Made available by Hasselt University Library in https://documentserver.uhasselt.be

Are standing balance and walking ability deficits poststroke related to the integrity of the corticospinal and non-corticospinal tracts? A meta-analysis Peer-reviewed author version

van Hinsberg, Amber; Loureiro-Chaves, Renata; SCHRODER, Jonas; Truijen, Steven; Saeys, Wim & Yperzeele, Laetitia (2024) Are standing balance and walking ability deficits poststroke related to the integrity of the corticospinal and non-corticospinal tracts? A meta-analysis. In: Brain injury,.

DOI: 10.1080/02699052.2024.2422382 Handle: http://hdl.handle.net/1942/44846

Brain Injury

Are standing balance and walking ability deficits poststroke related to the integrity of the corticospinal and non-corticospinal tracts? A meta-analysis.

Submission ID	249675713
Article Type	Review
Keywords	dependent ambulation, diffusion magnetic reson ance imaging, postural balance, stroke, walking
Authors	Amber Hinsberg, Renata Loureiro-Chaves, Jona s Schröder, Steven Truijen, Wim Saeys, Laetitia Yperzeele

For any queries please contact:

IBIJ-peerreview@journals.tandf.co.uk

Note for Reviewers:

To submit your review please visit https://mc.manuscriptcentral.com/tbin

rehabilitation, leading up to her research on changes in balance control and integrity of descending motor pathways in poststroke recovery. She is currently improving her skills in biomechanical analysis of steady-state balance outcome variables to investigate asymmetries and interlimb coordination as growing her coding skillset to analyze diffusion MRI images.

Dra. Renata Loureiro-Chaves

Dra. Loureiro-Chaves (ORCID 0000-0002-9913-2163) is a PhD researcher in rehabilitation sciences and physiotherapy in neurological diseases at the University of Antwerp. She is a physiotherapist who graduated in Brazil with research and clinical experience and has a master's in biomedical sciences with a focus on neuroscience from the University of Antwerp. Her main research focuses on understanding the neural and anatomical substrates for motor recovery after stroke. She is furthering her skills in diffusion MRI analysis and tractography along with biomechanical analysis of walking after stroke.

Dr. Jonas Schröder

Dr. Schröder (ORCID 0000-0003-0290-9923) is a physiotherapist and clinical researcher in the field of neurorehabilitation. He focuses on improving balance in people who suffer a stroke to prevent falls and promote an active lifestyle. During his PhD at the University of Antwerp, Jonas Schröder studied specifically adaptive balance strategies after stroke with biomechanical analysis. His goal is to aid the development of a new generation of technology-assisted, intensive rehabilitation therapies, as he is also involved in the development and validation of portable measurement technologies to introduce biomechanical movement assessments as clinical routines. He is currently employed as a teaching assistant and post-doctoral researcher at Hasselt University, Belgium. He

supports various projects related to balance control and walking function in neurological conditions, including stroke, cerebral palsy, and progressive MS.

Prof. Dr. Steven Truijen

Prof. Dr. Steven Truijen (ORCID 0000-0002-0604-1431) is appointed as a professor at the University of Antwerp, and founded the research group Movement Antwerpen, MOVANT. His research focuses on biomechanical movement analysis with statistical analysis and interpretation. The goal of his research is to add value in health care through multidisciplinary cooperation, which he has achieved as: (1) President of Centre for Health and Technology of the University of Antwerp, CHaT, (2) Co-founder of the Multidisciplinary Motor Centre Antwerp, M²OCEAN lab, Hercules Grant, located at the University Hospital Antwerp (4) founder of the research group Movement Antwerpen, MOVANT and (4) promotor of 4D4A lab, 4D scanner for Accelerating Advanced motion Analysis and Application (FWO grant: medium-scale research infrastructure, 2020). He supervises 7 PhD students and has supervised 19 PhDs to completion (H-index 39; WoS 168 publications; 4749 citations; author impact citation percentile 69%). Over the past five years, he has obtained more than 2 million euros of research funding as (co)promotor.

Prof. Dr. Wim Saeys

Prof. Dr. Wim Saeys (ORCID 0000-0001-8193-5016) is appointed as 70% tenure track assistant professor at MOVANT, University of Antwerp. He combines this position with a 30% clinical position as a neurological rehabilitation specialist (Physiotherapy) at the rehabilitation hospital RevArte. He has almost 20 years of clinical and scientific experience in stroke and spinal cord rehabilitation, mainly in the field of balance and gait recovery. His research focuses on stroke rehabilitation, looking at biomarkers of (early) recovery and optimization of treatment strategies by using technology-supported rehabilitation. As co-promotor, he obtained the FWO 2020 Medium-sized Research Infrastructure grant (I002020N) to set up a full operational 4D analysis lab (4D4All) within the Rehabilitation Hospital RevArte. He supervised 8 PhD students and has supervised 5 PhDs to completion (H-index 15; 65 publications; 870 citations; author impact citation percentile 61%). His expertise has been recognized internationally, as shown by winning different awards (Belfius Smart Award (April 2019), ISPGR conference award (March 2021), YSPR ESO award (November 2020), De Luca Foundation Award (November 2020). As vice-chair of the interfaculty institute CHaT (Center of Health and Technology), he aims to stimulate and facilitating the uptake of health care technology in rehabilitation.

Prof. Dr. Laetitia Yperzeele

Prof. Dr. Yperzeele (ORCID 0000-0002-5503-5724) is a senior vascular neurologist at the Antwerp University Hospital (UZA) in Belgium and coordinator of the hospitals' stroke program. She obtained her PhD in Medical Sciences in 2016 at the Vrije Universiteit Brussel. She is an Associate Professor (20%) at the Faculty of Medicine and Health Sciences at the University of Antwerp. She has been the Leading investigator in academic clinical trials on prehospital stroke care (e.g. FACT, AP-19 IATS), and Site Principal Investigator for national and international academic research projects (e.g. Communicare), registries (eg. BEL-FMD, NOAC-ISP) and national leader for industryled clinical trials (AXIOMATIC SSP, LIBREXIA stroke trial). She has authored 60+ PubMed registered papers, cited 900+ times (WoS H-index 17), supervised 2 successfully defended PhD theses, and 2 ongoing PhDs.

Are standing balance and walking ability deficits poststroke related to the integrity of the corticospinal and non-corticospinal tracts? A meta analysis.

4 Abstract

5 Background: The importance of corticospinal tract (CST) integrity in upper limb recovery 6 poststroke is well established, but its association with standing balance and walking 7 remains unclear. This meta-analysis aimed to establish the relationship between CST and 8 non-CST motor tract integrity, and clinical scores of standing balance and walking 9 poststroke.

Methods: In July 2024, five databases were searched for studies, focusing on diffusion MRI metrics and clinical scores of standing balance and/or walking independence poststroke. Meta-analyses were conducted to pool correlation coefficients (r) and group differences (d) based on CST integrity.

14 Results: Twenty-two studies were included. Cross-sectional analysis showed no 15 correlation (r<.25) between CST metrics and the functional ambulation category (FAC) 16 in the sub-acute phase. Weak prognostic associations were found for CST-FA and CST-17 FN with FAC. Significant FAC score differences were found between preserved- and 18 disrupted CST groups in the sub-acute (d=.79) and chronic (d=1.07) phase and for 19 prognostic analysis (d=1.40). Non-CST metrics showed no cross-sectional associations 20 and mixed prognostic associations.

21 Conclusions: CST integrity was not significantly associated with standing balance or 22 walking independence in the sub-acute phase. Early CST integrity showed weak 23 prognostic value for walking at 6 months. Multimodal longitudinal research is needed to 24 improve lower limb recovery prognostics. Keywords: dependent ambulation, diffusion magnetic resonance imaging, posturalbalance, stroke, walking

27 Introduction

Performing functional tasks such as standing balance and walking depends on the coordinated activation of trunk and lower limb muscles. Traditionally, it has been suggested that subcortical and spinal regions govern such muscle coordination (1–4). However, recent literature has opposed this view, as both cortical brain regions and their descending motor projections appear to be involved in orchestrating muscle activity for maintaining standing balance and walking (5,6). This is evident in clinical observations of patients who experience balance and walking deficits after a stroke (7).

Given the high prevalence and impact of balance and walking deficits on community participation and quality of life, achieving independent standing balance and walking is a prioritized rehabilitation goal after stroke (8–11). Current literature suggests a significant association between muscle strength of the hemiparetic leg and sitting balance in the early sub-acute phase, and with improved walking ability and degree of ambulation in the chronic phase (12). However, improvement of patient-tailored rehabilitation services requires further investigation of lower limb motor severity poststroke and predictors of recovery, as the current literature examined limited sample sizes, and an overall consensus is lacking (12,13). Therefore, the literature could gain greater insights into the neural correlates of balance and walking ability, which may improve clinical predictions.

To date, the most investigated descending pathway in relation to poststroke recovery is the corticospinal tract (CST)(5). Previous studies (14–25) have investigated associations between reduced CST integrity and upper limb motor recovery. This contributed to more accurate prediction models of upper limb recovery poststroke, when

used in addition to clinical scores, particularly in more affected patients (26,27). However, limited literature is available on the relationship between tract integrity and the severity at different timepoints, as well as the recovery of lower-limb motor skills in daily activities (28), hindering the development and testing of precise prediction models in this area. It is important to acknowledge the differences in motor control, as balance control and walking involve bilateral limb activation that is more "automated" than unilateral arm-hand movements (29,30). Other non-CST tracts could also be considered due to their role in trunk and proximal limb muscle activation e.g., corticoreticulospinal pathway (CRP)(15,31-34), vestibulospinal tract,(35) and tectospinal tract (36). In addition, research has suggested a role for the cortico-cortical pathways in controlling balance and walking, including the corticopontocerebellar and nigrostriatal tracts (37,38).

How damage or degeneration in the aforementioned tracts contributes to balance and walking deficiencies post-stroke remains largely unknown and has not yet been systematically investigated. Therefore, our primary objective was to examine the existing literature on how CST integrity is associated with the severity of standing balance and walking ability in the sub-acute (<6 months) and chronic phases (>6 months) poststroke by investigating cross-sectional correlations. Additionally, we want to examine possible differences between associations when measured in the sub-acute and chronic phase, as poststroke recovery mostly occurs within the first 6 months poststroke. We hypothesized, in line with research regarding upper limb measurements, that CST integrity was significantly positively associated with the ability to maintain standing balance and achieve walking independence in the chronic phase, such that patients with CST damage had worse clinical scores than those with a preserved CST (20,23,39). For our second objective, we aimed to examine the prognostic associations of CST integrity, measured within the first month, and balance and walking ability measured after 6 months

poststroke. Our third objective was to examine longitudinal changes in CST integrity and recovery of balance and walking ability poststroke. We hypothesize to identify associations, but with less powerful correlation coefficients, as for upper limb recovery, between prognostic associations and longitudinal changes in CST integrity and recovery of lower limb balance and walking ability. Acknowledging the suggested greater redundancy of bilateral and non-CST tracts innervating the lower limbs relative to the upper limb (20,40).

Furthermore, we examined all three objectives for non-CST tracts and how they are associated with standing balance and walking ability. We hypothesize that these tracts will also show significant associations with standing balance and walking independence for the cross-sectional correlations in the chronic phase as well as the prognostic and longitudinal associations, specifically the CRP due to its importance in trunk and proximal limb muscle activation.

88 Methods

89 Protocol and Registration

This systematic review was registered on PROSPERO (registration No. 289161) and adheres to the guidelines of the Preferred Reporting Items for Systematic Reviews and Meta-Analysis statement (PRISMA) (Supplemental material: Table S2) (41). The research project was approved by the Medical Ethics Committee of the University Hospital Antwerp (EDGE-2251).

Definitions

A stroke is defined as a blockage of blood flow toward the brain that causes
restriction of oxygen. Both ischemic (blocked arteries) and hemorrhagic
(intraparenchymal bleeding) are included (42). Walking independence is defined as the

degree to which a person can ambulate safely, with or without an aid (including the use of non-motorized orthoses or assistive devices such as a cane), to conduct mobility-related activities of daily living (37,43). For this review, the term walking independence was used to encompass the varying degrees of walking ability in which a person can achieve the goal of independent walking poststroke. Clinical scales were used to represent walking independence (e.g., functional ambulation category (FAC), Functional independence measure (FIM)). Standing balance refers to the ability to regulate muscular involvement to maintain an upright position by maintaining the center of mass within the base of support (44–46). Standing balance was also measured using clinical scales on the activity level of the ICF (e.g., Berg Balance Scale (BBS), mini Balance Evaluation System test (mini BEStest), and Brunel Balance Assessment (BBA)). Clinical scores were interpreted as continuous scales for correlation analyses and as dichotomized scales to determine group categories.

Diffusion Magnetic Resonance Imaging (dMRI) is a specialized MRI technique used to visualize the movement (diffusion) of H-protons within biological tissue, particularly in the brain. White matter fibers can be observed using water diffusion anisotropy and evaluated by integrity metrics (47). The integrity of the neural structure was consequently defined as the state and quality of white matter in the brain, such as the CST and non-CST tracts and brain regions (e.g., CRP, dorsolateral prefrontal cortex, corticopontocerebellar tract, Vestibulospinal tract, parieto-insular vestibular cortex, and nigrostriatal tract) (31,32,34,48-50).

120 Integrity is reflected in the following MRI metrics: Fractional anisotropy (FA): 121 measure of water diffusion direction; Mean diffusivity (MD): multidirectional water 122 diffusion; Apparent diffusion coefficient (ADC): overall water diffusion; Fiber number 123 (FN): synonym to terms referring to the number of neuronal fibers within the region of

interest; Fiber volume (FV): synonym to terms referring to the volume of the region of interest (47). The status of tract integrity is presented by values of diffusion metrics or the quality of tract preservation. The delineation of a tract was performed based on an FA threshold of 0.2 and an angle change of $>45^{\circ}$ (51–53). The following definitions are used to define the quality of the tract: "+" refers to a preserved tract and can be defined as a tract originating from the affected hemisphere's cortex and passing around the lesion to the medulla. Additionally, "-" stands for a disrupted tract, indicating tracts that were interrupted by the lesion at any location between their origination at the cortex until the medulla e.g., CST+: preserved CST; CST-; disrupted CST (38,50,54). Phases of stroke were defined as follows: hyperacute: 0-24 hours; acute: 1-7 days; early sub-acute: 7 days to 3 months; late sub-acute: 3-6 months; and chronic phase: after 6 months (55).

Studies were pooled according to phases containing spontaneous neurobiological recovery, including metabolic and neuroplastic changes, (all phases within the first 6 months poststroke) and the chronic phase in which neurobiological changes stabilize (55-57). Our research question defined three groups for examination. First, we considered studies that examined cross-sectional associations between dMRI and balance or walking independence. These studies were further divided into two subgroups: those within the sub-acute phase and those within the chronic phase (more than six months post-stroke)(58). Second, prognostic associations were investigated by assessing dMRI in the acute to early sub-acute phase and standing balance and/or walking independence in the chronic phase. Prognostic refers to the estimation of future risk of outcome based on specific characteristics (59). Lastly, longitudinal associations were examined, which encompassed studies that performed both dMRI and standing balance and/or walking independence assessments at multiple time points during stroke recovery (60).

148 Search Strategy and Study Selection

In July 2024, a systematic search was conducted using the databases of Pubmed,
Web of Science, Scopus, Cochrane, and PEDro. The research queries were composed
following a PICO strategy and included a combination of free-text terms and Medical
Subject Headings (MeSH) terms. This information can be found in supplemental
material: Table S1.

The following inclusion criteria were applied: 1) study designs such as cohort studies, cross-sectional observational studies, and randomized controlled trials; 2) adult population (\geq 18 years of age) diagnosed with infra- or supratentorial stroke (infarction or hemorrhage); 3) use of dMRI to assess the integrity of motor tracts and cortical regions 4) including clinical tests for walking independence or standing balance. Studies were excluded based on the following criteria: 1) study designs, such as meta-analyses, systematic reviews, case reports, and expert opinions; 2) studies reporting only lesion lateralization or location.

162 Two blinded independent reviewers (AvH and RL-C) screened the studies 163 according to the title, abstract, and full text. The reference lists of the included studies 164 were screened during full-text screening for secondary literature. Disagreements were 165 successfully resolved through discussion among the raters.

Da

Data Extraction and Analysis

167 Data from the included studies were independently extracted by two reviewers 168 (AvH and RL-C), and disagreements were successfully resolved by discussion. A third 169 reviewer (J.S.) was available for consultation if necessary. Parameters regarding the study 170 and sample characteristics were collected and are presented in Table 1. The outcome 171 characteristics and a summary of the imaging and clinical assessment results are presented 172 in Table 2.

> The strength of the relationship between diffusion metrics and standing balance, and walking independence scores was defined based on the correlation coefficient. Pearson's and Spearman's coefficient r values between 0 and .25 indicated no to very weak correlations. Weak correlations are defined as r values ranging between .25 and .50, whereas values ranging from .50 to .70 indicate a moderate correlation. Finally, r values between .70 and 1 are considered very strong to excellent correlations (61,62).

> Differences between groups based on the state of CST integrity were pooled and presented as Cohen's d value. Benchmark suggestions by Cohen were used to interpret effect sizes. Effect sizes between .20 and .50 indicate small effect sizes. Moderate effect sizes range from .50 to .80 and d values >.80 indicate large effect sizes (63).

