studies have exam-

ined extended reality (XR) enhancements for guiding users during

motion and training new skills. We review these studies and their

relevance to our investigation of pattern guidance on surfaces.

2.1 XR Motion Guidance

For sequential path-following tasks (one motion after the other), Liu

et al. [15] studied how precues of the next motion in the sequence

and glyphs can be used to increase the intelligibility of the path to

follow. They found that adding solid path visualizations wasmost ef-

�cient for guidance; however, precues e�ciency dropped after four

sequence levels. If no path guidance was present, this performance

drop would already occur for levels higher than one, indicating

their need. In a later work, Liu et al. [17] also explored how goal-

based and action-based instructions, together with precues, help

users achieve required translations and rotations in sequential mo-

tion tasks. Goal-based instructions were found to be most e�cient

to support users in achieving tasks correctly. However, precues

were not useful for most of the participants, highlighting the need

to study the e�ects of precueing upcoming steps more in-depth.

Within our work, we speci�cally study instructions within contin-

uous motion, where rather than smaller sequential tasks, we have

one long pattern of continuous motion that needs to be followed

as accurately as possible. However, we extend upon the work of

precues by providing more or less information on the full pattern

depending on the current state of the task.

We are not the �rst to explore pattern guidance for tasks executed

on top of a surface area. For motion skills such as calligraphy, Yang

et al. [30] proposed a system called Just Follow Me where a ghost

representation in a HMD shows how speci�c motions should be car-

ried out so that users can simply follow them. Similarly, Nomoto et

al. [20] studied how adding visuo-haptic feedback can help support

a precise motor control task, such as drawing, by moving a dummy

hand toward the correct target to force users to adjust their move-

ments accordingly. Prior work of Narita and Matsumaru [19] has

looked at enhancing calligraphy-stroke learning using augmented

reality projection, where a teacher’s brush stroke is mirrored to

the participant to replicate the calligraphy pattern. In general, it

was found that adding the teacher’s brush strokes improved the

participant’s calligraphy results. In terms of task speed, Ceyssens

et al. [4] studied how di�erent AR instructions would help users

achieve the correct speed of motion for a line-tracing task. They

presented static and dynamic instructions in the form of glyphs,

graphs, and an example orb similar to the teacher’s brush stroke

of Narita and Matsumaru [19]. They found that only the example

orb would cause participants to achieve the correct target speed.

When looking at live guidance of full-body motions, Yu et al. [34]

explored in three studies how adding path guidance helps commu-

nicate the desired postures and movements to users. They found

that �rst-person instructions outperformed those shown outside

of the participant’s body (such as a mirror, third-person, and top-

down view), where simple path glyphs were presented for the arm

movement. They also found that providing a ghost arm to replicate

the desired movement of the body outperformed providing instruc-

tions, both in terms of conducting the correct translation, motion

pattern, and speed of movement. Within our work, we do not focus

on communicating speed to the user; we primarily focus on pattern

guidance on how it improves the accuracy of surface coverage.

2.2 Skill Training with XR

XR has been widely explored to train users to acquire new skills

or knowledge [11]. In operation contexts, the entire spectrum of

mixed reality has extensively been used to train operators to per-

form new procedures in manual assembly operations [5], with

many use cases of virtual reality [29] and augmented reality [1, 27]

previously explored. When it comes to training speci�c skills with

serious games, Backlund et al. [2] proposed a system called “Sidh”

to train �re�ghters for �re extinguishing scenarios by projecting

�re onto a digital CAVE around the user. Lerner et al. [14] looked at

how VR can be used to simulate emergency medical care scenarios

and train people in how to perform certain medical procedures.

For motor skill training, Ricca et al. [23] studied whether adding

the digital hand within VR improved the task performance and

usability of a pick-and-place type task, compared to only visualiz-

ing the tool interactions. They found no performance di�erence
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between the digital hands and no hands conditions, however par-

ticipants preferred seeing the hands to get a better overview of the

procedure. For gesture training, Jeanne et al. [10] studied how 3D

visual cues can be used to guide users along the correct path of a

gesture and teach them how to perform it correctly. They found

that providing a path during the training phase to follow provided

better results during the activity itself but worse than their pro-

posed guidance EBAGG in the post-training phase where no more

guidance was given. Looking more in-depth at the visual feedback

techniques for bare-hands interaction in VR, Vosinakis et al. [26]

compared di�erent feedback visualizations within VR to traditional

desktop methods for grasp-and-release tasks. They found that col-

oring objects in VR gave more clarity on the interaction than using

connecting lines, halos, or shadows, with user performance also

being higher in VR.

