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Abstract

The incubation period is of paramount importance in infectious disease epidemiology as it informs about the transmission potential
of a pathogenic organism and helps the planning of public health strategies to keep an epidemic outbreak under control. Estimation
of the incubation period distribution from reported exposure times and symptom onset times is challenging as the underlying data
is coarse. We developed a new Bayesian methodology using Laplacian-P-splines that provides a semiparametric estimation of the
incubation density based on a Langevinized Gibbs sampler. A finite mixture density smoother informs a set of parametric distributions
via moment matching and an information criterion arbitrates between competing candidates. Algorithms underlying our method find a
natural nest within the EpiLPS package, which has been extended to cover estimation of incubation times. Various simulation scenarios
accounting for different levels of data coarseness are considered with encouraging results. Applications to real data on coronavirus
disease 2019, Middle East respiratory syndrome, and Mpox reveal results that are in alignment with what has been obtained in recent
studies. The proposed flexible approach is an interesting alternative to classic Bayesian parametric methods for estimation of the
incubation distribution.
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Introduction
Statistical methods and their underlying algorithmic implemen-
tation play an essential role in infectious disease modeling as they
permit investigators to bridge the gap between observed data and
estimates of key epidemiologic quantities. The incubation period,

defined as the time between infection and symptom onset,1 is
pivotal in gauging the epidemic potential of an infectious disease.
Having information about the incubation period distribution is
helpful for planning optimal quarantine periods to taper off the
spread of a contagious disease.2 Moreover, incubation times help

in assessing the transmission potential of an infectious disease as

they are key components in estimating the distribution of genera-
tion time, which in turn can be used to estimate the reproduction
number.3,4 The incubation period is also of direct interest for case
definition5 and to measure the effectiveness of contact tracing.

From a statistical point of view, the main obstacle for inferring
the distribution of the incubation period lies in the fact that infec-

tion times are almost never exactly observed,6 while symptom
onset times are more easily observed and reported. This incom-
plete information setup pushes towards a more challenging infer-
ence approach based on coarse data,7 where infection times are
only known to lie within a finite time interval. The work of Reich

et al7 proposes frequentist parametric approaches to estimate the
incubation period distribution using the accelerated failure time
model with applications to influenza A and RSV. Backer et al8

and Miura et al9 use a Bayesian parametric approach to estimate
the incubation period of COVID-19 and of Mpox, respectively.
Groeneboom10 derives a smooth nonparametric estimator of the

incubation time distribution by adding a bandwidth parameter
that controls the trade-off between noise and bias, Kreiss and
Van Keilegom11 propose a semiparametric method to estimate the
incubation period based on Laguerre polynomials.

The current trend in applied papers aiming at estimating the
incubation period of an infectious disease is to rely on para-
metric models. Although mathematically appealing, the main
shortcoming of working with standard parametric families is the
risk of missing important features in epidemic data.10 The central
importance of the incubation period in epidemic analyses has
motivated our aim to develop a flexible methodology that is not
limited by the boundaries imposed by parametric assumptions.
We thus propose a new semiparametric Bayesian approach to
estimate the incubation period distribution articulated around
Laplacian-P-splines (LPS).12,13

Our methodology is an interesting alternative to fully para-
metric schemes in the sense that the best fitting incubation
distribution is selected in a data-driven way by automatically
choosing between a semiparametric fit and a candidate coming
from popular parametric families. As such, the proposed tool may
be useful for researchers or public health officers aiming to obtain
flexible estimates of the incubation period distribution based on
exposure information and symptom onset data.

Methods
Coarsely observed data
The observed symptom onset time for individual i is denoted by
tS
i and the (unobserved) infection time is only known to lie within
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Figure 1. Relationship between exposure times, incubation bounds, and the symptom onset time for an infectious disease.

the closed exposure interval Ei =
[
tEL
i , tER

i

]
, where tEL

i and tER
i denote

the left and right bound, respectively, of the infecting exposure
time. Without loss of generality, we work from a continuous time
perspective and assume that 0 ≤ tEL

i < tER
i < tS

i and that symptom
onset times are finite. The incubation time is thus at least tIL

i =
tS
i − tER

i and at most tIR
i = tS

i − tEL
i , so that the observed data at the

resolution of individual i is given by the bounds of the incubation
period Di = {

tIL
i , tIR

i

}
and the information of an observable set of

size n is thus D = ∪n
i=1Di. Figure 1 gives a graphical illustration of

the relationship between exposure times, incubation bounds, and
the symptom onset time for individual i.