183 Quality Assessment

The risk of bias was independently assessed by two reviewers (AvH and RL-C) using the Newcastle-Ottawa Quality Assessment Scale (NOS) for cross-sectional- and longitudinal cohort studies. The criteria of the scales were adjusted to be consistent with the research questions: Populations were specified as ischemic and hemorrhagic stroke patients, minimum sample size was set at N=15 as recommended (64), and validated tools were adapted to the quality of the description of MRI technique and analysis (supplemental material: Appendix 1). Cross-sectional studies were assessed using the NOS version adapted by Herzorg et al. (supplemental material: Appendix 2).

192 If all criteria were met, a maximum score of nine was given for longitudinal cohort 193 studies, and a maximum score of ten was given for cross-sectional studies (65). The 194 standard cut-off values of McPheeters et al. were used to determine the risk of bias and 195 methodological quality (<5: poor, 5-6: moderate, \geq 7: good). (66) Scores per study and 196 criteria can be found separately for cross-sectional studies in Table S3 and longitudinal 197 cohort studies in Table S4 in the supplemental material.

198 Descriptive Analysis and Statistics

Descriptive data were collected and categorized according to study and sample characteristics (study design, sample size, lesion type, lesion side, sex, age) and outcome characteristics (imaging type, imaging analysis, clinical tool, results on 1) associations and 2) differences).

A meta-analysis was performed of correlation coefficients when the results of two or more independent studies could be pooled either within the first 6 months or after 6 months. In addition, clusters are formed based on non-CST tracts and different diffusion parameters. Effect sizes were collected from the results section of the articles. A random-effects model with restricted maximum likelihood (REML) was used to calculate pooled effect sizes using IBM SPSS Statistics 28.0.0.0®. Heterogeneity among studies was assessed using Cochrane's Q tau-squared test, and I-squared (I²), presented as a p-value. The degree of heterogeneity can be defined as low ($I^2=.25-.50$), moderate ($I^2=.50-.75$), and high (I²>.75). (67)

212 Statistical Analysis

The study results were clustered according to the investigated tract (CST and non-CST) and the method of association. All cross-sectional results analyzed within the first 6 months and after 6 months post-stroke, were clustered together. Furthermore, all studies examining prognostic associations between dMRI findings obtained within the first month and standing balance of walking ability measured obtained during the chronic phase were pooled.

219 Results

Study Selection

We identified 8,465 studies in the databases and by hand search. After eliminating duplicates, 5,532 unique studies were screened, and 105 studies were included after screening the titles and abstracts. The following study designs were eligible for inclusion: cohort studies, cross-sectional studies, and RCTs. The main reason (n =17.9%) for exclusion was an incorrect outcome, specifically different imaging types than diffusion MRI. In total, twenty-two studies were included in the analysis (supplemental material: Fig 1. Flow diagram) (14,30,37,38,50,52,54,68-82).

Quality and Risk of Bias

Of the included studies, nine had a cross-sectional design (30,50,68-74), and thirteen studies had a longitudinal design (14,37,38,52,54,75–82). Eight studies with a longitudinal design investigated both cross-sectional correlations in the acute or early sub-acute phase as a prognostic factor, whereby early dMRI results were associated with clinical scores in the chronic phase (14,37,52,54,75,76,78,79). Disagreements regarding quality assessment between reviewers were resolved successfully during the discussion.

CST and non-CST Structures

The CST is the most investigated region of interest as nineteen studies investigated its integrity in relation to standing balance and walking independence, as measured using the FAC (30,37,50,52,54,68-81). Other white matter pathways and cortical regions that were included in the meta-analyses or descriptively included were corticoreticulospinal pathway (CRP) (30,37,38,73), corticopontocerebellar the tract/system (37,70,74), nigrostriatal tract (38), and parieto-insular vestibular cortex (14). The following pathways and regions were not included in the meta-analysis, but were

244 primary motor cortex; red nucleus; cerebral peduncle; and middle cerebral peduncle.

245 Walking Independence and CST Integrity

CST integrity was cross-sectionally associated with the FAC in seven studies (N=309)(30,37,50,69,76,79,80). Results were graphed separately for the sub-acute phase (Fig 2) and chronic phase poststroke (Fig 3). Pooling of the cross-sectional correlations yielded no correlation between the CST integrity metrics separately -Fractional anisotropy (FA); Fiber number (FN), Fiber volume (FV), and Mean diffusivity (MD) - and FAC in the sub-acute phase (CST-FA: r=.18, 95%CI[.01;.35], random effects, N=3 studies, N=116 participants (30,37,50); CST-FN: r=.00, 95%IC=[-.37;.38], N=27 participants (37); CST-FV: r=.02, 95%IC=[-.19;.23], N=2 studies, N=89 participants (30,50); CST-MD: r=-.06, 95%IC=[-.39;.27], N=35 participants)(50). Jang et al. (69) found a moderate correlation between CST-FA (CST-FA: r=.50, 95%IC=[.34:.66], N=35 participants) and FAC and a weak correlation between CST-FN and FAC in the chronic phase poststroke (CST-FN: r=.47, 95%IC=[.30;.64], N=54 participants). A significant subgroup difference was found between the sub-acute cross-sectional correlations and the chronic cross-sectional correlations of CST-FA and FAC (p=0.01)(69)(Fig. 4). No correlation (r<.25, p>.05, N=53)(80) was found for the unaffected CST-FN and -FA with walking independence in both the sub-acute and chronic phases.

Pooling of prognostic correlations yielded weak correlations between CST-FA
and FAC (CST-FA: r=.41, 95%CI[.21;.61], random effects, N=3 studies, N=116
participants) (37,76,79) and between CST-FN and FAC (CST-FN: r=.33, 95%IC=[.23;.83], N=63 participants) (37,76) (Fig. 5).

266 Sub-analysis of between-group differences based on the state of CST integrity 267 yielded a medium difference in sub-acute stroke (d=.79, IC=[.44-1.14], random effects,

N=5 studies, N= 176 participants)(50,68,77–79) (Fig. S1) and large group differences
were found in cross-sectional analysis in the chronic phase (d=1.07, 95%CI=[.04;2.10],
N=2 studies, N=61 participants)(Fig. S2)(69,72), and prognostic analysis (d=1.40,
95%CI=[1.01;1.79], N=7 studies, N=265 participants) (52,54,75–79) (Fig. S3).

272 Balance Performance and CST Integrity

The association between CST integrity and balance performance was investigated in four studies. In these studies, the CST-FA laterality index yielded no correlation with BBS in three studies investigating cross-sectional correlations in the sub-acute (r=-.18, 95%CI=[-.70;.35], random effects, N= 3 studies, N=200 participants)(Fig. S4)(71,74,81). Prognostic analysis yielded no correlation between CST-FA laterality index stroke (r<.25, N=79 participants)(81) and CST-FA (r<.25, N=27 participants) with BBS (37).

279 Walking Independence and non-CST Integrity.

Descriptive synthesis yielded mixed results for correlation strength in the sub-acute phase (Fig. S5). Regarding the CRP-FA, one study found no correlation (r<.25, 95%CI=[-.11;.41], N=54)(30) and another study found a weak correlation (r=-.33, 95%CI=[-.67;.01], N=27)(37). When looking into other non-CST tracts and regions in the sub-acute phase, a weak correlation was reported between the corticopontocerebellar tract-FA with FAC (r=-.38, 95%CI=[-.70;.05], N=27)(37). Another study found no correlation between parieto-insular vestibular cortex-FA and FAC (r<.25, N=28)(14). Regarding other integrity values, no correlation was found for CRP-FN (r<.25,

95%CI=[-.32;.43}, N=27)(37) and corticopontocerebellar tract-FN (r<.25, 95%CI=[-
.55;.18], N=27)(37) with FAC in sub-acute stroke. CRP-FV and FAC showed a weak
correlation in sub-acute stroke (r=.46, 95%CI=[.24;.67], N=54)(30), and parieto-insular

vestibular cortex -FV showed no correlation with FAC (r<.25, 95%CI=[-.25;.48], N=27)(37). No cross-correlation analysis was performed in the chronic phase poststroke. Minimal prognostic correlations were found (Fig. S6) between sub-acute CRP-FA and chronic measures of the FAC. One study found no correlation (r<.25, 95%CI=[-.03:.62], N=27)(37), and another study found a weak correlation (r=.29, 95%CI=[-.03;.62], N=30)(38). No prognostic correlations were observed between corticopontocerebellar tract-FA (r<.25, 95%CI=[-.23;.51], N=27)(37), parieto-insular vestibular cortex-FA (r<.25, 95%CI=[-.52;.20], N=28)(14), and nigrostriatal tract-FA (r<.25, 95%CI=[-.11;.57], N=30)(38) with FAC.

Regarding other integrity values examining prognostic correlations, no correlation was found for CRP-FN (r<.25, 95%CI=[-.39;.35], N=27)(37) and corticopontocerebellar tract-FN with FAC (r<.25, 95%CI=[-.12;.59], N=27)(37). The nigrostriatal tract-FV (r=.79, 95%CI=[.65;.92], N=54)(38) and CRP-FV (r=.82, 95%CI=[.70;.94], N=54)(38) yielded very strong correlations. No correlation was found for parieto-insular vestibular cortex-FV (r<.25, 95%CI=[-.31;.43], N=27)(14).

306 Balance Performance and non-CST Integrity

A moderate correlation was found for the cross-correlation between the inferior cerebral peduncle-FA and the BBS in sub-acute stroke (r=.63, N=27)(71). Prognostic correlations yielded moderate correlations for the cerebral peduncle-FA (r=.581, N=44)(82) and the middle cerebral peduncle-FA (r=.547, N=44)(82), and the laterality index of the cerebral peduncle (=(CP-FA affected side - CP-FA unaffected side)/(CP-FA affected side + CP-FA unaffected side)) (r=.573, N=44)(82). A weak prognostic correlation (r=<.50, N=44)(82) was found between the laterality index of the middle cerebral peduncle and the BBA.

315 Discussion

This literature study systematically reviewed the reported associations of the integrity parameters of the CST and non-CST pathways with clinical outcomes of standing balance and walking independence. Twenty-two medium-to-high quality studies, including 1011 stroke participants, could be included. This led to the following main findings: Regarding objective 1, our hypothesis was rejected because CST integrity was not found to be significantly associated with FAC or BBS scores in the sub-acute phase in a cross-sectional manner. Pooling of cross-sectional associations in the chronic phase was not possible because only one study was found (69). Regarding the second objective, our hypothesis was partially confirmed by a significant, but weak correlation between CST integrity measures obtained <1 month poststroke and the FAC at 6 months. However, no correlation was found regarding BBS. Regarding the third objective, no studies have been identified, thus creating a gap in the literature. Regarding the associations of the integrity of the CRP (i.e., FA, FV) and other non-CST tracts (corticopontocerebellar tract, nigrostriatal, parieto-insular vestibular cortex) with FAC, negligible to no correlations were found for cross-sectional associations and mixed results regarding prognostic associations, corroborating our expectations.

Our results regarding the primary objective indicate that despite significant associations between CST integrity and upper limb outcome after stroke, which led to the identification of prediction biomarkers (20,26), results regarding balance and walking are more ambiguous. In some reports (83,84), it has been reported that independent walking can be regained even after complete disruption of the lateral CST due to stroke. Cho et al. (83) therefore assumed that the CST is less critical for recovery from walking than upper limb recovery, arguing that walking relies less on distal muscle coordination, for which the CST is mainly responsible. Moreover, compensatory movement strategies, for

example, reliance on the less affected leg to maintain stability (85), could also explain task-related results. Our findings show that simple classification tools, such as the FAC, are insufficient to determine recovery phenotypes (e.g.; dependency on compensation and aids) based on neural damage profiles (86). Furthermore, clinical tests do not adequately distinguish recovery achieved through behavioral restitution or compensations during their evaluation (85). Although improvements in balance performance and walking independence are noticeable during the first 3 to 6 months poststroke, these improvements are closely associated with learning to use compensatory strategies as they solely measure task accomplishment (13,87–89). Therefore, a variety of mechanisms can be responsible for improvements in walking and standing balance. In other words, activities can be restored in the more-affected subjects with greater neural damage by relying on less impaired body segments, such as the less affected limb (88,90). Specific outcomes such as between-limb synchronization and dynamic control asymmetry are recommended to reflect changes due to "true neurological recovery".(91) Therefore, it represents the level of behavioral restitution, which can be categorized on the anatomy and body function of the ICF, like diffusion MRI. Nonetheless, erecting against gravity remains challenging, making walking independence difficult to achieve (92,93). This difficulty was suggested to be more common in individuals with disrupted CST. This could explain our subsequent finding of significant between-group differences based on the state of CST integrity (CST+; CST-), with patients possessing a preserved CST generally showing higher levels of walking independence.

361 Our results regarding our secondary objective suggest the potential of using CST 362 integrity metrics to improve the prediction of recovery outcomes when obtained < 1 363 month poststroke. DMRI was conducted within 7 days and 1 month in most studies, and 364 avoided early acute, due to the effect of Wallerian degeneration, which has been

associated with worse motor outcomes at 2, 3, and 4 weeks poststroke (94-96). Better patient selection methods, with sufficient statistical power based on the stratification of biological capacity to recover, such as for the upper limb, are still non-existent. Biomarkers could be used to prognostically determine a patient's potential to show recovery and regain safety in basic activities of daily living, such as walking, to inform treatment strategies (26,87,97,98). However, we should be cautious about the promise of MRI-related biomarkers, as the added value of imaging markers is still unknown compared with existing clinical markers, such as sitting balance (12,99), due to the lack of multimodal prognostic models in this field. Therefore, you could wonder whether CST integrity is necessary to adequately predict standing balance and walking ability outcomes to improve or overrule currently available clinical prediction models (12,99). No scientific literature was found to examine our third objective.

Regarding the results of the correlation between the integrity of non-CST tracts and standing balance and walking independence, no associations were identified. However, there is evidence in scientific literature for a higher redundancy of bilateral and alternative descending pathways that are important for postural balance and walking, relative to the upper limb (30),(27)) Because of this, a one-on-one relationship between a single tract's integrity and walking independence or standing balance after stroke, as investigated in most included studies, is unlikely to yield strong associations by explaining residual functioning (12,29).

385 Our findings suggest the need for further research into the relevance of CST and 386 non-CST integrity in relation to standing balance and walking independence. Future 387 research should investigate longitudinal changes, starting in the acute phase poststroke, 388 of both white matter integrity and lower limb motor function. Due to the evident high

> redundancy of descending and horizontal tracts, future research should also include the analysis of multiple tracts, such as the CST and CRP combined (15,100,101). Furthermore, to assess the quality of movement, we recommend incorporating biomechanical analyses of standing balance and walking (90,102). Based on this, we hypothesize that there will be a significant association between the combined fiber density of the corticospinal tract (CST) and cortico-reticular pathway (CRP) and biomechanical measures of standing balance, which would reflect movement quality rather than mere task completion.

397 Limitations

First, only a limited number of studies, most including a small sample size, were found eligible. This may have affected the power of significant associations in this review. Furthermore, the included studies showed heterogeneity in the measurement time points of both dMRI and the clinical assessments, and in the brain regions of interest and diffusion metrics. This hindered the pooling of results. For this reason, studies were grouped within two timeframes (sub-acute and chronic) because most measurements were performed within these phases. Second, the total group effect size was not calculated for the different analyses because multiple correlation coefficients coming from the same article and population belonged within the same pool of meta-analyses, leading to bias. A third limitation is that our results are restricted to clinical assessments that allow for compensation strategies.

Therefore, recommendations are provided to include kinetics and kinematics to measure the extent of recovery of daily activities achieved through restitution. Finally, motor-evoked potentials detected by TMS could have been beneficial to include as a functional integrity measurement because they have been associated with the walking ability and structural damage to CST integrity (12,103). However, TMS does not capture

the broader neural network involved in walking and balance because it primarily assesses CST function (104). Moreover, patient discomfort during TMS procedures and the requirement for specialized expertise for accurate interpretation further complicate its routine use in clinical settings for predicting lower limb outcomes (105,106). While motor-evoked potentials by TMS remain a strong biomarker, our review prioritized dMRI for its ability to provide a comprehensive assessment of multiple motor tracts.

420 Conclusion

This review found that contrary to the hypothesis for our first objective, CST integrity was not significantly associated with standing balance or walking independence in the sub-acute phase, indicating that CST disruption does not necessarily preclude the ability to walk. For our second objective, we identified a weak but significant correlation between early CST integrity and walking independence at 6 months poststroke, suggesting some prognostic value. However, studies on non-CST are lacking, limiting our understanding of their potential role in recovery. These findings underscore the complexity of using CST and non-CST integrity as prognostic indicators. Future research should prioritize multimodal, longitudinal studies with integrated biomechanical analyses to more accurately predict and understand lower limb recovery poststroke.

431 Acknowledgments

The authors would like to thank the University of Antwerp and the research
groups of MovAnt and Translational Neuroscience for their contributions. This work
was supported by the BOF (*bijzonder onderzoeksfond*) of the University of Antwerp,
and was funded by the Flemish Government under Grant ID: 44607.