2.3 Augmented Reality Cleaning

There have been some examples of augmenting cleaning operations

within XR. Recently on the consumer market, Dyson unveiled plans

for the “CleanTrace” app to highlight in AR where users have vacu-

umed1. Within research, Yu et al. [32] used a Microsoft Hololens 2

to visualize contaminated spots and highlight (using hand-tracking)

the areas the user has already cleaned using a cloth in hand. Another

example is by Fukawasa and Nakayama [7], who used projection

augmented reality onto a �oor to clean, to build a guidance system

for cleaning that speci�c surface area with a cleaning mop, sim-

ilar to what we propose. They also presented several instruction

areas on top of the surface to indicate the pattern that should be

conducted for each area (such as wiping, scrubbing, and sweeping).

Compared to their works, we are particularly interested in the ex-

ploration of surface cleaning guidance for professional contexts,

where a singular motion is ideal to perform the task (compared to

repetitive motions).

3 AUGMENTATION OF CLEANING
OPERATION

Here we describe the design and implementation of our proof-of-

concept enhanced cleaning operation with AR. We also discuss the

principles used in the design of our pattern guidance methods to

guide users toward the correct adoption of the practices.

3.1 Understanding the problem

To get a better understanding of the needs within a cleaning op-

eration, we interviewed two cleanroom cleaning companies that

train and guide cleaning operators. These companies gave us an

overview of the standard cleaning procedures within cleanrooms

and what important steps they teach to new operators. From these

interviews, We identi�ed the following measures of importance to

consider within our guidance system:

• Cleaning should always occur according to previously es-

tablished patterns (see Figure 2a) according to room size to

ensure you end back where you started.

1https://www.dyson.com/discover/innovation/new-machines/dyson-cleantrace (Last
Accessed: 12/08/2024)

(a) (b)

Figure 2: The pattern and implementation with (a) the clean-

ing motion (black arrows) used to ensure proper overlap, the

green area shows what is cleaned, and dark green lines repre-

sent overlap, (b) shows the full setup of the implementation.

• During cleaning according to the pattern, overlap should

occur between the previously cleaned area and the newly

cleaned area between 10 and 20% (see darker lines between

the arrows on Figure 2a).

• Cleaning should always happen backward to ensure no

walking over cleaned surfaces.

• The mop should always move in one direction to ensure

dirt is not left on the sides or behind the mop from build-up.

• Cleaning should not happen too fast to allow for proper

soaking of the solution, and not too slow to take forever to

clean one room (ideal speed around 0.3 meters per second).

The cleanroom cleaning companies also highlighted the di�culty

for (new) cleaners to be able to follow these measures without

guidance, especially covering the entire surface accurately in a

singular motion and knowing when and where to turn exactly. This

motivates a huge part of our research on providing assistance for

surface coverage tasks.

3.2 Apparatus & Tracking Methodology

A full overview of the hardware and setup we used to create our

guidance system and study can be seen on Figure 2b. To develop

an AR enhancement of the cleaning operation, we made use of the

Magic Leap 22 AR glasses. These glasses use inside-out tracking

with an internal ToF depth sensor and RGB-D camera to perform

continuous SLAM (Simultaneous Localization and Mapping) of the

environment around the user. To track the cleaning mop during the

cleaning procedure, we 3D printed a mount for the Magic Leap 2

controller, which uses inside-out tracking with IR LEDs and an on-

board lightweight SLAM tracker. One downside of the controller’s

inside-out tracking is potential deviations in the positional tracking

when the primary HMD device does not recognize the controller

and sync the SLAM tracking. To balance these issues, we attached

an ARUco marker [8] on the other side of the cleaning mop, which

is used as a reference marker for the positional tracking (optimized

settings for slow and accurate tracking). To build the application,

we made use of Unity, which is directly supported by Magic Leap 2.

2Magic Leap 2: https://www.magicleap.com/magic-leap-2 (Last Accessed: 12/08/2024)

https://www.magicleap.com/magic-leap-2
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canvas for the full version of this instruction. For the single step

version, only the next step is shown. When the mop approaches

and becomes close to achieving the step, the step after the next will

also be shown preemptively.