Semiparametric model with Bayesian P-splines
Let the incubation time I be a nonnegative continuous random
variable with probability density function ϕ (· ), hazard function
h (· ) and survival function S (· ). Based on a dataset D, we
propose to estimate ϕ (· ) by a two-component mixture density
using a semiparametric (SP) approach based on P-splines.14

The candidate density estimator at a given time point t ≥ 0
is denoted by ϕ̂SP(t) = ωϕ̂IC(t) + (1 − ω) ϕ̂HS(t), with 0 ≤ ω ≤
1. The density estimator ϕ̂IC (· ) is based on single interval-
censored IC data as shown in Figure 1, while ϕ̂HS (· ) is a density
estimator resulting from a histogram smoother (HS) assuming a
midpoint imputation rule for the infection time in the exposure
window E .

Flexible density estimation for single
interval-censored data
Following Rosenberg,15 the (log-)hazard of the incubation period
is approximated by a linear combination of (cubic) B-spline basis
functions:

log h(t) =
K∑

k=1

θkbk(t), (1)

where b (· ) = (
b1 (· ) , . . . , bK (· ))� is a B-spline basis having equidis-

tant knots on the compact time interval T = [0, tu] with upper
bound tu, and θ = (θ1, . . . , θK)� is the K-dimensional latent vector
of B-spline amplitudes. While zero is a natural lower bound for the
incubation period, there is no natural choice for the upper bound
tu. An intuitive candidate would be to fix it at the largest observed
right bound of the incubation time, ie, tu = max

{
tIR
1 , . . . , tIR

n
}
;

however, the latter choice may restrict the B-spline basis to a
domain that covers only a small part of the domain of the true
underlying incubation density ϕ (· ). As such, we follow Eilers and
Marx16 and advise padding tu to a value that is strictly larger than
the largest observed incubation bound. We defer the discussion on

the guidelines for a smart padding choice to the real data applica-
tions section. Regarding the number K of B-spline basis functions,
a default choice in the present setting is K = 10, although larger
numbers may be necessary to capture more flexible patterns. As
noted by Eilers and Marx,16 there is no fear to choose “too large” a
number K, as the penalty will act as a counterforce to the induced
flexibility. Using the relation between the survival and hazard
functions, we recover:

S(t) = exp
(

−
∫ t

0
h(s)ds

)
and

∼
S(t) ≈ exp

⎛
⎝−

j(t)∑
j=1

exp
(
θ�b

(
sj

))
Δ

⎞
⎠ . (2)

The approximation in equation 2 is necessary as the integral
has no analytical solution. As such, T is partitioned into a large
number of bins J (eg, J = 300) having equal width Δ, where
sj denotes the center of the jth bin and j(t) ∈ {1, . . . , J} is an
index function returning the bin number containing t. Following
Lang and Brezger,17 a zero-mean Gaussian prior is imposed on
the vector of B-spline amplitudes θ | λ ∼ Ndim(θ)

(
0, (λP)−1),

where λ > 0 is the penalty parameter related to the spline
model, and P = D�

r Dr + εIdim(θ) is a square penalty matrix
obtained from rth order difference matrices Dr of dimension(
dim (θ) − r

) × dim (θ), perturbed by an ε-multiple (here ε = 10−6)
to ensure P is full rank. The Bayesian model is closed by assuming
a noninformative Gamma prior on the penalty parameter λ ∼
G

(
aλ, bλ

)
with shape aλ = 10−4 and rate bλ = 10−4.18,19 The

likelihood of incubation times under single interval-censored
data is7:

L (θ;D) =
n∏

i=1

⎛
⎝∫ t

IR
i

t
IL
i

ϕ(t)dt

⎞
⎠ =

n∏
i=1

(
S

(
tIL
i

) − S
(
tIR
i

))
.

Replacing S (· ) with S̃ (· ) yields:

L (θ;D) =
n∏

i=1

⎛
⎜⎜⎝exp

⎛
⎜⎜⎝−

j
(
t
IL
i

)∑
j=1

exp
(
θ�b

(
sj

))
Δ

⎞
⎟⎟⎠

− exp

⎛
⎜⎜⎝−

j
(
t
IR
i

)∑
j=1

exp
(
θ�b

(
sj

))
Δ

⎞
⎟⎟⎠

⎞
⎟⎟⎠ , (2)
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Table 1. Incubation distributions used in the data-generating mechanism of the simulation
study.