Declaration of interest

	437		The authors declare that the research was conducted in the absence of any
	438	poten	tial conflict of interest.
	439		
	440	Refer	rences
	441	1.	Nielsen JB. How we Walk: Central Control of Muscle Activity during Human
	442		Walking. The Neuroscientist [Internet]. 2003 Jun 1;9(3):195–204. Available
	443		from: https://doi.org/10.1177/1073858403009003012
	444	2.	Yang JF, Gorassini M. Spinal and brain control of human walking: Implications
	445		for retraining of walking. Vol. 12, Neuroscientist. 2006. p. 379-89.
	446	3.	Feldman SJ, Boyd LA, Neva JL, Peters S, Hayward KS. Extraction of
	447		corticospinal tract microstructural properties in chronic stroke. J Neurosci
	448		Methods. 20180306th ed. 2018;301:34-42.
	449	4.	Sterr A, Shen S, Szameitat AJ, Herron KA. The role of corticospinal tract
	450		damage in chronic motor recovery and neurorehabilitation: a pilot study.
	451		Neurorehabil Neural Repair. 2010;24(5):413–9.
	452	5.	Javed K, Reddy V, Lui F. Neuroanatomy, Lateral Corticospinal Tract. StatPearls.
	453		2023 Jan;
	454	6.	Artoni F, Fanciullacci C, Bertolucci F, Panarese A, Makeig S, Micera S, et al.
	455		Unidirectional brain to muscle connectivity reveals motor cortex control of leg
	456		muscles during stereotyped walking. Neuroimage. 2017 Oct 1;159:403-16.
	457	7.	Li J, Zhong D, Ye J, He M, Liu X, Zheng H, et al. Rehabilitation for balance
*	458		impairment in patients after stroke: A protocol of a systematic review and
	459		network meta-analysis. Vol. 9, BMJ Open. BMJ Publishing Group; 2019.

460	8.	Harris JE, Eng JJ. Goal Priorities Identified through Client-Centred Measurement
461		in Individuals with Chronic Stroke. Physiother Can [Internet]. 2004 [cited 2023
462		Oct 6];56(3):171. Available from: /pmc/articles/PMC3557500/
463	9.	Bohannon RW, Andrews AW, Smith MB. Rehabilitation goals of patients with
464		hemiplegia. International Journal of Rehabilitation Research [Internet].
465		1988;11(2). Available from:
466		https://journals.lww.com/intjrehabilres/fulltext/1988/06000/rehabilitation_goals_
467		of_patients_with_hemiplegia.12.aspx
468	10.	Nagl M, Farin E. Congruence or discrepancy? Comparing patients' health
469		valuations and physicians' treatment goals for rehabilitation for patients with
470		chronic conditions. International Journal of Rehabilitation Research. 2012
471		Mar;35(1):26–35.
472	11.	Duncan PW, Zorowitz R, Bates B, Choi JY, Glasberg JJ, Graham GD, et al.
473		Management of Adult Stroke Rehabilitation Care. Stroke [Internet]. 2005 Sep 1
474		[cited 2023 Oct 6];36(9). Available from:
475		https://www.ahajournals.org/doi/abs/10.1161/01.str.0000180861.54180.ff
476	12.	Smith MC, Barber PA, Stinear CM. The TWIST Algorithm Predicts Time to
477		Walking Independently After Stroke. Neurorehabil Neural Repair. 2017;31(10-
478		11):955–64.
479	13.	Schröder J, Saeys W, Yperzeele L, Kwakkel G, Truijen S. Time Course and
480		Mechanisms Underlying Standing Balance Recovery Early After Stroke: Design
481		of a Prospective Cohort Study With Repeated Measurements. Front Neurol. 2022
482		Feb 21;13.
483	14.	Park SY, Yeo SS, Jang SH, Cho IH, Oh S. Associations Between Injury of the
484		Parieto-Insular Vestibular Cortex and Changes in Motor Function According to

485		the Recovery Process: Use of Diffusion Tensor Imaging. Front Neurol. 2021 Nov
486		3;12.
487 1	5.	Jang SH, Lee SJ. Corticoreticular Tract in the Human Brain: A Mini Review.
488		Front Neurol. 2019 Nov 12;10:1188.
489 1	6.	Lotze M, Roschka S, Domin M, Platz T. Predicting Training Gain for a 3 Week
490		Period of Arm Ability Training in the Subacute Stage After Stroke. Front Neurol.
491		20181011th ed. 2018;9:854.
492 1	7.	Boyd LA, Hayward KS, Ward NS, Stinear CM, Rosso C, Fisher RJ, et al.
493		Biomarkers of stroke recovery: Consensus-based core recommendations from the
494		Stroke Recovery and Rehabilitation Roundtable. International Journal of Stroke.
495		2017 Jul 1;12(5):480–93.
496 1	8.	Puig J, Blasco G, Daunis-I-Estadella J, Thomalla G, Castellanos M, Figueras J, et
497		al. Decreased corticospinal tract fractional anisotropy predicts long-term motor
498		outcome after stroke. Stroke. 2013 Jul;44(7):2016-8.
499 1	9.	Feng W, Wang J, Chhatbar PY, Doughty C, Landsittel D, Lioutas VA, et al.
500		Corticospinal tract lesion load: An imaging biomarker for stroke motor outcomes.
501		Ann Neurol. 2015 Dec 1;78(6):860–70.
502 2	0.	Kumar P, Prasad M, Das A, Vibha D, Garg A, Goyal V, et al. Utility of
503		Transcranial Magnetic Stimulation and Diffusion Tensor Imaging for Prediction
504		of Upper-Limb Motor Recovery in Acute Ischemic Stroke Patients. Ann Indian
505		Acad Neurol. 20210927th ed. 2022;25(1):54–9.
506 2	1.	Stinear CM, Barber PA, Petoe M, Anwar S, Byblow WD. The PREP algorithm
507		predicts potential for upper limb recovery after stroke. Brain. 20120610th ed.
508		2012;135(Pt 8):2527–35.

509	22.	Favre I, Zeffiro TA, Detante O, Krainik A, Hommel M, Jaillard A. Upper Limb
510		Recovery After Stroke Is Associated With Ipsilesional Primary Motor Cortical
511		Activity. Stroke [Internet]. 2014 Apr [cited 2022 Nov 16];45(4):1077-83.
512		Available from:
513		https://www.ahajournals.org/doi/10.1161/STROKEAHA.113.003168
514	23.	Lin DJ, Cloutier AM, Erler KS, Cassidy JM, Snider SB, Ranford J, et al.
515		Corticospinal Tract Injury Estimated From Acute Stroke Imaging Predicts Upper
516		Extremity Motor Recovery After Stroke. Stroke [Internet]. 2019 Dec 1 [cited
517		2022 May 31];50(12):3569–77. Available from:
518		https://pubmed.ncbi.nlm.nih.gov/31648631/
519	24.	Tao J, Li Z, Liu Y, Li J, Bai R. Performance Comparison of Different
520		Neuroimaging Methods for Predicting Upper Limb Motor Outcomes in Patients
521		after Stroke. Neural Plast. 20220606th ed. 2022;2022:4203698.
522	25.	Lee J, Chang WH, Kim YH. Relationship between the Corticospinal and
523		Corticocerebellar Tracts and Their Role in Upper Extremity Motor Recovery in
524		Stroke Patients. J Pers Med. 20211108th ed. 2021;11(11).
525	26.	Hayward KS, Ferris JK, Lohse KR, Borich MR, Borstad A, Cassidy JM, et al.
526		Observational Study of Neuroimaging Biomarkers of Severe Upper Limb
527		Impairment After Stroke. Neurology [Internet]. 2022 Jul 7 [cited 2024 Feb
528		1];99(4):e402. Available from: /pmc/articles/PMC9421772/
529	27.	Boccuni L, Meyer S, D'cruz N, Kessner SS, Marinelli L, Trompetto C, et al.
530		Premotor dorsal white matter integrity for the prediction of upper limb motor
531		impairment after stroke. Sci Rep [Internet]. 2019 Dec 1 [cited 2024 Feb
532		1];9(1):19712 [1. Available from: http://hdl.handle.net/2078/231359

533	28.	Elameer M, Lumley H, Moore SA, Marshall K, Alton A, Smith FE, et al. A
534		prospective study of MRI biomarkers in the brain and lower limb muscles for
535		prediction of lower limb motor recovery following stroke. Front Neurol. 2023
536		Oct 24;14:1229681.
537	29.	Dawes H, Enzinger C, Johansen-Berg H, Bogdanovic M, Guy C, Collett J, et al.
538		Walking performance and its recovery in chronic stroke in relation to extent of
539		lesion overlap with the descending motor tract. Exp Brain Res. 2008;186(2):325-
540		33.
541	30.	Jang SH, Chang CH, Lee J, Kim CS, Seo JP, Yeo SS. Functional Role of the
542		Corticoreticular Pathway in Chronic Stroke Patients. Stroke. 2013;44(4):1099-
543		104.
544	31.	Matsuyama K, Mori F, Nakajima K, Drew T, Aoki M, Mori S. Locomotor role of
545		the corticoreticular-reticulospinal-spinal interneuronal system. Prog Brain Res.
546		2004;143:239–49.
547	32.	Yeo SS, Lee DG, Choi BY, Chang CH, Jung YJ, Kim SH, et al. Neural
548		connectivity of the pedunculopontine nucleus in relation to walking ability in
549		chronic patients with intracerebral hemorrhage. Eur Neurol. 2012 Apr;67(4):226-
550		31.
551	33.	Jang SH, Kwon HG. Change of the anterior corticospinal tract on the normal side
552		of the brain in chronic stroke patients: Diffusion tensor imaging study.
553		Somatosens Mot Res. 20140828th ed. 2015;32(1):25-30.
554	34.	Do KH, Yeo SS, Lee J, Jang SH. Injury of the corticoreticular pathway in
555		patients with proximal weakness following cerebral infarct: Diffusion tensor
556		tractography study. Neurosci Lett. 2013 Jun 24;546:21-5.

1
2
2 3
5 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 9 20 21 22 23 24 25 26 27 28 29 30 31 32 33 4 35 36 37 38
5
6
7
0
8
9
10
11
12
13
13
14
15
16
17
18
19
20
20
21
22
23
24
25
25
26
27
28
29
30
21
20
32
33
34
35
36
37
20
38
39
40
41
42
43
43 44
45
46
47
48
49
5 0
51
52
53
54
55
56
57
58
59

557	35.	Markham CH. Vestibular control of muscular tone and posture. Vol. 14,	

558 Canadian Journal of Neurological Sciences. 1987. p. 493–6.

- 559 36. Isa T. Systems descending from the brainstem: Functional recovery following
- 560 damage. In: Neuroscience in the 21st Century: From Basic to Clinical. Springer

561 New York; 2013. p. 1115–26.

562 37. Jun S, Hong B, Kim Y, Lim S. Does Motor Tract Integrity at 1 Month Predict
563 Gait and Balance Outcomes at 6 Months in Stroke Patients? Brain Sci.

564 2021;11(7).

- 38. Jang SH, Yeo SS, Cho MJ. Prediction of the gait function using the nigrostriatal
 and corticoreticulospinal tracts of the affected hemisphere in a cerebral infarct: A
- 567 diffusion tensor imaging study. Medicine (United States). 2022 Sep

568 30;101(39):E30788.

569 39. Kumar P, Yadav AK, Misra S, Kumar A, Chakravarty K, Prasad K. Prediction of
570 upper extremity motor recovery after subacute intracerebral hemorrhage through

571 diffusion tensor imaging: a systematic review and meta-analysis.

- 572 Neuroradiology. 2016 Oct 1;58(10):1043–50.
- 573 40. Zhang L, Butler AJ, Sun CK, Sahgal V, Wittenberg GF, Yue GH. Fractal
- 574 dimension assessment of brain white matter structural complexity post stroke in
- 575 relation to upper-extremity motor function. Brain Res. 20080611th ed.

576 2008;1228:229–40.

- 577 41. Page MJ, McKenzie JE, Bossuyt PM, Boutron I, Hoffmann TC, Mulrow CD.
- 578 Syst Rev 10. 2021 [cited 2022 Jan 17]. p. 89 The PRISMA 2020 statement: an
- 579 updated guideline for reporting systematic reviews. Available from:
- 580 http://prisma-statement.org/prismastatement/flowdiagram.aspx

581	42.	Sacco RL, Kasner SE, Broderick JP, Caplan LR, Connors JJ, Culebras A, et al.
582		An updated definition of stroke for the 21st century: a statement for healthcare
583		professionals from the American Heart Association/American Stroke
584		Association. Stroke [Internet]. 2013 [cited 2024 Feb 15];44(7):2064-89.
585		Available from: https://pubmed.ncbi.nlm.nih.gov/23652265/
586	43.	Mehrholz J, Wagner K, Rutte K, Meißner D, Pohl M. Predictive Validity and
587		Responsiveness of the Functional Ambulation Category in Hemiparetic Patients
588		After Stroke. Arch Phys Med Rehabil. 2007 Oct 1;88(10):1314–9.
589	44.	Forbes PA, Chen A, Blouin JS. Sensorimotor control of standing balance. Handb
590		Clin Neurol. 2018 Jan 1;159:61–83.
591	45.	Zatsiorsky VM, Duarte M. Instant Equilibrium Point and Its Migration in
592		Standing Tasks: Rambling and Trembling Components of the Stabilogram.
593		Motor Control [Internet]. 1999 Jan 1 [cited 2023 Oct 17];3(1):28-38. Available
594		from: https://journals.humankinetics.com/view/journals/mcj/3/1/article-p28.xml
595	46.	Vierordt K von, Vierordt C. Grundriss der physiologie des Menschen. 1871
596		[cited 2023 Oct 17]; Available from:
597		https://books.google.com/books?hl=nl&lr=&id=CtRRAAAAcAAJ&oi=fnd&pg=
598		PA1&ots=zO10lhnE_u&sig=jci4b_paEraDinaO60cuASdBI
599	47.	Moseley ME, Kucharczyk J, Asgari HS, Norman D. Anisotropy in
600		diffusion-weighted MRI. Magn Reson Med. 1991;19(2):321-6.
601	48.	Kwon HG, Jang SH. Delayed gait disturbance due to injury of the corticoreticular
602		pathway in a patient with mild traumatic brain injury. Brain Inj [Internet]. 2014
603		Apr 1;28(4):511–4. Available from:
604		https://doi.org/10.3109/02699052.2014.887228

605	49.	Yeo SS, Jang SH, Park GY, Oh S. Effects of injuries to descending motor
606		pathways on restoration of gait in patients with pontine hemorrhage. JOURNAL
607		OF STROKE & CEREBROVASCULAR DISEASES. 2020;29(7).
608	50.	Jang SH, Kwon HG. Change of Neural Connectivity of the Red Nucleus in
609		Patients with Striatocapsular Hemorrhage: A Diffusion Tensor Tractography
610		Study. Neural Plast. 2015;2015.
611	51.	Kunimatsu A, Aoki S, Masutani Y, Abe O, Mori H, Ohtomo K. Three-
612		dimensional white matter tractography by diffusion tensor imaging in ischaemic
613		stroke involving the corticospinal tract. Neuroradiology. 20030711th ed.
614		2003;45(8):532–5.
615	52.	Cho SH, Kim SH, Choi BY, Cho SH, Kang JH, Lee CH, et al. Motor outcome
616		according to diffusion tensor tractography findings in the early stage of
617		intracerebral hemorrhage. Neurosci Lett. 20070504th ed. 2007;421(2):142-6.
618	53.	Jang SH. A review of diffusion tensor imaging studies on motor recovery
619		mechanisms in stroke patients. NeuroRehabilitation. 2011;28(4):345-52.
620	54.	Choi KT, Kwak SG, Chang MC. Does injury of the thalamocortical connection
621		between the mediodorsal nucleus of the thalamus and the dorsolateral prefrontal
622		cortex affect motor recovery after cerebral infarct? Acta Neurol Belg.
623		2021;121(4):921–6.
624	55.	Grefkes C, Fink GR. Recovery from stroke: current concepts and future
625		perspectives. Neurological Research and Practice 2020 2:1 [Internet]. 2020 Jun
626		16 [cited 2022 Nov 16];2(1):1–10. Available from:
627		https://neurolrespract.biomedcentral.com/articles/10.1186/s42466-020-00060-6

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
22
23 24
24 25
26
27
28
29
30
31
32
33
34 35
35
36 37 38
37
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59

628 56. Maier M, Ballester BR, Verschure PFMJ. Principles of Neurorehabilitation After

- 629 Stroke Based on Motor Learning and Brain Plasticity Mechanisms. Front Syst
- 630 Neurosci. 2019 Dec 17;13.
- 631 57. Ballester BR, Maier M, Duff A, Cameirão M, Bermúdez S, Duarte E, et al. A
- 632 critical time window for recovery extends beyond one-year post-stroke. J
- 633 Neurophysiol. 2019 Jul 1;122(1):350–7.
- 634 58. Wang X, Cheng Z. Cross-Sectional Studies: Strengths, Weaknesses, and
- 635 Recommendations. Chest. 2020 Jul 1;158(1):S65–71.
- 636 59. Moons KGM, Royston P, Vergouwe Y, Grobbee DE, Altman DG. Prognosis and
- 637 prognostic research: what, why, and how? BMJ [Internet]. 2009 Feb 23 [cited
- 638 2024 Aug 7];338(7706):1317–20. Available from:
- 639 https://www.bmj.com/content/338/bmj.b375
- 640 60. Caruana EJ, Roman M, Hernández-Sánchez J, Solli P. Longitudinal studies. J
- 641 Thorac Dis [Internet]. 2015 [cited 2024 Aug 7];7(11):E537. Available from:
- 642 /pmc/articles/PMC4669300/
- 643 61. Hemphill JF. Interpreting the Magnitudes of Correlation Coefficients. American
 644 Psychologist. 2003 Jan;58(1):78–9.
- 645 62. Richard Taylor ER. Interpretation of the Correlation Coefficient: A Basic
- 646 Review. JDMS. 1990 Jan;1:35–9.
- 647 63. Cohen J. Statistical Power Analysis for the Behavioral Sciences. Statistical
 648 Power Analysis for the Behavioral Sciences. 2013 May 13;
- 649 64. Fan Q, Polackal MN, Tian Q, Ngamsombat C, Nummenmaa A, Witzel T, et al.
- 650 Scan-rescan repeatability of axonal idesignmaging metrics using high-gradient
- 651 diffusion MRI and statistical implications for study. Neuroimage. 2021 Oct
- 652 15;240:118323.