3.4.2 Example. For this instruction, we make use of the “ghost”

metaphor [4, 19, 30], which is an example mop that carries out

the pattern correctly for the user to see. In the full version of this

instruction, the example continuously moves across the surface

area, and users have to follow the movement of this example. For

the animation speed of the example, we chose the ideal cleaning

speed 0.3 m/s mentioned by the cleaning companies we contacted,

which adds an additional layer of information (correct speed). For

the single step version of the instruction, the example will always

be right in front of the cleaning mop.When the cleaning mopmoves

correctly, the example will also move forward. If the cleaning mop

stops moving, the example also stops. The example instructions

are shown under the category EXAMPLE on Figure 4. Since the

example is there as a reference to use during the cleaning procedure,

we expect that users can copy its movement of whenever they see

it to get the ideal result.

3.4.3 Middle. To provide guidance on paths to follow, the most

intuitive, well-known, and studied instruction is a line in the middle

that directly shows the motion to follow (the MIDDLE instruction

of Figure 1). In most of the literature, this instruction is primarily

used for tasks with small motions, often consisting of a singular

straight line [15, 18, 34]. Our guess is that using only a singular

line to inform the pattern to follow makes users potentially more

lenient on how accurately they keep the line in the middle of the

mop and forget corners or edges as a result. For the full version of

the instruction, the line shows the pattern across the entire surface.

The single step version shows the middle line for the next 0.6 meters

(2 seconds according to the ideal speed).

3.4.4 Outlines. For our �nal instruction method, we test an alter-

native to the MIDDLE instruction, where instead of in the middle,

we show two lines to represent the outer edges of the cleaning mop

(see OUTLINES on Figure 4). With this instruction method, users

can balance the cleaning mop between the edges and keep a simple

overview of how much the mop deviates from the intended path.

The full version of this instruction covers the entire surface area

with the outlines, including the required overlaps. The single step

version works the same as the MIDDLE instruction, where the lines

are shown for the next 0.6 meters from the current cleaning point.

4 USER STUDY

We evaluate the implemented pattern guidance instructions in a

user study designed to test their e�cacy for full surface cover-

age. Since the ideal pattern of surface coverage was already pre-

established by the interested cleaning companies, we chose to keep

this patternwithin our study.We also focus our study on the e�cacy

of the patterns for full surface coverage. We omitted the cleanroom

cleaning errors from the implementation to avoid complicating

the procedure and in�uencing the pattern following results. This

includes making the heatmap red when cleaning too fast, going

in the wrong direction, or walking on top of the cleaned surface.

These errors would most likely cause users to stop their current

motion to cover these areas again, which causes bias in the results

on whether they follow the pattern correctly with the visualizations.

We did keep the rendering of the cleaned areas and overlaps since

these are our core concepts to test for the assistance of the cleaning

instructions included with the pattern guidance.

4.1 Hypotheses

�1 By providing instructions as a single step, pattern under-

standability improves.

One of the results we want to measure in our study is the e�cacy of

providing instructions as a single step for surface coverage. In prior

research of short singular motions, single steps have already been

shown to be easier to understand due to less clutter (information

you do not currently need yet) [16]. We pose �1 to verify these

claims and translate them over to surface coverage activities.

�2 Less surface coverage is achieved with instructions that do

not show where the edges of the mop should be.

In the design of our instructions, we alreadymentioned the expected

limitation of the MIDDLE instruction (see subsubsection 3.4.3) in

terms of communicating the exact orientation and position of the

cleaning mop. To verify these claims, we test with�2 whether other

instructions that communicate the full position and orientation of

the edges of the cleaning mop are more e�cient at covering the

entire surface.

�3 Instruction adherence is optimized by instructions that do

not overlap with themselves.

Since we also need to ensure overlaps within our surface cover-

age use case, we had to design the instructions to communicate

these overlaps as well. For this reason, some of the instructions

(BREADCRUMBS-FULL, OUTLINES-FULL) overlapwith themselves,

which we expect can cause confusion for the users on the correct

part of the instruction to follow, hence we test for �3.

�4 Instructions that cause users to look closer at the cleaning

mop, achieve better surface coverage results.