Reference Distribution Mean (days) Standard deviation (days)

Ferretti et al30 Lognormal 5.5 2.1
Backer et al8 Weibull 6.4 2.3
This study Flexible bimodal 7.5 4.6
Donnelly et al31 Gamma 3.8 2.9

where the equality sign is kept for notational convenience and
L (θ;D) is contemplated from here on as an approximate version
of the likelihood function. The (approximate) log-likelihood is:

� (θ;D) := logL (θ;D)

=
n∑

i=1

log

⎛
⎜⎜⎝exp

⎛
⎜⎜⎝−

j
(
t
IL
i

)∑
j=1

exp
(
θ�b

(
sj

))
Δ

⎞
⎟⎟⎠

− exp

⎛
⎜⎜⎝−

j
(
t
IR
i

)∑
j=1

exp
(
θ�b

(
sj

))
Δ

⎞
⎟⎟⎠

⎞
⎟⎟⎠ . (3)

From Bayes’ theorem, one obtains the (log-)conditional poste-
rior density:

p (θ|λ,D) ∝ exp (� (θ;D)) p (θ|λ)

∝ exp
(

� (θ;D) − λ

2
θ�Pθ

)

log p (θ|λ,D) =̇� (θ;D) − λ

2
θ�Pθ, (4)

where ∝ and =̇ are symbols used to denote equality up to a multi-
plicative and additive constant, respectively. The Laplace approx-
imation to the conditional posterior of the B-spline amplitudes is
obtained by fitting a (multivariate) Gaussian density around the
mode of p (θ|λ,D). This permits the analyst to recover the Laplace
approximation p̃G (θ|λ∗,D) = Ndim(θ)

(
θ∗ (λ∗) , Σ∗ (λ∗)

)
, where λ∗ is

a maximum a posteriori estimate of the penalty parameter (see
Appendix S1 for details). The Laplace approximation and gradient
of the log-likelihood are used in the Langevinized Gibbs sampler
(LGS) developed in Gressani et al20 to sample from the joint pos-
terior of the model parameters p (θ, λ|D), and the point estimate
(posterior median) of θ is denoted by θ̂. Plugging the latter into the
formulas of the hazard in equation 1 and the survival in equation

2, we obtain the point estimates ĥ(t) and
∼̂
S(t) at a given time point

t. Finally, exploiting the relation between the density, the hazard,
and the survival functions, our semiparametric estimate of the
incubation density based on interval-censored data is ϕ̂IC(t) =
ĥ(t)

∼̂
S(t) ∀t ≥ 0.

Flexible density estimation for midpoint
imputation
The second component of the mixture density estimator ϕ̂HS (· )
under the semiparametric approach is obtained through a mid-
point imputation technique. Starting from the incubation bounds

in D, we construct an artificial dataset
∼
D =

{∼
ti : i = 1, . . . , n

}
,

where the infection time of individual i is assumed to be located
in the middle of the incubation interval, so that the imputed

incubation time is:
∼
ti = 0.5

(
tIL
i + tIR

i

)

= 0.5
(
tS
i − tER

i + tS
i − tEL

i

)

= tS
i − 0.5

(
tEL
i + tER

i

)
.

Note that
∼
D is seen as a random sample from the incubation

density ϕ (· ). From ideas in Eilers and Marx,21 we construct a

histogram on the time domain
∼
T = (

0, t̃u
]

and recommend using

an upper bound that is at least equal to tu, ie,. t̃u ≥ tu.
∼
T is

partitioned in L bins with midpoint xl and width h so that the
lth bin is the half-open interval Bl = (

xl − h/2, xl + h/2]. Typically,
the histogram smoother is not very sensitive to the choice of the
binwidth, provided narrow bins (eg, h = 0.05) are used.22 Another
possibility is to use a binwidth h determined by a preliminary ker-
nel smoother. The number of imputed incubation periods falling
in bin l is yl = ∑n

i=1I
(
t̃i ∈ Bl

)
, where I (· ) is the indicator function.