653	65.	Herzog R, Álvarez-Pasquin MJ, Díaz C, Del Barrio JL, Estrada JM, Gil Á. Are
654		healthcare workers intentions to vaccinate related to their knowledge, beliefs and
655		attitudes? A systematic review. BMC Public Health. 2013;13(1).
656	66.	McPheeters ML, Kripalani S, Peterson NB, Idowu RT, Jerome RN, Potter SA, et
657		al. Closing the quality gap: revisiting the state of the science (vol. 3: quality
658		improvement interventions to address health disparities). Evid Rep Technol
659		Assess. 2012 Aug;208(3):1–475.
660	67.	Jacob R, Harikrishnan KP, Misra R, Ambika G. Measure for degree
661		heterogeneity in complex networks and its application to recurrence network
662		analysis. R Soc Open Sci. 2017 Jan 1;4(1).
663	68.	Jang SH. The role of the corticospinal tract in motor recovery in patients with a
664		stroke: A review. NeuroRehabilitation. 2009;24(3):285-90.
665	69.	Jang SH, Kim K, Kim SH, Son SM, Jang WH, Kwon HG. The relation between
666		motor function of stroke patients and diffusion tensor imaging findings for the
667		corticospinal tract. Neurosci Lett. 20140504th ed. 2014;572:1-6.
668	70.	Kim Y, Kim SH, Kim JS, Hong BY. Modification of Cerebellar Afferent
669		Pathway in the Subacute Phase of Stroke. Journal of Stroke and Cerebrovascular
670		Diseases. 2018 Sep 1;27(9):2445–52.
671	71.	Kim Y, Kim SH, Hong BY, Oh J, Chang S youn. Integrity of the Inferior
672		Cerebellar Peduncle Correlates with Ambulatory Function after Hemorrhagic
673		Stroke. Journal of Stroke and Cerebrovascular Diseases. 2021 Dec 1;30(12).
674	72.	Seo JP, Do KH, Jung GS, Seo SW, Kim K, Son SM, et al. The difference of gait
675		pattern according to the state of the corticospinal tract in chronic hemiparetic
676		stroke patients. NeuroRehabilitation. 2014;34(2):259-66.

1	
2	
3	
4	
5	
6	
7	
8	
9	
10	
11	
11	
12 13	
13	
14	
15	
16	
17	
18	
19	
20	
21	
22	
23	
24	
25	
26	
27	
28	
29	
30	
31	
32	
33	
34	
35	
35 36	
30 37	
38	
50	
39	
40	
41	
42	
43	
44	
45	
46	
47	
48	
49	
50	
51	
52	
53	
54	
55	
56	
57	
58	
59	
60	
00	

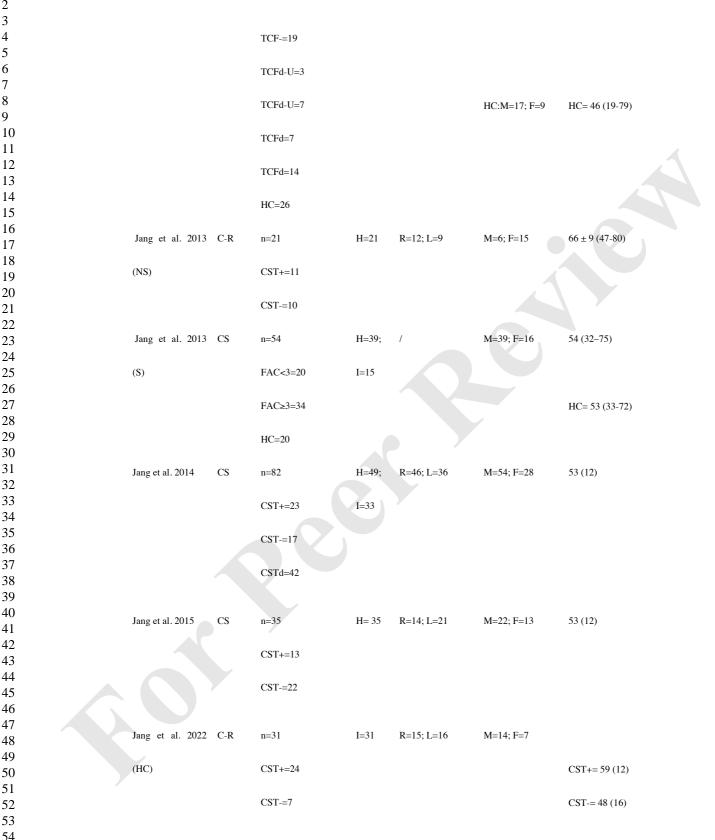
677	73.	Yoo JS, Choi BY, Chang CH, Jung YJ, Kim SH, Jang SH. Characteristics of
678		injury of the corticospinal tract and corticoreticular pathway in hemiparetic
679		patients with putaminal hemorrhage. BMC Neurol. 2014;14.
680	74.	Lee EY, Na Y, Cho M, Hwang YM, Noh JS, Kwon HK, et al. Clinical Factors
681		Associated With Balance Function in the Early Subacute Phase After Stroke. Am
682		J Phys Med Rehabil. 2022 Mar 1;101(3):203–10.
683	75.	Jang SH, Bai D, Su MS, Lee J, Kim DS, Sakong J, et al. Motor outcome
684		prediction using diffusion tensor tractography in pontine infarct. Ann Neurol.
685		2008 Oct;64(4):460–5.
686	76.	Jang SH, Choi BY, Chang CH, Kim SH, Chang MC. Prediction of motor
687		outcome based on diffusion tensor tractography findings in thalamic hemorrhage.
688		International Journal of Neuroscience. 2013 Apr;123(4):233-9.
689	77.	Jang SH, Seo HR, Byun DH. Prognosis of the Ipsilesional Corticospinal Tracts
690		with Preserved Integrities at the Early Stage of Cerebral Infarction: Follow Up
691		Diffusion Tensor Tractography Study. Healthcare (Switzerland). 2022 Jun
692		1;10(6).
693	78.	Kim AR, Kim DH, Park SY, Kyeong S, Kim YW, Lee SK, et al. Can the
694		integrity of the corticospinal tract predict the long-term motor outcome in
695		poststroke hemiplegic patients? Neuroreport. 2018;29(6):453-8.
696	79.	Kim EH, Lee J, Jang SH. Motor outcome prediction using diffusion tensor
697		tractography of the corticospinal tract in large middle cerebral artery territory
698		infarct. NeuroRehabilitation. 2013;32(3):583-90.
699	80.	Kwak SY, Yeo SS, Choi BY, Chang CH, Jang SH. Corticospinal tract change in
700		the unaffected hemisphere at the early stage of intracerebral hemorrhage: A
701		diffusion tensor tractography study. Eur Neurol. 2010 Mar;63(3):149-53.

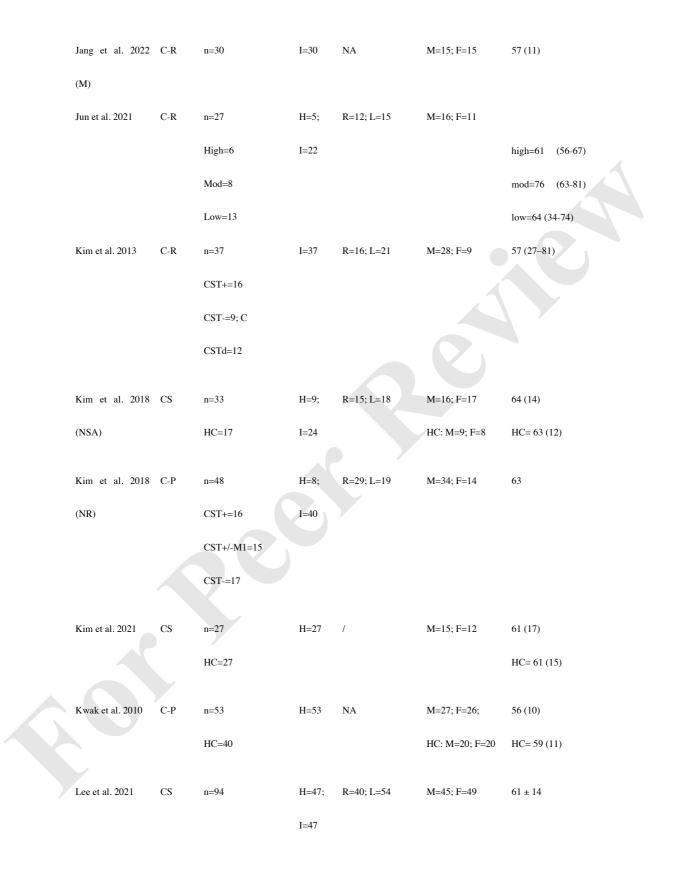
702	81.	Lee EY, Na Y, Cho M, Hwang YM, Kim HS, An H, et al. Short-term and long-
703		term predictors of balance function in stroke patients: A 6-month follow-up
704		study. International Journal of Rehabilitation Research. 2023 Jun 1;46(2):163-9.
705	82.	Wang D, Wang L, Guo D, Pan S, Mao L, Zhao Y, et al. Long-Term Lower Limb
706		Motor Function Correlates with Middle Cerebellar Peduncle Structural Integrity
707		in Sub-Acute Stroke: A ROI-Based MRI Cohort Study. Brain Sci. 2023 Mar
708		1;13(3).
709	83.	Cho HM, Choi BY, Chang CH, Kim SH, Lee J, Chang MC, et al. The clinical
710		characteristics of motor function in chronic hemiparetic stroke patients with
711		complete corticospinal tract injury. NeuroRehabilitation. 2012;31(2):207-13.
712	84.	Ahn YH, Ahn SH, Kim H, Hong JH, Jang SH. Can stroke patients walk after
713		complete lateral corticospinal tract injury of the affected hemisphere?
714		Neuroreport. 2006;17(10):987–90.
715	85.	Van Asseldonk E. Restitution and compensation in the recovery of function in
716		the lower extremities of stroke survivors.
717	86.	Krishnagopal S, Lohse K, Braun R. Stroke recovery phenotyping through
718		network trajectory approaches and graph neural networks. Brain Inform
719		[Internet]. 2022 Dec 1 [cited 2024 Aug 16];9(1):1–11. Available from:
720		https://braininformatics.springeropen.com/articles/10.1186/s40708-022-00160-w
721	87.	Kwakkel G, Kollen B, Lindeman E. Understanding the pattern of functional
722		recovery after stroke: Facts and theories. Restor Neurol Neurosci. 2004;22:281-
723		99.
724	88.	Levin MF, Kleim JA, Wolf SL. What do motor "recovery" and "compensationg"
725		mean in patients following stroke? Neurorehabil Neural Repair. 2009
726		May;23(4):313–9.

2
3
4
4
5
6
6
7
8
0
9 10
10
10
11
12
12
13 14
14
17
15
16
17
1/
18
19
20
21
22
23
25
24
25
20
26
27
28
29
20
30
31
20
32
33
24
34 35
35
36
36 37 38 39
37
38
50
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59

727	89.	Bernhardt J, Hayward KS, Kwakkel G, Ward NS, Wolf SL, Borschmann K, et al.
728		Agreed definitions and a shared vision for new standards in stroke recovery
729		research: The Stroke Recovery and Rehabilitation Roundtable taskforce.
730		International Journal of Stroke. 2017 Jul 1;12(5):444-50.
731	90.	Criekinge T Van. Trunk and gait performance after stroke: a biomechanical
732		approach.
733	91.	Van Criekinge T, Heremans C, Burridge J, Deutsch JE, Hammerbeck U,
734		Hollands K, et al. Standardized measurement of balance and mobility post-
735		stroke: Consensus-based core recommendations from the third Stroke Recovery
736		and Rehabilitation Roundtable. International Journal of Stroke [Internet]. 2024
737		Feb 1 [cited 2024 Jun 17];19(2):158–68. Available from:
738		https://journals.sagepub.com/doi/10.1177/17474930231205207
739	92.	Cheng CY, Hsu CY, Huang YC, Tsai YH, Hsu HT, Yang WH, et al. Motor
740		outcome of deep intracerebral haemorrhage in diffusion tensor imaging:
741		comparison of data from different locations along the corticospinal tract. Neurol
742		Res [Internet]. 2015 Jul 20 [cited 2024 Feb 1];37(9):774-81. Available from:
743		https://www.tandfonline.com/doi/abs/10.1179/1743132815Y.0000000050
744	93.	Veerbeek JM, Winters C, Van Wegen EEH, Kwakkel G. Is the proportional

- 745 recovery rule applicable to the lower limb after a first-ever ischemic stroke?
- 746 2018; Available from: https://doi.org/10.1371/journal.pone.0189279
- 747 94. Liang Z, Zeng J, Liu S, Ling X, Xu A, Yu J, et al. A prospective study of
- 748secondary degeneration following subcortical infarction using diffusion tensor
- 749 imaging. J Neurol Neurosurg Psychiatry [Internet]. 2007 Jun 1 [cited 2024 Aug
- 750 14];78(6):581–6. Available from: https://jnnp.bmj.com/content/78/6/581


751	95.	Virta A, Barnett A, Pierpaoli C. Visualizing and characterizing white matter fiber
752		structure and architecture in the human pyramidal tract using diffusion tensor
753		MRI. Magn Reson Imaging [Internet]. 1999 Oct [cited 2024 Aug
754		14];17(8):1121–33. Available from: https://pubmed.ncbi.nlm.nih.gov/10499674/
755	96.	Puig J, Pedraza S, Blasco G, Daunis-I-Estadella J, Prats A, Prados F, et al.
756		Wallerian Degeneration in the Corticospinal Tract Evaluated by Diffusion Tensor
757		Imaging Correlates with Motor Deficit 30 Days after Middle Cerebral Artery
758		Ischemic Stroke. Available from: www.ajnr.org
759	97.	Boyd LA, Hayward KS, Ward NS, Stinear CM, Rosso C, Fisher RJ, et al.
760		Biomarkers of stroke recovery: Consensus-based core recommendations from the
761		Stroke Recovery and Rehabilitation Roundtable. International Journal of Stroke.
762		2017 Jul 1;12(5):480–93.
763	98.	Stinear M, Stinear C, Stinear CM. Prediction of motor recovery after stroke:
764		advances in biomarkers [Internet]. Vol. 16, Lancet Neurol. 2017. Available from:
765		www.thelancet.com/neurology
766	99.	Veerbeek JM, Van Wegen EEH, Harmeling Van Der Wel BC, Kwakkel G. Is
767		accurate prediction of gait in nonambulatory stroke patients possible within 72
768		hours poststroke? The EPOS study. Neurorehabil Neural Repair [Internet]. 2011
769		Mar [cited 2022 Feb 18];25(3):268-74. Available from:
770		https://pubmed.ncbi.nlm.nih.gov/21186329/
771	100.	Yeo SS, Jang SH, Park GY, Oh S. Effects of injuries to descending motor
772		pathways on restoration of gait in patients with pontine hemorrhage. Journal of
773		Stroke and Cerebrovascular Diseases. 2020 Jul 1;29(7).
774	101.	Nudo RJ, Masterton RB. Descending pathways to the spinal cord, III: Sites of
775		origin of the corticospinal tract. Journal of Comparative Neurology [Internet].