Instructions should not distract users from the real activity to en-

sure they carry it out correctly. We anticipate that some of the

instructions cause users to look away from the cleaning activity.

Looking away does not necessarily imply a bad execution of the ac-

tivity, but we anticipate that an e�ect might persist in this behavior,

hence we verify this by testing �4.

4.2 Study Procedure

For the procedure of our study, we conducted a large-scale between-

subjects design study where every participant only had one chance

to cover the entire surface area with the assistance of the visual-

ization assigned to them. Before conducting the experiment, they

would be informed what the ideal cleaning pattern is, why it is

important to follow such a pattern, and how the cleaning guidance

system of the heatmap works (green coverage and overlaps). We

also instruct them that during cleaning, they will need to replicate

the pattern as accurately as possible and focus on covering the

entire surface area, rather than being as fast as possible. Afterward,

they are given the headset, which shows a starting point (footprint)

at the corner of the canvas where they must stand. Once they stand

on the footprint and face the correct direction, a gray rectangle
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Figure 6: Violin plots of the full measurements of the performance during the activity.

Figure 7: Coverage of the surface for every visualization across all participants, the colors are calculated based on every cleaned

pixel, the corners we analyze separately are indicated by the numbered black squares and are upscaled for clarity

STEP conditions, in particular for the BREADCRUMBS-STEP and

EXAMPLE-STEP conditions. We found the cleaning coverage to

be non-normally distributed and found a signi�cant di�erence be-

tween the visualizations (j̃2=18.88, df=7, p=.0086). The post-hoc

test reveals a signi�cance between the OUTLINES-FULL and the

BREADCRUMBS-STEP (p=.027, Z= 3.30, r=.23), EXAMPLE-STEP

(p=.014, Z=3.48, r=.24), and MIDDLE-STEP (p=.037, Z=3.19, r=.22).

From these results, we can state that OUTLINES-FULL had a worse

cleaning coverage compared to the STEP conditions of the other vi-

sualizations. Even though we found a signi�cant di�erence between

some visualizations, in general, coverage of the cleaning activity

across the entire surface was quite high (scale of the graph was

between 95-100%). This is because small misses are not represented

when scaling it up to a full surface.

To gain an additional understanding of the surface coverage

performance, we analyze the results of the corners of the platform

(1/8th of the total surface size) where most cleaning errors usually

take place. We combine the results of the four corners for every

participant together to gather the results listed on Figure 6 (Corner

Coverage). Here we see again a better performance for the STEP

versions of the visualizations. When testing the results for nor-

mality, we found that it does not follow a normal distribution and

that there is a statistical signi�cance (j̃2=24.01, df=7,p=.00113). The

post-hoc test then revealed a signi�cance between BREADCRUMBS-

STEP and MIDDLE-FULL (p=.043, Z=3.16, r=.22), OUTLINES-FULL

(p=.0017, Z=4.02, r=.28), and OUTLINES-STEP (p=.05, Z=3.10, r=.21).

From these results, we can conclude that corners were covered most

accurately by the BREADCRUMBS-STEP visualization, where the

second most accurate are EXAMPLE-STEP and MIDDLE-STEP.

5.3 Eye Tracking

To test how actively users look at the mop, we compute the eye-mop

distance by raycasting the gaze from the camera and intersecting it

with the height of the cleaning platform.We then take the Euclidean

distance across the X-Z axes from the center of the mop to the gaze

intersection to get an idea of where participants are looking on the

surface. For every participant, we take the median eye-mop distance

from the entire activity to get one value to represent the measures

for that participant. The results of this measure can be seen on

Figure 6 (Eye-Mop Distance). Again, we notice how the values are

lower for the STEP conditions compared to the FULL conditions. In

particular, the BREADCRUMBS-STEP and EXAMPLE-STEP report

the lowest eye-mop distance compared to all other visualizations.

We found that the eye-mop data does not follow a normal dis-

tribution. When performing the Kruskal-Wallis test, we found a

signi�cant di�erence (j̃2=82.77, df=7, p<.001) across the full re-

sults, whereas the post-hoc test revealed a signi�cant di�erence

between the BREADCRUMBS-FULL and all STEP visualizations.We

also found signi�cance for BREADCRUMBS-STEP and EXAMPLE-

STEP with the MIDDLE and OUTLINES visualizations and between
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Figure 8: Likert-Scale Questionnaire ratings for the visual-

izations (1 Absolutely Disagree, 5 Absolutely Agree).