The count variable yl is assumed to follow a negative binomial
distribution yl ∼ NegBin (μl, ρ) with mean μl > 0 and overdisper-

sion parameter ρ > 0. We impose a cubic B-spline basis on
∼
T and

model the log of the mean counts as log (μl) = ∑K
k=1θkbk (xl). The

beauty behind such a formulation is that it allows us to recover
exactly the same model as in EpiLPS20 to smooth case counts.
We thus refer the reader to the latter reference to consult all the
equations related to the Laplacian-P-splines approach leading to
an estimate of the vector of B-spline coefficients θ̂. The density
estimate resulting from histogram smoothing is then given by:

ϕ̂HS(t) = (nh)
−1 exp

(∑K
k=1θ̂kbk(t)

)
∀t ≥ 0 and assuming equal

weights ω = 0.5, our semiparametric mixture density estimator
for the incubation density ϕ(t) at a given time point t ≥ 0 is
ϕ̂SP(t) = 0.5

(
ϕ̂IC(t) + ϕ̂HS(t)

)
.

Parametric fits using moment matching
In some situations it may be advantageous to fit the data by using
well-known parametric distributions. Our methodology leaves a
door open for this possibility by informing three classic paramet-
ric distributions that are usually considered in the estimation
of the incubation period, namely the two-parameter lognormal,
Gamma, and Weibull families. The moment matching approach
to fit the latter distributions is given in Appendix S2.

Simulation settings
To assess the performance of our methodology, we designed var-
ious simulation scenarios with different target incubation den-
sities (Table 1), data coarseness, and sample size. We assumed
two levels of data coarseness, with average exposure window E
equal to 1 or 2 days and exposure windows with maximum width
of 7 days, reflecting a range that is often observed in practice.23

For the sample size, we fix n = 40 and n = 100, to see how
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Table 2. Performance measures for selected features of the incubation density for two levels of data coarseness with n = 40 and
n = 100.a

Average coarseness: 1 day

n = 40 (Scenario 1) n = 100 (Scenario 2)
True

Average Bias RMSE Average Bias RMSE

Mean 5.528 5.471 −0.057 0.320 5.477 −0.052 0.208
SD 2.075 1.991 −0.084 0.300 1.993 −0.082 0.195
q0.05 2.849 2.800 −0.049 0.278 2.828 −0.021 0.174
q0.25 4.052 4.051 0.000 0.270 4.053 0.001 0.171
q0.50 5.176 5.177 0.002 0.312 5.169 −0.007 0.197
q0.75 6.612 6.564 −0.048 0.410 6.559 −0.053 0.262
q0.95 9.403 9.140 −0.264 0.831 9.170 −0.234 0.542

Average coarseness: 2 days

n = 40 (Scenario 3) n = 100 (Scenario 4)
True

Average Bias RMSE Average Bias RMSE

Mean 5.528 5.439 −0.090 0.343 5.431 −0.097 0.225
SD 2.075 1.942 −0.133 0.315 1.942 −0.133 0.222
q0.05 2.849 2.818 −0.031 0.278 2.836 −0.013 0.179
q0.25 4.052 4.053 0.001 0.277 4.044 −0.008 0.173
q0.50 5.176 5.157 −0.018 0.328 5.138 −0.038 0.205
q0.75 6.612 6.511 −0.100 0.443 6.492 −0.120 0.287
q0.95 9.403 9.013 −0.391 0.888 9.022 −0.381 0.624

Abbreviations: RMSE, root mean square error; SD, standard deviation.
aResults are for S = 1000 simulated datasets and the lognormal incubation density from Ferretti et al.30

our method performs under small and medium sample size. In
Appendix S3, additional results are provided for n = 200 (Tables
S1-S5). The features on which we assess the performance are
the mean and standard deviation of the incubation period and

additional percentiles that are typically of particular interest (eg,
the 5th, 50th, and 95th percentiles). It turns out that for most
infectious diseases, incubation times have a tendency to be well
approximated by a lognormal distribution.1,24 This motivates our

Table 3. Performance measures for selected features of the incubation density for two levels of data coarseness with n = 40 and
n = 100.a

Average coarseness: 1 day

n = 40 (Scenario 5) n = 100 (Scenario 6)
True

Average Bias RMSE Average Bias RMSE

Mean 6.403 6.369 −0.034 0.350 6.393 −0.010 0.229
SD 2.327 2.284 −0.043 0.246 2.325 −0.002 0.151
q0.05 2.665 2.767 0.102 0.504 2.690 0.026 0.312
q0.25 4.734 4.737 0.003 0.396 4.726 −0.008 0.262
q0.50 6.346 6.274 −0.072 0.396 6.317 −0.029 0.257
q0.75 7.995 7.878 −0.117 0.434 7.961 −0.034 0.270
q0.95 10.336 10.262 −0.074 0.631 10.342 0.006 0.390