776		1990 Jun 22 [cited 2023 Oct 6];296(4):559-83. Available from:
777		https://onlinelibrary.wiley.com/doi/full/10.1002/cne.902960405
778	102.	Willwacher S, Robbin J, Eßer T, Mai P. Motion analysis systems in research and
779		for practicing orthopedists. Orthopadie [Internet]. 2023 Aug 1 [cited 2024 Aug
780		16];52(8):610–7. Available from:
781		https://link.springer.com/article/10.1007/s00132-023-04404-3
782	103.	Jayaram G, Stagg CJ, Esser P, Kischka U, Stinear J, Johansen-Berg H.
783		Relationships between functional and structural corticospinal tract integrity and
784		walking post stroke. Clinical Neurophysiology. 2012;123(12):2422-8.
785	104.	Marotta N, De Sire A, Marinaro C, Moggio L, Inzitari MT, Russo I, et al.
786		Efficacy of Transcranial Direct Current Stimulation (tDCS) on Balance and Gait
787		in Multiple Sclerosis Patients: A Machine Learning Approach. Journal of Clinical
788		Medicine 2022, Vol 11, Page 3505 [Internet]. 2022 Jun 17 [cited 2024 Aug
789		16];11(12):3505. Available from: https://www.mdpi.com/2077-
790		0383/11/12/3505/htm
791	105.	Perez MA, Cohen LG. The Corticospinal System and Transcranial Magnetic
792		Stimulation in Stroke. Top Stroke Rehabil [Internet]. 2009 Jan 1 [cited 2024 Aug
793		16];16(4):254. Available from: /pmc/articles/PMC4886556/
794	106.	Smith MC, Stinear CM. Transcranial magnetic stimulation (TMS) in stroke:
795		Ready for clinical practice? J Clin Neurosci [Internet]. 2016 Sep 1 [cited 2024
796		Aug 16];31:10-4. Available from: https://pubmed.ncbi.nlm.nih.gov/27394378/
797		
798		
799		
800		
801		

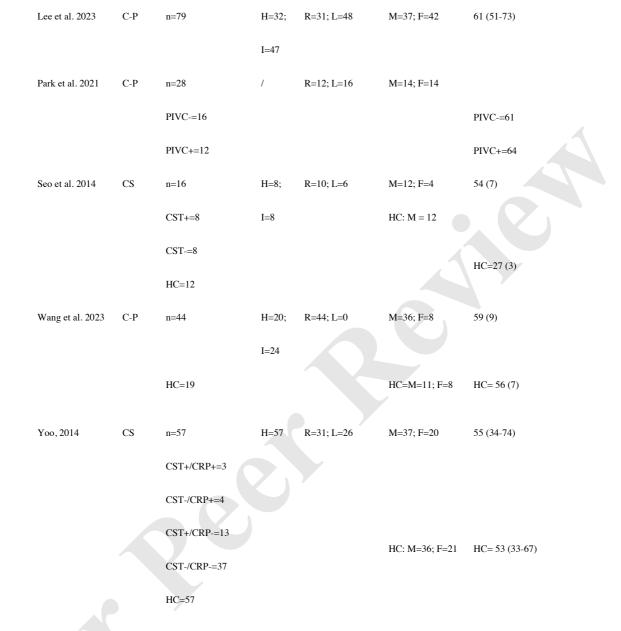

Tables

Table 1. Summary of sample characteristics

leference	Design	Sample	Lesion	Lesion side	Sex	Age
			type			
Cho et al. 2007	C-P	n=40	H=40	R = 13, L = 27	M=21; F=19	53 (10)
		CST+=10				
		CST+/-M1=12				
		CST-=10				
		CSTd=8				
Choi et al. 2021	C-R	n=110	I=110	R=23; L=29	NA	65 (11)
		CST+/DLPFC-	$\mathbf{\mathbf{\nabla}}$			
		CST+/DLPFC+				
		CST-/DLPFC-				
		CST-/DLPFC+				
ang et al. 2008	C-P	n=25	I=25	R=15; L=10	M=11; F=14	62 (43-80)
		CST+=13				
		CST-=12				
ang et al. 2009	CS	n=40	I=40	R= 17 L=23	M=20; F=20	59 (23-77)
		A>U U>A	L			
		TCF-=30				

Abbreviations: CS: cross-sectional; C-P: cohort-prospective; C-R: cohort-retrospective; HC: healthy control; CST: corticospinal tract;
CRP: corticoreticulospinal tract; DLPFC: dorsolateral prefrontal cortex; TFC: Transcallosal fibers; PIVC: parieto-insular Vestibular
cortex; M1: primary motor cortex; "+": preserved; "-": disrupted; "d": degenerated; H: hemorrhage; I: ischemic; M: male; F: female;
R: Right; L: Left.
Values are means (SD). Demographics and stroke information were collected from all included studies (total: 22)

816 Table 2. Summary of Results about Imaging and Clinical Tools

Table 2 Summary of results about imaging and clinical tools

Table 2.	Sumr	nary of R	esults about	Imaging	and Clinical Tools	
Table 216		of months of	out imaging and	alimiaal taala		
CST struc			out maging and	chinical tools		
Ref.	D	Imaging	Imaging	clinical tool	Results	Conclusion
Cho et al. 2007	C-P	type dMRI	analysis CST structural connectivity	FAC	Onset: no differences in the FAC score between CST conditions 6m: difference in FAC score between CST conditions (P=.0003) CST+> CST+/-M1 > CST- > CSTd	Onset: No difference in walking independence between CST conditions. 6m: More CST+ patients have full walking independence, followed by CST+/-M1, CST- and CSTd.
Jang et al. 2008	C-P	dMRI	CST structural connectivity	FAC	Onset: no differences in the FAC score between CST conditions. (p = .103). 6m: all patients walked independently. 77% of CST+ patients and 8% of CST- had a FAC score of 5. Onset-6m: FAC score improvement of CST+ patients were higher than CST- (P=.001) 6m outcome prediction: CST condition showed good accuracy. (FAC: AUC=843; SE=.09, P=.004).	Onset: no difference in walking independence between CST conditions 6m: More CST+ patients achieved the highest score on walking independence compared to CST Onset-6m: CST+ showed better walking independence recovery than CST 6m outcome prediction: CST condition at the early stage of a pontine infarct can help predict the FAC score.
Jang et al. 2013 (NS)	C-R	dMRI	CST structural connectivity	FAC	Onset: no differences in the FAC score between CST conditions 6m: CST+ had better FAC scores than CST- (P=.025). 6m: positive correlation between FAC and FA ratio, FN, and FL of CST (FA-FAC: r=.455, P=.038; FN-FAC: r=.602, P=.004; TL - FAC: r=.600, P=.004).	Onset: no difference in walking independence between CST conditions 6m: CST+ patients walked more independently. 6m: integrity of structural connectivity of the CST (FA, FN, and FL) was correlated to walking independence.
6	. (

Jang et	CS	dMRI	CST	FAC	6m: positive correlation between FAC and FA and FN ratios of CST	6m: integrity of structural connectivity of the CST (FA and FN) was
al. 2014			structural		(P<.05; r =.50, .47).	correlated to walking independence.
			connectivity		6m: CST+ > CSTd on FAC scores	6m: CST+ patients had higher walking independence than CSTd.
					CST- > CSTd on FAC scores	CST- patients had higher walking independence than CSTd.
					CST+ = CST- on FAC scores	CST+ and CST- patients were not different
Jang et	CS	dMRI	CST and	FAC	>3m: FAC<3 < HC on FA values of CST-U	FAC<3 showed lower FA values of the CST-U than HC.
al. 2013			CRP		No difference between FAC<3, FAC≥3, and HC on ADC, FV	
(S)			structural		values of CST-U	
			connectivity			
Jang et	CS	dMRI	CST	FAC	>2m: CST+ > CST- on FAC scores (P<.05)	>2m: CST+ patients had higher walking independence than CST-
al. 2015			structural		No correlation between FAC scores and FA, MD, and FV of the	The integrity of structural connectivity of the RN (FA, MD, FV)
			connectivity		RN (P>.05).	was not correlated to walking independence.
Jang et	CS	dMRI	CST	FAC	≤3m: no difference between TFC conditions on FAC from -U to -A	<3m: no difference in walking independence between the TFC condition
al. 2009			structural		and -A to -U.	of the CST.
			connectivity		U -> A: TFC- = TFCd = TFCd-U on FAC (P=.157)	
					A-> U TFC- = TFCd = TFCd-U on FAC (P=.887)	
Jang et	C-R	dMRI	CST	FAC	Onset (12.58-4.34d): CST+ > CST- (P<.005)	Onset: CST+ patients had higher walking independence than CST-
al. 2022			integrity		Onset - chronic: CST+ improved on FAC (P<.005)	Onset - Chronic: Mean FAC score improved significantly in all CST
(HC)					CST- improved on FAC (P<.005)	conditions.
					Chronic: CST+ > CST- (P<.005)	
						Chronic: CST+ patients had higher walking independence than CST-

_								
0								
1 ว								A
2 3								
4								
5								
6								
7								
8								
9	Jun et al.	C-R	dMRI	CST, CRP,	FAC,	1m: No significant association between the FAC FN and FA of C	CST	Im: Integrity of the CST (FA and FN) was not correlated to walking
0	2021			and	BBS	6m: No significant association between the FAC FN and FA of C	CST	independence.
1 7				CPCT structural				6m: Integrity of the CST (FA and FN) was not correlated to walking independence.
1 2 3				connectivity				inceptinence.
	Kim et	CS	dMRI	CST and	FAC	<2m: no correlation between FAC and volume CST-A.		<2m: integrity of the CST (TV_AI, V-U, V-A) was not correlated to
4 5 6	al. 2018			CPCT		No correlation between FAC and volume CST-U		walking independence.
6	(NSA)			structural		No correlation between FAC and TV_AI CST		
7	Kim et	C-P	dMRI	CST	FAC	Baseline: CST+ = CST- = CSTd on FAC		Baseline: no difference in walking independence between CST
8	al. 2018			structural		2y: CST+ = CST- on FAC		conditions.
9	(NR)			connectivity		Baseline-2year: FAC score improved but CST+ = CST- = CSTd.	1.	2y: CST+ and CST- had higher walking independence than CSTd but not significant.
0 1								Baseline-2y: CST+, CST- and CSTd showed similar independent walking
2								recovery.
3	Kim et	C-R	dMRI	CST	FAC	Onset: CST+ = CST- = CSTd on FAC		Onset: no difference in walking independence between CST conditions.
4	al. 2013	C-K	ume	structural	me	Onset – 6m: CST+ > CST- on FAC		Onset – 6m: CST+ patients had higher independente verween cST contantors.
5				connectivity		CST+ > CSTd on FAC		CST- and CSTd.
6						CST- = CSTd on FAC		The mean FAC score improved significantly in all CST conditions.
7						6m: CST+ > CST- on FAC CST+ > CSTd on FAC		6m: CST+ had higher walking independence than CST- and CSTd. The integrity of structural connectivity of the CST (FA ratio) was
8						CST- = CSTd on FAC		positively correlated to walking independence.
9 0						Positive correlation between FAC scores and FA ratio (P=.00	02,	Infarct volume was negatively correlated to walking independence.
						r=.500).		
1 2					~			
3								
4								
5								
6								
/								
8								
2]								
1								
2								
3								
4								
5								
6								
/ 2								
0 0								
<i>,</i>								

Kwak et	C-P	dMRI	CST	FAC	Onset: no correlation between FAC scores and FN CST-U (P=.081)	Onset: The integrity of structural connectivity of the CST-U (FN and F.
al. 2010			structural		No correlation between FAC scores and the FA value of CST-U (P=.109) Time of DTT: no correlation between FAC scores and FN CST-U (P=.467).	value) was not correlated to walking independence. Time of DTT: integrity of structural connectivity of the CST-U (FN an FA value) was not correlated to walking independence.
					No correlation between FAC scores and FA value CST-U (P=.396).	
Lee et	C-P		CST	BBS	1m: FA_LI of the CST was correlated with BBS scores at 3	Im: integrity of the CST (FA_LI) was correlated with standing balance
al. 2023					(r=468) and 6 months (r=462) poststroke	performance.
Seo et	CS	dMRI	CST		Chronic: CST+= CST- on FAC (P=.334)	Chronic: no difference in walking independence between CST condition
al. 2014			structural	FAC		
			connectivity			

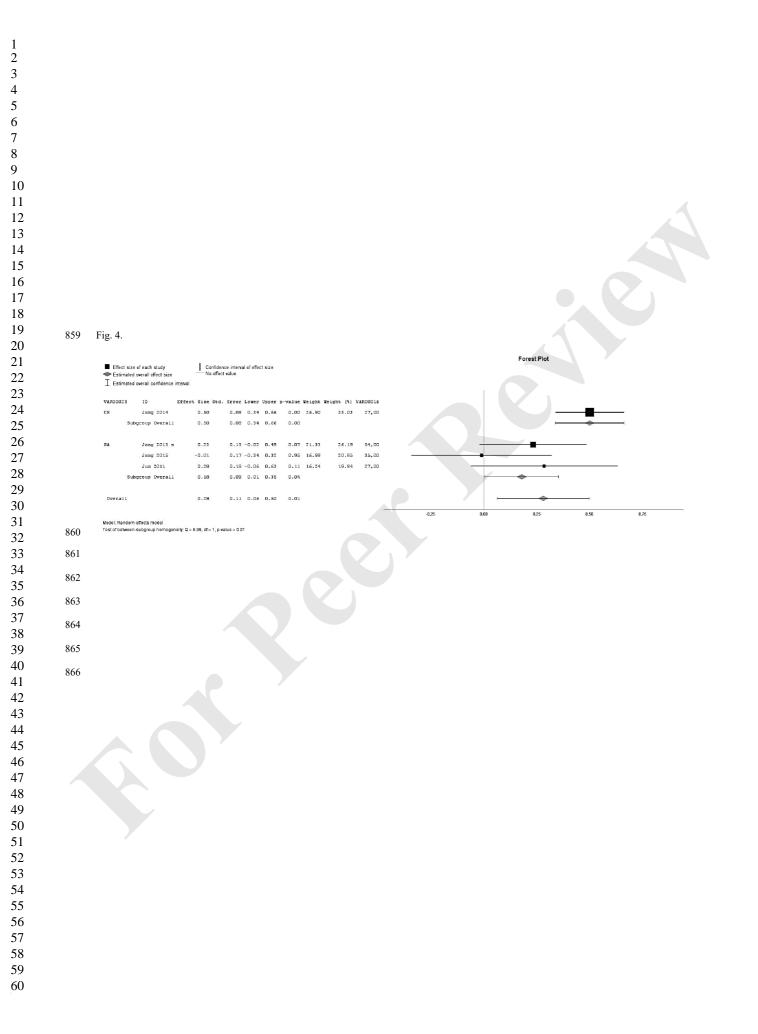
Referen ce	Des ign	Imaging type	Imaging analysis	clinical tool	Results	Conclusion
	-					
choi et	C-R	dMRI	CST,	FAC	Initial: CST+ group: CST+/DLPFC+ = CST+/DLPFC- on FAC.	All CST+ showed similar results on walking independence regardless of
al. 2021			thalamus-		CST- group: CST-/DLPFC+ = CST-/DPLFC- on FAC	DPLFC condition.
			DLPFC		CST+ = CST- on FAC	
			structural		Initial-6m: CST+ group (CST+/DLPFC+ = CST+/DLPFC-)	CST-/DLPFC+ showed better walking independence recovery than CST
			connectivity		improved on FAC	/DLPFC-, resulting in a higher walking independence score at 6m.
					CST- group (CST-/DLPFC+ = CST-/DPLFC- improved on FAC	
					6m: CST+ group: CST+/DLPFC+ = CST+/DLPFC- on FAC.	
					CST+/DLPFC- > CST-/DPLFC- on FAC	
					CST+ > CST- on FAC	