EXAMPLE-STEP and EXAMPLE-FULL (all details can be found on

Table 3 in Appendix A). Combining these signi�cance tests with

the results we found for the eye-mop distance, the EXAMPLE-STEP

visualization outperforms all others in terms of eye proximity to

the mop, followed by BREADCRUMBS-STEP, then all other STEP

conditions, and then �nally the FULL conditions.

5.4 Questionnaire

Of the 863 participants (before performance removal), 132 found

the tool useful for use at home, 293 found the tool useful for work

contexts, and 438 did not see the need for such a tool. Those with an

interest in the tool at home were particularly fond of seeing where

the user had cleaned but saw no need for the cleaning pattern. We

evaluate three statements related to the cleaning activity that were

asked to participants in the post-study questionnaire in the form of

a Likert-Scale of 1-5 (Absolutely Disagree-Absolutely Agree): "The

cleaning pattern was easy to understand", "The cleaning pattern

was easy to follow", and "The surface is completely cleaned". The

results of these Likert-Scale questions are shown on Figure 8. For

the ratings of these statements, it is noticeable how MIDDLE-FULL

continuously had the highest reported ratings. For the �rst two

statements, the STEP versions of the instructions had the second

best ratings, with very similar results to each other, while the other

FULL instructions had the lowest ratings. Finally, for the �nal state-

ment "The surface is completely cleaned", all visualizations had

similar results, except for the MIDDLE-FULL instruction. When

we checked the results for normality, we found that none of the

statement ratings followed a normal distribution. We will cover the

results of each of these statement ratings more in-depth.

5.4.1 The cleaning pa�ern was easy to understand. Here, we found

a signi�cant result (j̃2=85.85, df=7, p<.001), and the post-hoc test re-

vealed a signi�cance between the results of BREADCRUMBS-FULL

and all other visualizations. We also found a signi�cant di�erence

between OUTLINES-FULL and BREADCRUMBS-STEP, MIDDLE-

FULL, MIDDLE-STEP, and OUTLINES-STEP. Finally, we found

a signi�cant di�erence between MIDDLE-FULL and EXAMPLE-

FULL. Full statistical test results are listed on Table 4 in Appendix B.

Based on these results, we can testify that the BREADCCRUMBS-

FULL made the pattern the hardest to understand from all the

visualizations, and OUTLINES-FULL was the second hardest to

understand. In contrast. the MIDDLE-FULL instruction was the

easiest to understand from all the visualizations, followed by the

STEP versions of the instructions (where no signi�cance was found

between them and the MIDDLE-FULL).

5.4.2 The cleaning pa�ern was easy to follow. For this statement,

we found a signi�cant result (j̃2=96.47, df=7, p<.001) where the post-

hoc test revealed statistical signi�cances between BREADCRUMBS-

FULL and all other visualizations (except for EXAMPLE-FULL)

and a signi�cance between EXAMPLE-FULL and the other vi-

sualizations (except OUTLINES-FULL). We also found a signi�-

cance between OUTLINES-FULL and OUTLINES-STEP and found

a signi�cance between MIDDLE-FULL and all other visualizations

(except MIDDLE-STEP and OUTLINES-STEP), where MIDDLE-

FULL outperformed these visualizations. The full statistical values

can be found on Table 5 in Appendix B. From these results, we

found the worst ratings for the BREADCRUMBS-FULL condition,

with the second-worst ratings coming from EXAMPLE-FULL, with

OUTLINES-FULL following afterward. MIDDLE-FULL was rated

the easiest to follow, with all the STEP conditions following after

(EXAMPLE-STEP last).

5.4.3 The surface is completely cleaned. For this statement, we

found an overall signi�cant di�erence (j̃2=17.42, df=7, p=.01487)

and the post-hoc test revealed a signi�cance between BREADCRUMBS-

FULL andOUTLINES-STEP (p=.05, Z=3.12, r=.22).While theMIDDLE-

FULL seems to have had the highest-rated performance (according

to Figure 8), we can only reliably conclude from our �ndings that

OUTLINES-STEP outperforms BREADCRUMBS-FULL in terms of

perception of how covered the surface is.