Average coarseness: 2 days

n = 40 (Scenario 7) n = 100 (Scenario 8)
True

Average Bias RMSE Average Bias RMSE

Mean 6.403 6.339 −0.064 0.349 6.350 −0.053 0.232
SD 2.327 2.250 −0.077 0.266 2.275 −0.051 0.162
q0.05 2.665 2.766 0.102 0.493 2.712 0.048 0.308
q0.25 4.734 4.735 0.001 0.401 4.722 −0.011 0.254
q0.50 6.346 6.255 −0.091 0.398 6.282 −0.064 0.256
q0.75 7.995 7.831 −0.164 0.447 7.886 −0.109 0.288
q0.95 10.336 10.154 −0.182 0.672 10.202 −0.133 0.434

Abbreviations: RMSE, root mean square error; SD, standard deviation.
aResults are for S = 1000 simulated datasets and the Weibull incubation density from Backer et al.8
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Table 4. Performance measures for selected features of the incubation density for two levels of data coarseness with n = 40 and
n = 100.a

Average coarseness: 1 day

n = 40 (Scenario 9) n = 100 (Scenario 10)
True

Average Bias RMSE Average Bias RMSE

Mean 7.538 7.535 −0.003 0.726 7.533 −0.005 0.468
SD 4.622 4.565 −0.057 0.237 4.593 −0.029 0.143
q0.05 1.371 1.076 −0.295 0.490 1.229 −0.142 0.293
q0.25 3.050 3.101 0.051 0.604 3.026 −0.024 0.311
q0.50 7.191 7.454 0.263 2.127 7.333 0.142 1.822
q0.75 12.080 11.955 −0.125 0.622 12.027 −0.053 0.315
q0.95 13.734 13.581 −0.153 0.440 13.584 −0.150 0.291

Average coarseness: 2 days

n = 40 (Scenario 11) n = 100 (Scenario 12)
True

Average Bias RMSE Average Bias RMSE

Mean 7.538 7.552 0.014 0.746 7.493 −0.045 0.486
SD 4.622 4.538 −0.084 0.251 4.565 −0.057 0.155
q0.05 1.371 1.141 −0.230 0.468 1.228 −0.143 0.297
q0.25 3.050 3.122 0.072 0.627 3.017 −0.033 0.310
q0.50 7.191 7.508 0.317 2.318 7.275 0.084 1.940
q0.75 12.080 11.972 −0.108 0.517 11.999 −0.081 0.315
q0.95 13.734 13.398 −0.336 0.548 13.376 −0.358 0.445

Abbreviations: RMSE, root mean square error; SD, standard deviation.
aResults are for S = 1000 simulated datasets and an artificial incubation density constructed as a mixture of two Weibull distributions.

choice to include the latter incubation distribution as a target
in the data-generating mechanism as well as the Weibull and
Gamma, which are common choices25 as they can provide similar
shapes to a lognormal density. To highlight the flexibility of our
method, we also construct a flexible bimodal incubation density

based on a mixture of two Weibull distributions that translates
the presence of a cluster with longer incubation periods.10,26 Such
bimodal patterns may arise when jointly analyzing epidemic data
from different strains of a virus27 or when infectors and infectees
do not share the same incubation period distribution.6 From the

Table 5. Performance measures for selected features of the incubation density for two levels of data coarseness with n = 40 and
n = 100.a

Average coarseness: 1 day

n = 40 (Scenario 13) n = 100 (Scenario 14)
True

Average Bias RMSE Average Bias RMSE

Mean 3.810 3.730 −0.080 0.461 3.756 −0.054 0.298
SD 2.889 2.692 −0.197 0.469 2.737 −0.151 0.308
q0.05 0.561 0.582 0.020 0.228 0.564 0.003 0.134
q0.25 1.693 1.731 0.038 0.326 1.721 0.028 0.209
q0.50 3.110 3.128 0.018 0.449 3.135 0.025 0.288
q0.75 5.175 5.075 −0.100 0.659 5.125 −0.050 0.414
q0.95 9.451 8.893 −0.558 1.336 9.063 −0.388 0.867