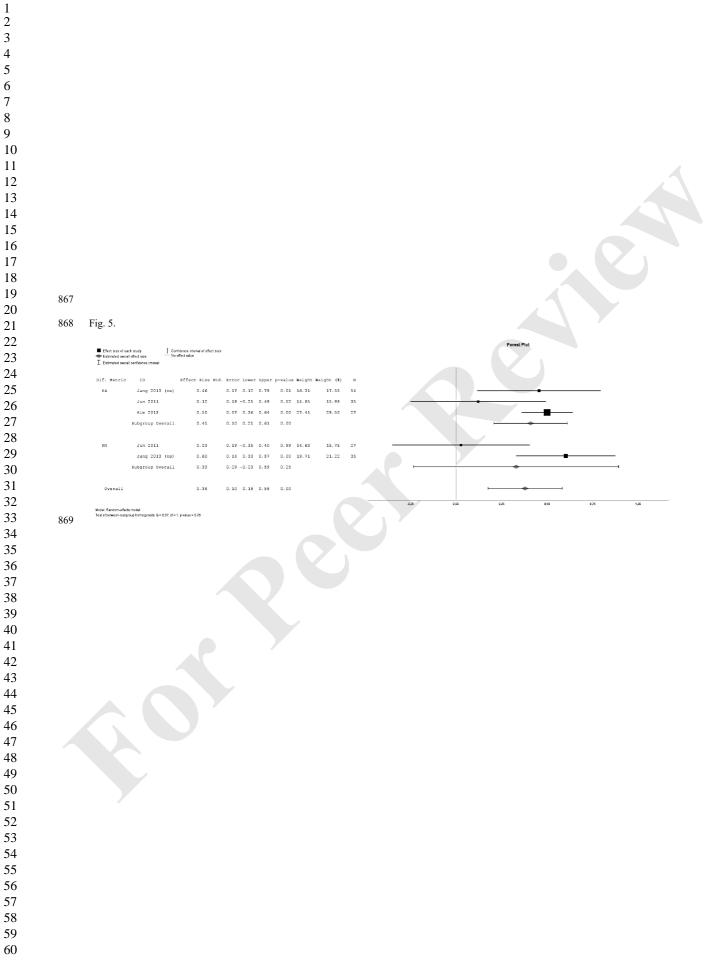
Jag et CRP injuy CRP injuy al. 2013 structural FAC>3 CRP+> FAC>3 CRP. on FAC The group with better walking independence scores (FAC>5.5) (S) connectivity No difference between FAC<3 and FAC>3 on FA, ADC, and FV The group with better walking independence scores (FAC>5.5) (S) connectivity No difference between FAC<3 and FAC and FAC FAC>3 showed higher FV volumes of the CRP.U Jag et C.R dMRI NST, CRP FAC Initial (dMRI) – chronic (FAC): Initial (dMRI) – chronic (FAC): al. 2022 no correlation between FAC and FA of NST (r=.288; P=.23) and Oralia independence did not correlate with FA values of the CRP. M(M) NST, CRP FAC Initial (dMRI) – chronic (FAC): Initial (dMRI) – chronic (FAC): al. 2022 no correlation between FAC and FA of NST (r=.288; P=.23) and Oralia independence did not correlate with FA values of the CRP. M(M) Significant correlation between FAC and FV of NST (r=.288; P=.23) and Oralia independence did not correlate with FA values of the CRP. Junet al. C.R dMRI CST, CRP, FAC, In: No significant association between the FAC and FN on TST (r=.288; P=.23) and In: Integrity of the CST, CRP, and CPCT (FA and FN) 2021 Junet al. C.R <th></th> <th></th> <th></th> <th></th> <th></th> <th></th> <th></th>							
Jang etC.RdMRINST, CRPFACInitial (dMRI) - chronic (FAC): no correlation between FAC and FA of NST (r=.288; P=.23) and (RP (r=.295; P=.11))Initial (dMRI) - chronic (FAC): Walking independence did not correlate with FA values of the CRP.(M)CRP (r=.295; P=.11) Significant correlation between FAC and FV of NST (r=.786; P=.00) and CRP (r=.821; P=.00) Association between FAC and FV of NST (β=.362) and CRP (β = .532) (Adjusted R2=.70, F=34.91, P<.05)Walking independence did correlate and associate with FV value NST and CRP.Jun et al.C-RdMRICST, CRP, and CPCTFAC, BBSIm: No significant association between FAC and FV of NST (β = .362) and CRP (β = .532) (Adjusted R2=.70, F=34.91, P<.05)	Jang et al. 2013	CS	dMRI	CRP structural	FAC	injury FAC≥3 CRP+ > FAC≥3 CRP- on FAC No difference between FAC<3 and FAC≥3 on FA, ADC, and FV values of CRP-A FAC≥3 > FAC<3 and HC on FV values of CRP-U No correlation between FAC scores and the FV of the CRP-A, but a	The group with better walking independence scores (FAC3-5) with a intact CRP shows higher walking independence scores than with injurc
2021 and CPCT BBS CRP and CPCT correlated to walking independence. structural 6m: No significant association between the FAC and FN and FA of CRP and CPCT 6m: Integrity of the CST, CRP, and CPCT (FA and FN) correlated to walking independence. Kim et CS dMRI CST and FAC <2m: no correlation between FAC and volume CPCT-A.	al. 2022	C-R	dMRI	NST, CRP	FAC	no correlation between FAC and FA of NST (r=.288; P=23) and CRP (r=.295; P=.11) Significant correlation between FAC and FV of NST (r=.786; P=.00) and CRP (r=.821; P=.00) Association between FAC and FV of NST (β = .362)and CRP (β =	Initial (dMRI) – chronic (FAC): Walking independence did not correlate with FA values of the NST of CRP. Walking independence did correlate and associate with FV values of th
al. 2018 CPCT No correlation between FAC and TV_AI CPCT walking independence. (NSA) structural		C-R	dMRI	and CPCT structural		CRP and CPCT 6m: No significant association between the FAC and FN and FA of	6m: Integrity of the CST, CRP, and CPCT (FA and FN) were not
	al. 2018	CS	dMRI	CPCT structural	FAC		<2m: integrity of the CPCT (AITV, V-U, V-A) was not correlated walking independence.

Kim et CS dMRI al. 2021	BBS ICP/dSCP and CST structural connectivity	<2m: Correlation between FA_LI ICP and all severities of BBS (moderate: p=002; severe: p=039; mean p=.002) No correlation between FA_LI CST and all severities of BBS (moderate: p=317; severe: p=1.000; mean r=389, p=.082)	Integrity of the ICP (FA laterality index) correlated with both the moderate and severe scores of BBS and the mean BBS score. The laterality index for integrity of the CST (FA) did not correlate with the balance performance.
Lee et CS dMRI al. 2021	whole brain FAC (CPCS, CST) structural connectivity	Acute: association between FAC score and FA of the CPCS at the lesioned midbrain and non-lesioned middle CP Association between FAC score and FA of the non-lesioned CST at medial lemniscus at the bilateral midbrain Association between FAC scores and MO values of the lesioned posterior corpus callosum BBS was negatively associated with FA_L1 of the CST (r=-406, p<001)	A positive correlation has been found between FA-values in theCPCS and corona radiata of the -A hemisphere, the CST, bilateral medial lemniscus in the brainstem, and the corpus callosum of the -U hemisphere, and walking independence. A positive correlation has been found between the MO values of the posterior corpus callosum and walking independence. Balance performance was negatively associated with laterality index for integrity of the CST (FA)
Park et C-P dMRI al. 2021	PIVC FAC structural connectivity	 Early sub-acute: no correlation between FAC and FA, MD, and tract volume of the PIVC-A. Correlation between FAC and MI scores early sub-acute, late sub-acute, and at 6 months. Late sub-acute: correlation between FAC and FA of PIVC-A. No correlation between FAC and MD, TV of the PIVC-A Gm: no correlation between FAC and FA, MD, TV of PIVC-A. Correlation between FAC early sub-acute, late sub-acute, and at 6 months. 	Early sub-acute: walking independence was not correlated with DTI parameters of the PIVC-A. Walking independence was correlated with MI scores during the whole recovery process. Late sub-acute: walking independence was correlated with the FA value of the PIVC-A but not with the MD and tract volume of the PIVC-A. Gm: walking independence was not correlated with DTI parameters of PIVC-A. Walking independence was correlated with MI scores during the whole recovery process.

	Wang et C-P dMRI	CP and MCP BBA	Chronic: Correlation between BBA and rFA of the CP (r=.581; p=.00)	The rFA of the CP was more significantly positively correlated with the							
	al. 2023		and MCP (r=.547; p=.004)	1-year BBA score.							
			Correlation between BBA and FA_LI of the CP (r=.573; p=.00) and MCP (r=.452; p=.022)	The LI of the CP was significantly positively correlated with the 1-year BBA score.							
				the LI of the CP had a more significant association with 1-year BBA as							
				compared to the LI of the MCP							
	Yoo et CS dMRI	CST and FAC	8-30d: CST+/CST- = CST-/CRP+ = CST+/CRP- > CRP-/CST- on	patients with injury of the CST and CRP showed worse independent							
	al. 2014	CRP	FAC	walking scores than patients with injury of either the CST or CRP or no							
		structural	No correlation between FAC scores and mV	injury at all in the early sub-acute phase. These results suggest the							
		connectivity		necessity for evaluation of both the CRP and the CST in patients with							
				putaminal hemorrhage.							
818											
819	CS: cross-sectional; C-R: cohort-r	etrospective; C-P: cohort-prosp	ective; dMRI: diffusion magnetic resonance imaging; HC: healthy control; C	ST: corticospinal tract; CRP: corticoreticulospinal tract; DLPFC: dorsolateral							
820	prefrontal cortex; TFC: Transcalle	prefrontal cortex; TFC: Transcallosal fibers; PIVC: parieto-insular Vestibular cortex; M1: primary motor cortex; RN: Red nucleus; CP; cerebral peduncle; MCP: middle cerebral peduncle; "+": preserved; "-:": disrupted;									
821	"d": degenerated; H: hemorrhage;	"d": degenerated; H: hemorrhage; I: ischemic; FA: Fractional Anisotropy; rFA: ratio FA: ADC: Apparent Diffusion Coefficient; FL: fiber length; FN: fiber number; MD: mean diffusivity; FV: fiber volume; LI: laterality									
822	index; MO: mode of anisotropy; m	V: milliliter volume; AITV: as	ymmetry index based on tract volume; FAC: functional ambulation category;	BSS: Berg balance scale; BBA: Brunel Balance Assessment; -U: unaffected;							
823	-A: affected; peduncle >: Significa	antly higher; ≥; higher, not signi	ificant; <: significantly lower; =: no significant difference.								
824											

825 Tables caption


826 Table 1. Summary of sample characteristics


827 Table 2. Summary of Results about Imaging and Clinical Tools

835 836	Fig. 2.
	Effect size of each study Confidence intenal of effect size Stimated overall effect size No-effect value
	Bif. Nettic ID Effect Size Std. Error Lower Upper p-value Veight Veight (%) N FA Jang 2015 0.13 0.02 0.49 0.07 60.38 21.62 54 Jang 2015 -0.01 0.17 -0.34 0.32 0.65 35.01 12.54 35 Jun 2011 0.28 0.18 11.46 27
	Jun 2011 0.28 0.18 -0.06 0.63 0.11 31.98 11.46 27 Subgroup Overall 0.18 0.09 0.01 0.15 0.04 7M Jun 2011 0.00 0.19 -0.37 0.38 0.99 27.00 5.67 27 Subgroup Overall 0.00 0.19 -0.37 0.38 0.99
	Subgloup Greatin D.GS D.17 D.38 D.17 15.18 12.40 35 Jang 2013 D.06 D.14 D.02 D.14 D.02 D.14 D.02 D.14 D.02 D.14 D.03 D.66 D.02 D.14 D.02 D.14 D.03 D.66 D.04 D.02 D.14 D.03 D.66 D.04 D.02 D.14 D.02 D.14 D.03 D.66 D.04 D.02 D.14 D.03 D.66 D.04 D.02 D.14 D.04 D.04 D.05 D.04 D.05 D.04 D.05 D.04 D.05 D.05
	MD Jang 2015 -0.06 0.17 -0.39 0.27 0.72 35.25 12.63 35 Subgroup Overall -0.06 0.17 -0.39 0.27 0.72
	Overall 0.00 0.06 -0.04 0.20 0.10
838 839 840 841 842 843 844 845 846 847 848	
848	

1		
2		
3		
4		
5		
6 7		
8		
9		
10		
11		
12		
13		
14		
15		
16 17		
17		
10	0.40	
20	849 850	Fig. 3.
21		Effect size of each study Continence interval of effect size Forest Plot
22		I Eminated exemi series and an
23		Netric ID Effect Size Std. Error Lower Upper p-value Weight Weight (%) VARUDUL6
24		FA Jang 2014 0.50 0.08 0.34 0.66 0.00 145.78 51.90 35.00
25 26		
20 27		FN Jang 2014 0.47 0.09 0.30 0.64 0.00 135.09 48.10 54.00
28		
29		overali 0.49 0.06 0.37 0.60 0.00
30		Model 0,1 0,8 0,8 6,7 Test (Teleforem subgraph functioner) 0,200,61 1,9 6,7
31	851 852	
32 33	853	
33 34		
35	854	
36	855	
37 38	856	
39	857	
40	858	
41		
42 43		
43 44		
45		
46		
47		
48		
49 50		
50 51		
51 52		
52 53		
54		
55		
56		
57		
58 50		
59 60		
00		

870	Figures captions
871	Fig. 1. Flow diagram
872	Fig. 2. Cross-sectional associations between CST integrity metrics and FAC in the sub-
873	acute phase.
874	Fig. 3. Cross-sectional associations between CST integrity metrics and FAC in the
875	chronic phase.
876	Fig. 4. Differences between the sub-acute cross-sectional associations between CST-FA
877	and FAC, and the chronic cross-sectional association.
878	Fig. 5. Prognostic associations between CST integrity metrics measured within the first
879	months poststroke, and FAC, measured in the chronic phase poststroke.
880	
881	
882	
883	
884	
885	
886	
887	
888	
889	
890	
891	
892	
893	
894	

Supplemental Material

Tables.

Table S1. Search strategy terms

Table S1 | Search strategy terms

Database	Search strategy
Pubmed	((("stroke"[MeSH Terms] OR "stroke"[All Fields] OR "brain ischemia"[All Fields] OR "brain Infarct"[All Fields] OR "cerebral infarction"[All Fields] OR "cerebral infarct"[All Fields] OR "cerebral haemorrhage"[All Fields] OR "cerebral hemorrhage"[All Fields] OR "cerebral infarct"[All Fields] OR "cerebral hemorrhage"[All Fields] OR "cerebral infarct"[All Fields] OR "cerebral hemorrhage"[All Fields] OR "cerebral infarct"[All Fields] OR "cerebral hemorrhage"[All Fields] OR "walking independence"[All Fields] OR "FAC"[All Fields] OR "functional ambulation category"[All Fields] OR "gait"[MeSH Terms] OR "locomotion"[MeSH Terms] OR "dependent ambulation"[MeSH Terms] OR "postural balance"[MeSH Terms] OR "balance scale"[All Fields] OR "postural control" [All Fields] OR "balance assessment"[All Fields] OR "balance test"[All Fields] OR "Data control" [All Fields] OR "balance test"[All Fields] OR "diffusion Magnetic Resonance Imaging"[All Fields] OR "diffusion Magnetic Resonance Imaging"[All Fields] OR "diffusion mri"[All Fields] OR "diffusion mri"[All Fields] OR "diffusion weighted imaging"[All Fields] OR "DWI"[All Fields] OR "diffusion tensor imaging"[All Fields] OR "DVI"[All Fields] OR "diffusion tractography"[All Fields])
Web of Science	(TS=("Stroke" OR "Brain Ischemia" OR "Brain Infarct" OR "Cerebral Infarction" OR "Cerebral Infarct" OR "Cerebral Haemorrhage" OR "Cerebral Hemorrhage" OR "Cerebral Events") AND TS=("Motor Function" OR "Walking Independence" OR "FAC" OR "Functional Ambulation Category" OR "Gait" OR "Locomotion" OR "multion" OR "Postural Balance" OR "Balance Scale" OR "Postural Control" OR "Balance Test") AND TS=("Magnetic Resonance Imaging" OR "Diffusion Magnetic Resonance Imaging" OR "Diffusion Tensor Imaging" OR "Diffusion Tensor Imaging" OR "Diffusion Tensor Imaging" OR "Diffusion Tensor Tractography" OR "Diffusion Tractography"))
Cochrane Library	((("Stroke" OR "Brain Ischemia" OR "Brain Infarct" OR "Cerebral Infarction" OR "Cerebral Infarct" OR "Cerebral Haemorrhage" OR "Cerebral Hemorrhage" OR "Cerebral Infarct" OR "Walking Independence" OR "FAC" OR "Functional Ambulation Category" OR "Gait" OR "Locomotion" OR "ambulation" OR "Postural Balance" OR "Balance Scale" OR "Postural Control" OR "Balance Assessment" OR "Balance Test") AND ("Magnetic Resonance Imaging" OR "Diffusion Magnetic Resonance Imaging" OR "Diffusion MRI" OR "Diffusion Weighted Imaging" OR "DWI" OR "Diffusion Tensor Imaging" OR "DTI" OR "Diffusion Tensor Tractography"))
PEDro	Stroke, muscle weakness, magnetic resonance imaging
SCOPUS	TITLE-ABS-KEY (("Stroke" OR "Brain Ischemia" OR "Brain Infarct" OR "Cerebral Infarction" OR "Cerebral Infarct" OR "Cerebral Haemorrhage" OR "Cerebral Hemorrhage" OR "Cerebrovascular Events") AND ("Motor Function" OR "Walking Independence" OR "Gait" OR "Locomotion" OR "ambulation" OR "Postural Balance" OR "Balance Scale" OR "Postural Control" OR "Balance Assessment" OR "Balance Test") AND ("Magnetic Resonance Imaging" OR "Diffusion Magnetic Resonance Imaging" OR "Diffusion MRI" OR "Diffusion Weighted Imaging" OR "Diffusion Tensor Imaging" OR "DTI" OR "Diffusion Tensor Tractography" OR "Diffusion Tractography"))