6 DISCUSSION

Within our large-scale study, we found several signi�cant �ndings

that allow us to reason on our hypotheses. First and foremost, the

STEP instructions continuously performed better than the FULL

instructions for all the measures we tested (not always signi�-

cant). In particular, the worst pattern and cleaning performance was

achieved with the BREADCRUMBS-FULL condition and EXAMPLE-

FULL second-worst. The best performance for the surface coverage

and cleaning coverage was achieved with BREADCRUMBS-STEP

condition. However, for the questionnaires, the MIDDLE-FULL con-

dition had the highest ratings, followed by all the STEP conditions

(better than the FULL counterparts). We expect that the perceived

usability of the MIDDLE-FULL was because it was the clearest

method to see the entire surface pattern before the activity. This did

not guarantee better execution for the activity measures, often be-

ing outperformed by other visualizations (BREADCRUMBS-STEP

signi�cantly for corner coverage). From our results, we can safely

accept �1 stating that "By providing instructions as a single step,

pattern understandability improves.", highlighting the positive in�u-

ence of presenting instructions as a single step for motion guidance,

similar to what was seen for other types of activities [12, 21, 28].

For the coverage of the surface area and the corners, we only

found signi�cant di�erences indicating that the OUTLINE-FULL

was worse for full surface coverage and that BREADCRUMBS-STEP
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was better at getting users to clean the corners of the activity (signif-

icantly compared to MIDDLE-FULL). In other words, we could �nd

no supporting evidence for �2 stating that "Less surface coverage

is achieved with instructions that do not show where the edges

of the mop should be", which primarily questions the e�ciency

of the MIDDLE instruction for surface coverage. Hence we reject

hypothesis �2. This �nding is important for the design of future

instructions aimed at getting users to follow a pattern while still

covering the outer edges of the activity, speci�cally since paths

without edges such as MIDDLE are easy to understand (see ques-

tionnaire results on subsection 5.4) and are often already present

within other guidance research [17, 18, 33, 34]. However, it is im-

portant to note that better results will most likely be achieved with

other instructions such as BREADCRUMBS-STEP, especially for

activities that require the pattern to cover large surface areas.

Another hypothesis we explored within our study is �3 "Instruc-

tion adherence is optimized by instructions that do not overlap

with themselves", where overlapping visualizations are primarily

the BREADCRUMBS-FULL and OUTLINES-FULL. For surface and

corner coverage, OUTLINES-FULL performed the worst, while for

pattern replication and usability, BREADCRUMBS-FULL performed

the worst. The STEP conditions, which have by default no overlap,

also continuously performed better. Based on these results, we ac-

cept hypothesis�3. In other words, when overlap is required during

activities, instructions should not incorporate overlaps themselves

since it can confuse users which part of the instruction needs to

be followed at the time of movement. Providing information as a

single step for such cases is a good alternative. The information to

force users towards overlap is not lost, and usability improvements

have been found (as shown by BREADCRUMBS-STEP).

The �nal hypothesis we de�ned within our study is �4, which

states, "Instructions that cause users to look closer at the cleaning

mop, achieve better surface coverage results". For the distance of

the gaze intersection to the mop, we found that users looked closest

at the mop with the EXAMPLE-STEP and BREADCRUMBS-STEP

instructions (in that order) and generally with the STEP instructions.

We also found EXAMPLE-STEP and BREADCRUMBS-STEP to have

the highest reported surface and corner coverage. Due to these

performance increases, we accept the hypothesis �4. From these

�ndings, we highlight the importance of not using instructions

that take the user’s gaze away from the motion activity they are

performing since this can directly a�ect the e�cacy of the motion

they perform, which is in line with previous observations [6, 22].

7 FUTUREWORK

Within this work, we have presented anAR cleaning system that can

be used to highlight areas that were cleaned and how to guide clean-

ing patterns. Our participants were of very mixed backgrounds,

with most having no professional cleaning experience. Of these

participants, there were mixed responses towards the idea of using

the technology at home or in work situations. This shows that,

while skepticism remains, the interest in the adoption of the tech-

nology for such use cases is also present. In future work, it would be

interesting to explore how the cleanroom operators feel about the

technology and whether they think it can bene�t their daily lives.