Table S2. PRISMA 2020 Checklist

Table S2 | PRISMA 2020 Checklist

Section and Topic	It e	Checklist item	Locatio n where	
	m #		item is reported	
TITLE	Ħ		reported	
Title	1	Identify the report as a systematic review.	P1	
ABSTRACT	2		P2	
Abstract INTRODUCT	2 10N	See the PRISMA 2020 for Abstracts checklist.	P2	
Rationale	3	Describe the rationale for the review in the context of existing knowledge.	P3-5	
Objectives	4	Provide an explicit statement of the objective(s) or question(s) the review addresses.	P3-5	
METHODS	_			
Eligibility criteria	5	Specify the inclusion and exclusion criteria for the review and how studies were grouped for the syntheses.	P7	
Information sources	6	Specify all databases, registers, websites, organisations, reference lists and other sources searched or consulted to identify studies. Specify the date when each source was last searched or consulted.	P7	
Search strategy	7	Present the full search strategies for all databases, registers and websites, including any filters and limits used.	Figurs	
Selection process	8	Specify the methods used to decide whether a study met the inclusion criteria of the review, including how many reviewers screened each record and each report retrieved, whether they	Figures	
Â		worked independently, and if applicable, details of automation tools used in the process.		
Data collection process	9	Specify the methods used to collect data from reports, including how many reviewers collected data from each report, whether they worked independently, any processes for obtaining or confirming data from study investigators, and if applicable, details of automation tools used in the process.	P7-8	
Data items	1 0 a	List and define all outcomes for which data were sought. Specify whether all results that were compatible with each outcome domain in each study were sought (e.g. for all measures, time points, analyses), and if not, the methods used to decide which results to collect.	Tables	
	1 0 b	List and define all other variables for which data were sought (e.g. participant and intervention characteristics, funding sources). Describe any assumptions made about any missing or unclear information.	Tables	
Study risk of bias assessment	1 1	Specify the methods used to assess risk of bias in the included studies, including details of the tool(s) used, how many reviewers assessed each study and whether they worked independently, and if applicable, details of automation tools used in the process.	P8 & tables	
Effect measures	1 2	Specify for each outcome the effect measure(s) (e.g. risk ratio, mean difference) used in the synthesis or presentation of results.	P11-14	
Synthesis methods	1 3 a	Describe the processes used to decide which studies were eligible for each synthesis (e.g. tabulating the study intervention characteristics and comparing against the planned groups for each synthesis (item #5)).	P5-6; 10	
	1 3 b	Describe any methods required to prepare the data for presentation or synthesis, such as handling of missing summary statistics, or data conversions.	Р9	
	1 3 c	Describe any methods used to tabulate or visually display results of individual studies and syntheses.	Tables	
	1 3 d	Describe any methods used to synthesize results and provide a rationale for the choice(s). If meta-analysis was performed, describe the model(s), method(s) to identify the presence and extent of statistical heterogeneity, and software package(s) used.	P9	
	1 3 e	Describe any methods used to explore possible causes of heterogeneity among study results (e.g. subgroup analysis, meta-regression).	P9	
	1 3f	Describe any sensitivity analyses conducted to assess robustness of the synthesized results.	Р9	
Reporting bias assessment	1 4	Describe any methods used to assess risk of bias due to missing results in a synthesis (arising from reporting biases).	P8	
Certainty assessment	1 5	Describe any methods used to assess certainty (or confidence) in the body of evidence for an outcome.	P8	
RESULTS				
Study selection	1 6	Describe the results of the search and selection process, from the number of records identified in the search to the number of studies included in the review, ideally using a flow diagram.	Tables	
	a 1	Cite studies that might appear to meet the inclusion criteria, but which were excluded, and	Tables	
	6 b	explain why they were excluded.		
Study	1	Cite each included study and present its characteristics.	Tables	

Risk of bias	1	Present assessments of risk of bias for each included study.	Tables
in studies	8	Tresent assessments of fisk of one for each monducu study.	1 40105
Results of	1	For all outcomes, present, for each study: (a) summary statistics for each group (where	P11-14
individual	9	appropriate) and (b) an effect estimate and its precision (e.g. confidence/credible interval),	&
studies	Ĺ	ideally using structured tables or plots.	figures
Results of	2	For each synthesis, briefly summarise the characteristics and risk of bias among contributing	P11-14
syntheses		studies.	1 1 1 - 1 -
syntheses	a	studies.	
	2 a	Present results of all statistical syntheses conducted. If meta-analysis was done, present for each	P11-14
	$\begin{bmatrix} 2\\ 0 \end{bmatrix}$	the summary estimate and its precision (e.g. confidence/credible interval) and measures of	&
	b		
		statistical heterogeneity. If comparing groups, describe the direction of the effect.	figures P11-14
	2	Present results of all investigations of possible causes of heterogeneity among study results.	P11-14 &
	, v		~~
	c		figures
	2	Present results of all sensitivity analyses conducted to assess the robustness of the synthesized	P11-14
	0	results.	&
	d		figures
Reporting	2	Present assessments of risk of bias due to missing results (arising from reporting biases) for	P11-14
biases	1	each synthesis assessed.	& tables
Certainty of	2	Present assessments of certainty (or confidence) in the body of evidence for each outcome	P11-14
evidence	2	assessed.	& tables
DISCUSSION			
Discussion	2	Provide a general interpretation of the results in the context of other evidence.	P14-15
	3		
	a		
	2	Discuss any limitations of the evidence included in the review.	P16
	3		
	b		
	2	Discuss any limitations of the review processes used.	P16
	3		
	c		
	2	Discuss implications of the results for practice, policy, and future research.	P15
	3	, F, F	
	d		
OTHER INFO)RM	ATION	
Registration	2	Provide registration information for the review, including register name and registration	P5
and protocol	4	number, or state that the review was not registered.	15
protocor	a		
	2	Indicate where the review protocol can be accessed, or state that a protocol was not prepared.	P5
	4	indicate where the review protocol can be accessed, or state that a protocol was not prepared.	1.5
	b		
	2	Describe and explain any amendments to information provided at registration or in the protocol.	NA
	4	beserie and explain any amendments to mormation provided at registration of in the protocol.	INA
	4 c		
Summent	2 c	Describe sources of financial or non-financial support for the review, and the role of the funders	P17
Support	5		P1/
C I	-	or sponsors in the review.	C
Competing	2	Declare any competing interests of review authors.	Cover
interests	6		letter
Availability	2	Report which of the following are publicly available and where they can be found: template	NA
of data. code	7	data collection forms; data extracted from included studies; data used for all analyses; analytic	
,		code; any other materials used in the review.	1
and other materials		code, any other materials used in the review.	

From: Page MJ, McKenzie JE, Bossuyt PM, Boutron I, Hoffmann TC, Mulrow CD, et al. The PRISMA 2020 statement: an updated guideline for reporting systematic reviews. BMJ 2021;372:n71. doi: 10.1136/bmj.n71

Reference	D	S1	S2	S3	S4	C1	01	02	Total	Score
Jang 2009	CS	•	Ð	0	Ð	0	Ð	Ð	4	POOR
Jang 2013 (s)	CS	Ð	Ð	0	Ð	0	Ð	Ð	7	GOOD
Jang 2014	CS	Ð	Ð	•	Ð	Ð	Ð	Ð	9	GOOD
Jang 2015	CS	0	Ŧ	•	Ð	Ð	Ð	Ð	7	GOOD
Kim 2018 (nsa)	CS	Θ	Ð	•	Ð	Ð	Θ	Ð	6	MOD
Kim 2021	CS	0	Ð	Ð	Ð	Ð	Ð	Ð	7	GOOD
Lee 2021	CS	Ð	Ð	•	Ð	•	Ð	Ð	5	MOD
Seo 2014	CS	Ð	Ŧ	Ŧ	Ð	Ð	Ð	Ð	8	GOOD
Yoo 2014	CS	0	Ð	Ð	Ð	Đ	Ð	Ð	7	GOOD

Table S3: Risk of Bias Cross-sectional Associations

D: Design; CS:	cross-sectional
----------------	-----------------

ign; CS: c	ross-sectional		
S1	Selection; Representativeness of the sample	θ	
S2	Selection; sample size		
S 3	selection; phase of recovery	Ŧ	
S4	selection; MRI record ascertainment		
C1	Comparability; factors of confounders		
01	Outcome; assessment		
02	Outcome; statistical test		

Ę		

Two stars

One star

No star

Table 4. Risk of Bias of Cohort studies

Г

Table S4: Risk of Bias of Longitudinal studies											
Reference	D	S1	S2	S3	S4	C1	01	02	03	Total	Score
Cho 2007	C-P	0	Ð	0	ŧ	Ð	Ð	Ŧ	0	6	MOD
Choi 2021	C-R	•	Ð	Ð	Ð	Ð	ŧ	Ð	0	7	GOOD
Jang 2008	C-P	•	0	Ð	ŧ	Ð	Ð	Ð	0	6	MOD
Jang 2013 (NS)	C-R	•	•	ŧ	Ð	Ð	Ð	Ð	0	6	MOD
Jang 2022 (M)	C-R	0	ŧ	ŧ	0	Ð	Ð	Ð	Ð	7	GOOD
Jang 2022 (HC)	C-R	0	ŧ	ŧ	Ð	Ð	+	0	Ð	7	GOOD
Jun 2021	C-R	Ð	0	ŧ	θ	Đ	¢	0	ŧ	6	MOD
Kim 2013	C-R	•	Ð	ŧ	Ð	Ð	Ð	Ð	0	7	GOOD
Kim 2018 (NR)	C-P	Ð	•	Ð	Ð	Ð	Ð	ŧ	•	7	GOOD
Kwak 2010	C-P	0	Ð	Ð	Ð	Ð	•	0	•	4	POOR
Lee 2023	C-P	Ð	Ð	Ð	Ð	Ð	Ð	Ð	Ð	8	GOOD
Park 2021	C-P	Ð	Ð	Ð	0	Ð	Ð	Ð	Ð	8	GOOD
Wang 2023	C-R	Ð	Ð	Ð	•	Ð	Ð	Ð	Ð	3	GOOD

Wang 2023	C-R	Ð	Ŧ	Ð	Θ	Ð	G	Ŧ
D: design; C-	-R: coho	rt-retrospective; C-P:	cohort-pro	ospective				
S 1	Select	ion; Representativen	ess of the s	ample		Ð		Two stars
S2	Select	ion; sample size				Ð		One star
83	selecti	on; phase of recover	y					one sur
S4	selecti	on; MRI record asce	rtainment			9		No star
C1	Comp	arability; factors of c	onfounders	5				

Ð	
Ð	
0	

O1 Outcome; assessment

O2 Outcome; statistical test


C

O3 Outcome; drop-outs

Figures

Fig. S1.

Study	Cohen's d Std.	Error	Lower	Upper	p-value	Weight	Weight (%)
Jang et al. 2008	0.68	0.41	-0.13	1.48	0.10	5.90	18.83
Jang et al. 2015	1.20	0.38	0.46	1.94	0.00	7.00	22.32
Jang et al. 2022 HC	1.01	0.45	0.13	1.89	0.02	4.98	15.87
Kim et al. 2013	0.44	0.42	-0.39	1.27	0.30	5.63	17.97
Kim et al. 2018 NR	0.64	0.36	-0.06	1.34	0.07	7.84	25.01
Overall	0.79	0.18	0.44	1.14	0.00		

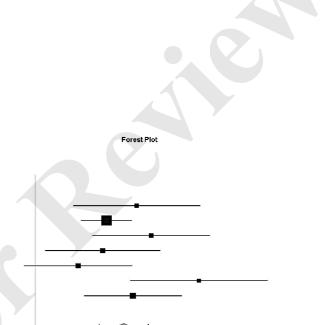


Fig. S2.

Effect size of each study Estimated overall effect size Estimated overall confidence into	- No effect	e interval of effect size value				Forest Plot	
ED Col	nen's d Std	. Error Lower Upper	p-value Weight W	Weight (%)			
Jang et al. 2014	1.54	0.35 0.85 2.22	0.00 2.04	. 56.00			
Seo et al. 2014	0.48	0.51 -0.52 1.47	0.35 1.60	44.00	 _		
Overall	1.07	0.52 0.04 2.10	0.04		<u> </u>	•	

Fig. S3.

Estimated overall e			lo-effec	t value				
I Estimated overall c	onfidence interval							
ID	Cohen's d Std.	Error	Lover	Upper	p-value	Weight	Weight (1)	
Cho et al. 2007	1.61	0.81	0.60	2.61	0.00	2.70	10.74	
Choi et al. 2020	1.13	0.21	0.72	1.53	0.00	6.79	26.94	
Jang et al. 2008	1.84	0.48	0.90	2.77	0.00	3.00	11.93	
Jang et al. 2013 NS	1.07	0.47	0.15	1.98	0.02	3.09	12.29	
Jang et al. 2022 HC	0.68	0.44	-0.18	1.54	0.12	3.36	13.37	
Kim et al. 2013	2.59	0.55	1.50	3.68	0.00	2.42	9.61	
Kim et al. 2018 MR	1.55	0.40	0.77	2.32	0.00	3.81	15.12	
Overall	1.40	0.20	1 01	1.79	0.00			

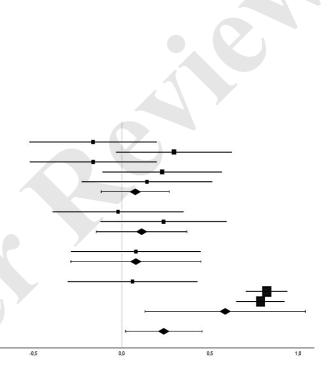


Fig. S4.				
				Forest Plot
	ize of each study	Confidence interval of effect size		
	ed overall effect size	Overall effect size value		
No-effec	et value	${\mathbb T}$ Estimated overall confidence interval		
				-0.177468
ID	Effect Size :	Std. Error Lower Upper p-walue Weigh	nt Weight (%)	
Lee et al. 20	21 ajpmr -0.41	0.09 -0.57 -0.24 0.00 4.7	9 34.32	
Lee et al. 20	23 -0.47	0.09 -0.64 -0.30 0.00 4.7	8 34.27	
Kim et al. 20	22 0.39	0.16 0.07 0.71 0.02 4.3	18 31.42	· · · · · · · · · · · · · · · · · · ·
Overall	-0.18	0.27 -0.70 0.35 0.51	<u> </u>	
			-1,0	-0,5 0,0 0,5 1,0
Fig. S5.				
-				
metric	Study	Effect Size Std. Error Lower Uppe	er p-value Weight Weight (%) struct	
FA	Jang et al. 2013 s Park et al. 2021	s 0.13 0.15 -0.17 0.4 0.17 0.28 -0.38 0.7		_
	Subgroup Overall	0.14 0.13 -0.12 0.4		
FN	Jun et al. 2021 Subgroup Overall	0.19 0.05 0.09 0.3 0.19 0.05 0.09 0.3		
				•
FV	Jang et al. 2013 s Park et al. 2021	s 0.11 0.46 -0.78 1.0 0.19 0.11 -0.03 0.4		
	Subgroup Overall	0.18 0.11 -0.03 0.4		·
MD	Park et al. 2021	0.15 0.47 -0.77 1.0	06 0.75 4.60 0.90 PIVC	
	Subgroup Overall	0.15 0.47 -0.77 1.0		······
Overall		0.18 0.04 0.10 0.3	27 0.00	
OVELUII		0.00 0.00 0.10 0.1		

-1,0

1,5 -0,5 0,0 0,5 1,0

metric	Study	Effect Size S	td. Error	Lower	Upper	p-value	Weight	Weight (%)	struct
FA	Park et al. 2021	-0.16	0.18	-0.52	0.20	0.37	7.08	8.65	PIVC
	Jang et al. 2022 H	0.29	0.17	-0.03	0.62	0.08	7.39	9.03	CRP
	Jun et al. 2021	-0.16	0.18	-0.52	0.20	0.38	7.08	8.65	CRP
	Jang et al. 2022 M	0.23	0.17	-0.11	0.57	0.19	7.28	8.90	NST
	Jun et al. 2021	0.14	0.19	-0.23	0.51	0.45	6.99	8.54	CPCT
	Subgroup Overall	0.08	0.10	-0.12	0.27	0.44			
FN	Jun et al. 2021	-0.02	0.19	-0.39	0.35	0.91	6.99	8.54	CRP
	Jun et al. 2021	0.24	0.18	-0.12	0.59	0.19	7.12	8.69	CPCT
	Subgroup Overall	0.11	0.13	-0.15	0.37	0.39			
MD	Park et al. 2021	0.08	0.19	-0.29	0.45	0.67	7.01	8.56	PIVC
	Subgroup Overall	0.08	0.19	-0.29	0.45	0.67			
TV	Park et al. 2021	0.06	0.19	-0.31	0.43	0.75	7.01	8.56	PIVC
	Jang et al. 2022 H	0.82	0.06	0.70	0.94	0.00	9.01	11.01	CRP
	Jang et al. 2022 M	0.79	0.07	0.65	0.92	0.00	8.91	10.88	NST
	Subgroup Gverall	0.59	0.23	0.13	1.04	0.01			
Overall		0.24	0.11	0.02	0.45	0.03			

Figures captions

Fig. S1: CST group differences in the sub-acute phase

Fig. S2: CST group differences in the chronic phase

Fig. S3: CST group differences with prognostic analyses

- Fig. S4: Cross-sectional association between CST and BBS in the sub-acute phase
- Fig. S5: Cross-sectional association between non-CST tracts and FAC in the sub-acute phase
- Fig. S6: Prognostic association between non-CST tracts and FAC

APPENDICES

Title: Appendix 1 Newcastle-Ottawa Quality Assessment Form for Cross-sectional Studies

Newcastle-Ottawa Scale adapted for cross-sectional studies

- Selection: (Maximum 5 stars)

 1) Representativeness of the sample:

 a) Truly representative of the average in the target population. * Study included equally ischemic and haemorrhagic b) Somewhat representative of the average in the target population. * Study included ischemic and haemorrhagic structure of selected group of users: only ischemic OR haemorrhagic stroke.

 d) No description of the sampling strategy.

 orrhagic stroke, but n
- Sample size:

 a) Justified and satisfactory. * Sample size calculation performed: always yes; if not: at least 15 participants in each group or in total.
 - b) Not justified OR less th an 15
- 3) Selection of the non-exposed cohort:
 - a) Comparability between exposed and non-exposed characteristics is established, and the response rate is satisfactory. * Patients were all included when they were in the same phase of recovery/ hyperacute -24h, acute: 24h-7d, early subacute: 7d-3m, late sub-acute: 3m-6m, chronic: >6m.
- 4) Ascertai
- A cute: 24h-7d, carly subacute: 7d-3m, late sub-acute:3m-6m, chronie: -6m.
 b) The response rate is unsatisfactory, or the comparability between respondents and non-respondents is unsatisfactory.
 c) No description of the response rate or the characteristics of the responders and the non-responders.
 rtainment of the exposure (risk factor):
 a) Validated measurement tool. ** MRI technique well explained (acquisition sequence, device, data analysis...) If analysis is well explained, two stars
 b) Non-validated measurement tool, but the tool is available or described.* MRI technique well explained (acquisition sequence, device) data analysis not explained
 - c) No description of the measurement tool.
- c) No description of the measurement out.
 Comparability: (Maximum 2 stars)
 1) The study controls for...* the most important factor: time post-stroke/ for studies with one stroke group and one control group/ groups differences (cut-off: difference of >3m)
 b) The study control for...* at least two others: age (difference of >20y), sex, lesion side, stroke type, gait independence at inclusion time, sensory level, handedness, education level, compared between
 - of Cohorts are not comparable on the basis of the design or analysis controlled for confounders. no analysis saying if differences are significant or insufficient data regarding cofounders

Outcome: (Maximum 3 stars)

- 1) Assessment of the outcome
- al Independent blind assessment. ** Assessment tools used for balance, FAC and ADL are validated scales or were fully explained as well as data analysis when needed. Clinical data blinded from imaging data. * if
- a) Independent of and assessment. well explained but not blinded. b) Record linkage. ** Assessment tools used for balance, FAC, ADL are validated scales or were fully explained as well as data analysis when needed. Clinical data blinded from imaging data. * if well explained
 - c) Self report.d) No description

2) Statistical test:

(a) The statistical test used to analyze the data is clearly described and appropriate, and the measurement of the association is presented, including confidence intervals and the probability level (p value). * b) The statistical test is not appropriate, not described or incompletely given.