While we saw performance increases with the STEP instructions,

we did not test howmuch information the STEP instructions should

present to achieve the ideal results. Future work should still ex-

plore how far ahead STEP instructions should be to keep distraction

limited but also increase perceived usability (as shown by MIDDLE-

FULL). We believe that, while we only covered a cleaning use case

here, our �ndings can aid in the design of other surface coverage

use cases (e.g., painting, plastering, vacuuming). Verifying these

claims for other use cases in future research would be bene�cial in

expanding the number of tasks that can be supported with AR. In

our study, we only analyzed measures related to the performance of

pattern replication and surface coverage and omitted the errors that

could occur (walked over cleaned surface, cleaned too fast, cleaned

in the wrong direction). When errors occur, ideally the pattern guid-

ance visualization should adapt to suggest the new ideal pattern

to follow. However, to avoid error bias in our study, we did not

study these adaptations. We also did not study yet how to combine

other metrics such as communicating the correct speed with the

visualizations. Future research should consider how to combine

other metrics with the pattern guidance visualizations, including

how error handling should occur, to optimize user guidance.

8 CONCLUSION

We have implemented an augmented reality cleaning guidance

system focused on the typical processes within cleanroom cleaning

to help support cleaning operators. We have conducted a large-

scale study (n=864) using the guidance system, where we tried to

understand what the most e�cient way is to communicate the ideal

cleaning pattern during the activity. We have found that presenting

instructions as a single step proves to be bene�cial in terms of

optimizing pattern replication, cleaning coverage, activity focus,

and usability. While providing a line in the middle of the activity is

su�cient to achieve proper results, the best coverage is achieved

by only showing the next step in the form of a static example

(breadcrumb) where the user needs to move the cleaning mop.

Instructions that overlap with themselves should be avoided, as

these have a negative impact on the understanding of the task at

hand. Presenting the instructions as a single step also allows for

improvements in eye focus toward the cleaning mop, which impacts

how the motion activity is conducted. While our cleaning guidance

system proved to be e�ective in achieving full cleaning coverage

results, we expect our �ndings related to the pattern guidance to

be applicable for other pattern-following or surface coverage use

cases other than just cleanroom cleaning.
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Evaluation of AR Pa�ern Guidance Methods for a Surface Cleaning Task

A REPORTED STATISTICAL SIGNIFICANCES OF MEASUREMENTS
Table 2: Dynamic Time Warp normalized distance P-values of the pairwise Wilcoxon rank sum test results, bold highlights

signi�cance and parentheses give the Z values and e�ect sizes (r) for the signi�cant values.

BREADCRUMBS-FULL BREADCRUMBS-STEP EXAMPLE-FULL EXAMPLE-STEP MIDDLE-FULL MIDDLE-STEP OUTLINES-FULL

BREADCRUMBS-STEP 8.3e-06 (Z=5.09, r=0.35) - - - - - -

EXAMPLE-FULL 1.00000 3.0e-06 (Z=5.29, r=0.36) - - - - -

EXAMPLE-STEP 3.9e-07 (Z=5.66, r=0.39) 1.00000 1.1e-07 (Z=5.88, r=0.40) - - - -

MIDDLE-FULL 0.00079 (Z=4.10, r=0.29) 1.00000 0.00028 (Z=4.35, r=0.30) 1.00000 - - -

MIDDLE-STEP 5.5e-05 (Z=4.70, r=0.33) 1.00000 3.2e-05 (Z=4.82, r=0.33) 1.00000 1.00000 - -

OUTLINES-FULL 0.00456 (Z=3.65, r=0.26) 1.00000 0.00376 (Z=3.71, r=0.26) 0.40412 1.00000 1.00000 -

OUTLINES-STEP 2.2e-07 (Z=5.76, r=0.39) 1.00000 8.9e-08 (Z=5.92, r=0.40) 1.00000 1.00000 1.00000 0.54815

Table 3: Eyes projection and mop distance P-values of the pairwise Wilcoxon rank sum test results, bold highlights signi�cance

and parentheses give the Z values and e�ect sizes (r) for the signi�cance.

BREADCRUMBS-FULL BREADCRUMBS-STEP EXAMPLE-FULL EXAMPLE-STEP MIDDLE-FULL MIDDLE-STEP OUTLINES-FULL

BREADCRUMBS-STEP 1.1e-06 (Z=5.49, r=0.39) - - - - - -

EXAMPLE-FULL 0.14062 0.16694 - - - - -

EXAMPLE-STEP 3.5e-12 (Z=7.41, r=0.52) 0.22787 0.00011 (Z=4.56, r=0.32) - - - -

MIDDLE-FULL 0.63067 0.01522 (Z=3.35, r=0.24) 1.00000 3.0e-06 (Z=5.28, r=0.37) - - -

MIDDLE-STEP 0.03156 (Z=3.12, r=0.22) 0.03156 (Z=3.13, r=0.22) 1.00000 2.4e-06 (Z=5.33, r=0.37) 1.00000 - -

OUTLINES-FULL 0.42716 0.00267 (Z=3.83, r=0.28) 1.00000 4.6e-08 (Z=6.03, r=0.43) 1.00000 1.00000 -

OUTLINES-STEP 0.00382 (Z=3.73, r=0.26) 0.03167 (Z=3.09, r=0.22) 1.00000 1.6e-06 (Z=5.40, r=0.38) 1.00000 1.00000 1.00000

B REPORTED STATISTICAL SIGNIFICANCES OF QUESTIONNAIRE RATINGS

Table 4: Likert-Scale Ratings of "The cleaning pattern was easy to understand" P-values of the pairwise Wilcoxon rank sum test

results, bold highlights signi�cance, and parentheses give the Z values and e�ect sizes (r) for the signi�cant values.

BREADCRUMBS-FULL BREADCRUMBS-STEP EXAMPLE-FULL EXAMPLE-STEP MIDDLE-FULL MIDDLE-STEP OUTLINES-FULL

BREADCRUMBS-STEP 5.5e-09 (Z=6.35, r=0.46) - - - - - -

EXAMPLE-FULL 0.00016 (Z=4.49, r=0.33) 0.29405 - - - - -

EXAMPLE-STEP 1.1e-07 (Z=5.86, r=0.42) 1.00000 1.00000 - - - -

MIDDLE-FULL 4.8e-10 (Z=6.73, r=0.50) 1.00000 0.02881 (Z=3.16, r=0.23) 0.71993 - - -

MIDDLE-STEP 3.1e-09 (Z=6.44, r=0.47) 1.00000 0.15532 1.00000 1.00000 - -

OUTLINES-FULL 0.00184 (Z=3.92, r=0.29) 0.03544 (Z= 3.08, r=0.23) 1.00000 0.20823 0.00181 (Z=3.94, r=0.30) 0.01545 (Z=3.35, r=0.25) -

OUTLINES-STEP 6.1e-10 (Z=6.69, r=0.48) 1.00000 0.12272 1.00000 1.00000 1.00000 0.00984 (Z=3.49, r=0.26)

Table 5: Likert-Scale Ratings of "The cleaning pattern was easy to follow" P-values of the pairwise Wilcoxon rank sum test

results, bold highlights signi�cance, and parentheses give the Z values and e�ect sizes (r) for the signi�cant values.

BREADCRUMBS-FULL BREADCRUMBS-STEP EXAMPLE-FULL EXAMPLE-STEP MIDDLE-FULL MIDDLE-STEP OUTLINES-FULL

BREADCRUMBS-STEP 1.8e-06 (Z=5.38, r=-0.39) - - - - - -

EXAMPLE-FULL 0.48466 0.03202 (Z=3.07, r=0.22) - - - - -

EXAMPLE-STEP 2.4e-06 (Z=-5.32, r=0.38) 1.00000 0.04665 (Z=2.94, r=0.21) - - - -

MIDDLE-FULL 2.8e-12 (Z=7.44, r=0.55) 0.01524 (Z=3.32, r=0.24) 3.9e-07 (Z=5.66, r=0.42) 0.00901 (Z=3.48, r=0.25) - - -

MIDDLE-STEP 5.7e-08 (Z=5.99, r=0.44) 0.90943 0.00206 (Z=3.87, r=0.28) 0.88774 0.26313 - -

OUTLINES-FULL 0.00077 (Z=4.12, r=0.31) 0.72977 0.72977 0.87939 8.3e-05 (Z=4.62, r=0.35) 0.15893 -

OUTLINES-STEP 4.2e-10 (Z=6.74, r=0.49) 0.72977 0.00012 (Z=4.54, r=0.33) 0.54308 0.72977 1.00000 0.02033 (Z=3.22, r=0.24)