Title: Appendix 2 Newcastle-Ottawa Quality Assessment Form for Cohort Studies

Newcastle-Ottawa Quality Assessment Form for Cohort Studies

Note: A study can be given a maximum of one star for each numbered item within the Selection and Outcome categories. A maximum of two stars can be given for Comparability

Selection 1) Represent

- Selection

 1) Representativeness of the exposed cohort

 a) Truly representative * Study included equally ischemic and haemorrhagic stroke

 b) Somewhat representative * Study included ischemic and haemorrhagic stroke, but not equally (non-random sampling)

 c) Selected group

 d) No description of the derivation of the cohort

 2) Selection of the non-exposed cohort

 a) Drawn from the same community as the exposed cohort * Patients were all included when they were in the same phase of recovery and longitudinal evaluated in the same phases

 b) Drawn from a different source

 c) No description of the derivation of the non exposed cohort

 3) Ascertainment of exposure

 a) Secure record (e.g., surgical record) * MRI technique well explained (acquisition sequence, device, data analysis...)

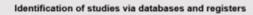
 b) Written self report

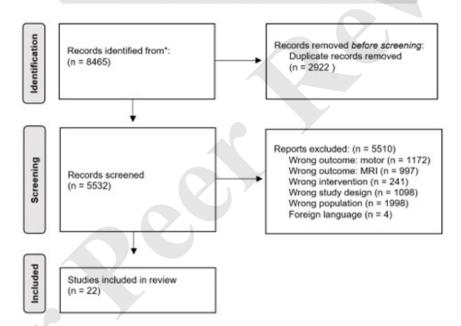
 - c) Written self report d) No description
 - e) Other

a) Other
 b) Other
 c) Other<

Comparability

- Comparability of cohorts on the basis of the design or analysis controlled for confounders a) The study controls ** the most important factor: time post-stroke/ for studies with one stroke group and one control group/ groups differences (cut-off: difference of >3m) b) Study controls for other factors (list) * at least two others: age (difference of >20y), sex, lesion side, stroke type, gait independence at inclusion time, sensory level, handedness, education level, compared but any arctice of characterize products
 - c) Cohorts are not comparable on the basis of the design or analysis controlled for confounders. If the data is given but there's no analysis saying if the differences are significant or not.

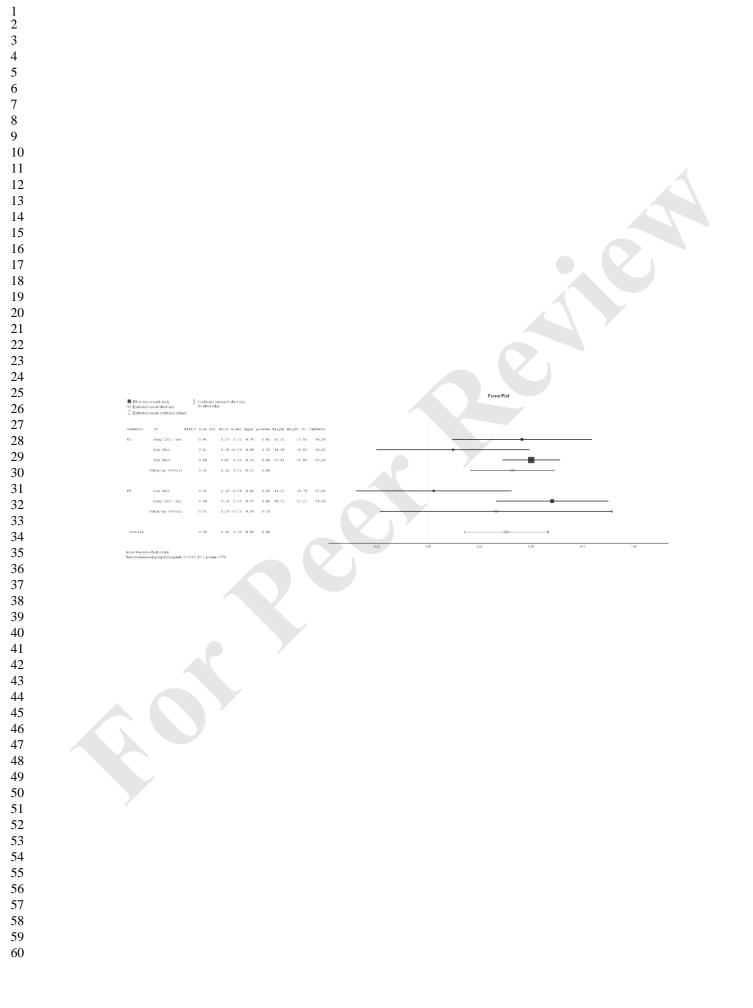

Outcome 1) Assessment of outcome


nent of outcome a) Independent blind assessment * Assessment tools used for paresis/gait are validated scales or were fully explained as well as data analysis when needed b) Record linkage * Assessment tools used for paresis/gait are validated scales or were fully explained as well as data analysis when needed

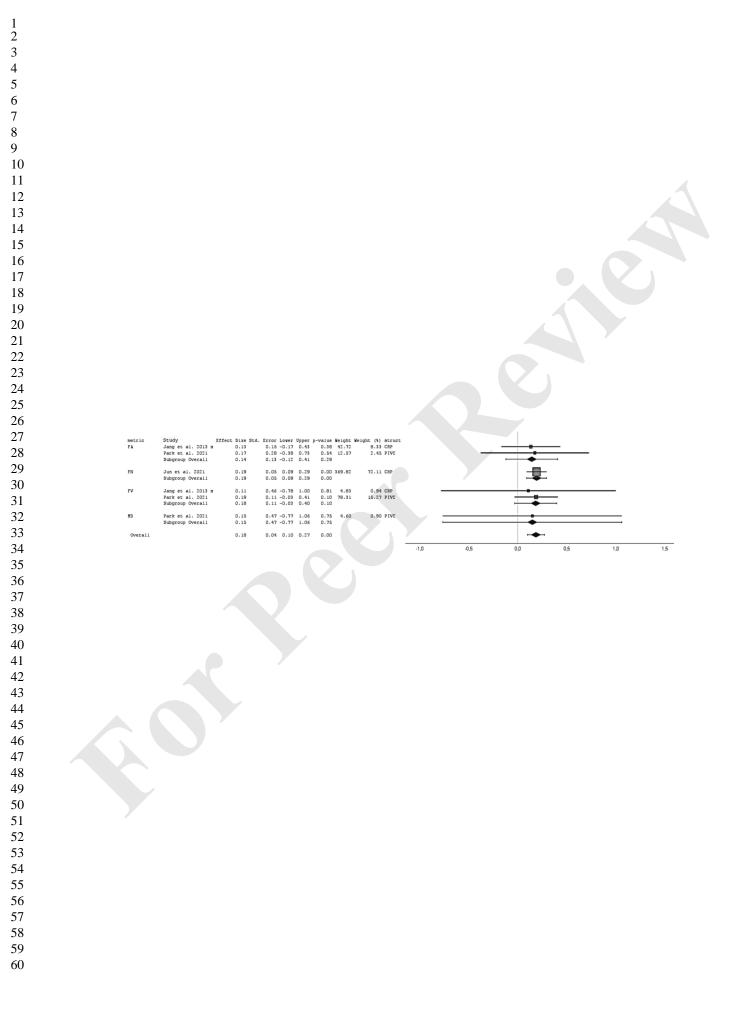
- b) Record linkage * Assessment tools used
 c) Self report
 d) No description
 e) Other
 2) Was follow-up long enough for outcomes to occur
 a) Yes * (at least 3 months)
 b) No (<3 months)

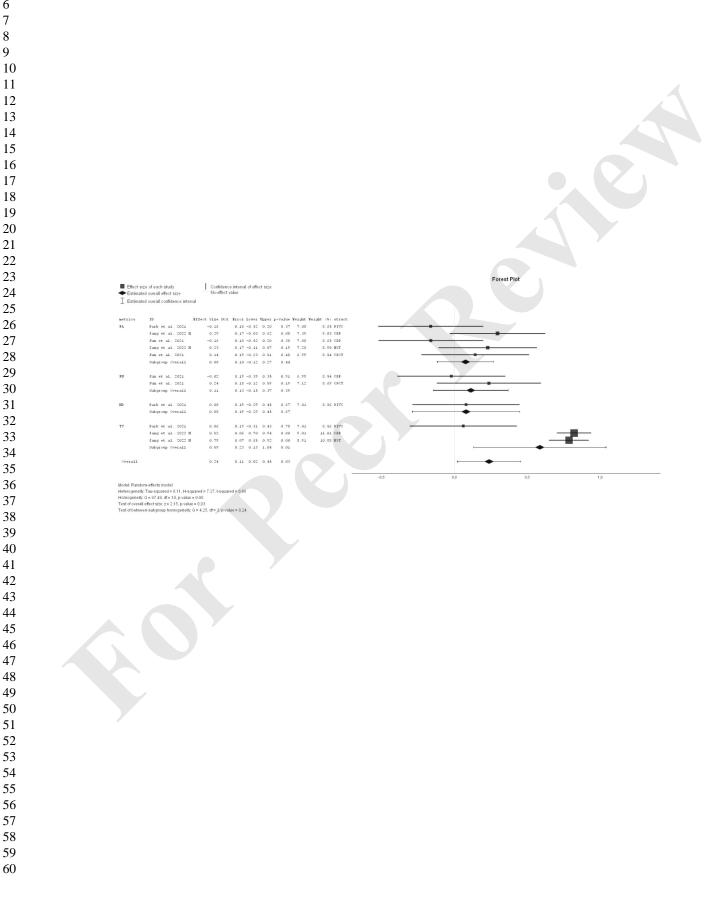
3) Adequacy of follow-up of cohorts

 a) Complete follow up- all subject accounted for *
 b) Subject lost to follow up unlikely to introduce bias- number lost less than or equal to 20% or description of those lost suggested no different from those followed. *
 c) Follow up rate less than 80% and no description of those lost
 d) No statement



1	
$\frac{1}{2}$	
3	
4	
5	
6	
7	
8	
9	
10	
11	
12	
13	
14	
15	
16	
17	
18	
19	
20	
21	
22	
23	
24	
25	Forest Flot
26	Effect size of each shaft Confidence etensial of effect size Confidence etensial of effect size Entire de same affections etensial
27	Dif. Metric ID Effect Size Std. Error Lower Upper p-value Weight Weight (%) W
28 29	FA Jang 2014 0.50 0.08 0.34 0.66 0.00 145.78 51.90 35
30	Subgroup Overall 0.50 0.08 0.34 0.66 0.00
31	FH Jang 2014 0.47 0.65 0.30 0.64 0.60 135.09 48.10 54
32	Subgroup Overall 0.47 0.09 0.30 0.64 0.00
33	Overall 0.45 0.06 0.37 0.60 0.00
34	4) 0,1 0,3 0,7 1,2 1,2 1,2 1,2 1,2 1,2 1,2 1,2 1,2 1,2
35	Wedel Restance-free model Text of Televen-reading may home provedy: 0 + 0.55, #+1, p-vdm + 0.05
36	
37	
38	
39 40	
40 41	
42	
43	
44	
45	
46	
47	
48	
49	
50	
51 52 53 54 55	
52	
53	
54	
55 56	
56 57	
58	
58 59 60	
60	


3							
4							
5							
6							
7							
8							
8 9							
10							
11							
12							
13							
14							
15							
16							
17							
18							
19							
20							
21							<i>V</i>
22							
23							
24							
25							
26	Effect size of each study	Confidence interval of effect siz				Forest Plot	
27	 Estimated overall effect size I Estimated overall confidence interv 	No-effect value					
28	VARODO23 ID Eff	fect Size Std. Error Lower Upp	r p-value Veight Ve	ight (%) VARDODIC			
29	CH Jang 2014 Subgroup Overall	0.50 0.08 0.34 0.	56 0.00 26.90	33.03 27,00			
30	Subjectly Contain	0.50 0.00 0.54 0.	0.00				
31	Sk Jang 2013 s Jang 2015		19 0.07 21.33 12 0.95 16.99	26.19 54,00 20.85 35,00	-		
32	Jun 2011	0.28 0.18 -0.06 0.	3 0.11 16.24	19.94 27,00	_		
32 33	Subgroup Overall	0.18 0.09 0.01 0.	15 0.04			÷	
33 34	Overall	0.28 0.11 0.06 0.	10.0			÷ ÷ ÷ ÷ ÷	
34 35	Model: Random-effects model				-0,25 0	0,00 0,25 0;	0 0.75
	Test of between-subgroup homogeneity; (Q = 6.99, df = 1, p-value = 0.01					
36							
37							
38							
39							
40							
41							
42							
43							
44							
45							
46							
47							
48							
49							
50							
51							
52							
53							
54							
55							
56							
56 57							
56 57 58							
56 57 58 59							
56 57 58 59							
56 57 58							



1	
2	
3	
4	
5	
6	
7	
8	
9	
10	
10	
11	
12	
14	
15	
16	
17	
18	
19	
20	
21	
22	
23	
24	
25	
26	Forest Plot
27	■ Effect size of each sharpy Condense internel of effect size ● Estimated meter size in the effect value I Estimated sound estimates
28	
29	ID Cohen's d Std. Error Lower Upper p-value Weight Weight (b)
30	Jang et al. 2014 1.54 0.35 0.85 2.22 0.00 2.04 56.00
31	seo et al. 2014 0.48 0.51 -0.52 1.47 0.35 1.60 44.00
32	
33	
34	Overall 1.07 0.52 0.04 2.10 0.04
35	
36	
30 37	
38	
38 39	
40	
40	
41 42	
42	
43 44	
44 45	
45 46	
46	
47	
48	
49 50	
50	
51	
52	
53	
54	
54 55	
56	
57	
57 58	
59	
59 60	

4										
5										
6										
7										
8										
9										
10										
11										
12										
13										
14										
15										
16										
17										
18										
19										
20										
21										
22										
23								1		
24	Effect size of each study Estimated overall effect size	Confidence in	terval of effect size				Forest Plot			
25	I Estimated overall confidence interval									
26	ID Col	hen's d Sto	i. Error Lower Upper :	p-value Weight We:	ight (%)					
27	Cho et al. 2007	1.61	0.51 0.60 2.61	0.00 2.70	10.74					
28	Choi et al. 2020	1.13	0.21 0.72 1.53	0.00 6.78	26.94					
29 20	Jang et al. 2008	1.84	0.48 0.90 2.77	0.00 3.00	11.93					
30	Jang et al. 2013 NS	1.07	0.47 0.15 1.98	0.02 3.09	12.29			-		
31	Jang et al. 2022 HC	0.68	0.44 -0.18 1.54	0.12 3.36	13.37					
32	Kim et al. 2013	2.59	0.55 1.50 3.68	0.00 2.42	9.61			•		
33	Kim et al. 2018 NR	1.55	0.40 0.77 2.32	0.00 3.81	15.12					
34										
35	Overall	1.40	0.20 1.01 1.79	0.00						
36	Model: Random-effects model				4	0	1	2 3	4	
37										
38 39										
39 40				1						
41 42										
42 43										
44 44										
44 45										
46										
47										
48										
49										
50										
51										
52										
53										
54										
55										
56										
57										
58										
59										
60										