Average coarseness: 2 days

n = 40 (Scenario 15) n = 100 (Scenario 16)
True

Average Bias RMSE Average Bias RMSE

Mean 3.810 3.519 −0.291 0.492 3.530 −0.280 0.375
SD 2.889 2.411 −0.478 0.603 2.462 −0.426 0.485
q0.05 0.561 0.594 0.032 0.236 0.561 0.000 0.130
q0.25 1.693 1.713 0.020 0.314 1.681 −0.012 0.186
q0.50 3.110 3.020 −0.090 0.426 3.008 −0.102 0.270
q0.75 5.175 4.778 −0.397 0.695 4.820 −0.355 0.503
q0.95 9.451 8.105 −1.346 1.696 8.272 −1.179 1.350

Abbreviations: RMSE, root mean square error; SD, standard deviation.
aResults are for S = 1000 simulated datasets and the Gamma incubation density from Donnelly et al.31
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Figure 2. Estimated incubation densities for scenarios 1-4. The dash-dotted line is the pointwise median across the S = 1000 simulations, and the solid
black line is the lognormal incubation density from Ferretti et al.30

combination of all these settings, we obtain a total of 4 × 2 × 2 =
16 scenarios. We also make a graphical evaluation of the fits
by overlaying the density estimates with the target incubation
density. Moreover, we are also interested in the performance of
the selection process of our methodology, ie, how many times our
approach selects the correct parametric family that corresponds
to the incubation distribution used in the data-generating mecha-
nism. For each scenario, we fix the number of replicated datasets
following a common choice in the literature, namely S = 1000.28,29

Such a number is large enough to assess how close (and at
most how distant) our fitted incubation densities are to the target
and at the same time allows the simulations to be replicated in
a reasonable time limit on a standard computer. We use K = 10
B-spline basis functions for all scenarios, except for the bimodal
scenario, where K = 20 to capture the more flexible density
pattern. The number of Markov chain Monte Carlo iterations for
the LGS sampler is fixed at M = 1000, and the acceptance rate
varied closely in the neighborhood of the optimal acceptance rate
(57%) in all scenarios.

Results
Tables 2-5 summarize the results for selected pointwise features
of the incubation density for all scenarios (scenarios 1-16). In

general, the bias is relatively small for all features but is more
pronounced for the 95th percentile as less information is available
in that region in the sense that fewer data points are collected in
such a remote location of the domain of the incubation density. In
addition, we observed that an increase in the sample size leads to
a decrease in the root mean square error. From Figures 2-5, we see
that, in general, the estimates provided by our method are able
to nicely capture the target incubation densities. Thanks to the
flexibility of our approach, even bimodal densities (Figure 4) are
well reconstructed, which would not be feasible with parametric
approaches relying on classic families. Moreover, the dash-dotted
curves (representing the pointwise median of the estimates across
the S = 1000 simulated datasets) are in most cases not distin-
guishable from the target incubation density. Also, the fitted den-
sities appear closer to the target with n = 100 as compared with
n = 40 as more information is available. Finally, Table 6 shows
that our method is quite efficient in detecting the true underlying
distribution from which data is generated. For the lognormal
incubation target, our LPS model selected the lognormal model
in at least 73% of cases with n = 100 and at least 67% of cases
with n = 40. A correct selection is even made in approximately
86% of cases in the Weibull setting with n = 100. Interestingly,
our methodology almost never selects any parametric candidate
when the underlying truth is a bimodal density. Although this may
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Figure 3. Estimated incubation densities for scenarios 5-8. The dash-dotted line is the pointwise median across the S = 1000 simulations, and the solid
black line is the Weibull incubation density from Backer et al.8

not be the case for lower sample sizes, it is still an encouraging
sign. Finally, for the Gamma case, our model hesitates between a
Gamma and a Weibull, but this is not really a problem as the main
features of the true underlying Gamma density are still relatively
well captured (see Table 5).

Applications to real data
This section applies the proposed flexible estimation method-
ology to publicly available datasets on reported exposures and
symptom onset times. For real analyses, we recommend using at
least as many B-spline basis functions as the minimal number
used in the simulation study (ie, K = 10). Here, we use K = 20, a
defensive choice to cope with the eventuality that our data require
a very flexible density fit,16 and fix M = 20, 000 for the Markov
chain Monte Carlo chain length. A smart choice for tu (and hence
t̃u), ie, the upper bound on which to fix the B-spline basis, can for
instance be based on information from previous studies on the
incubation period for a given pathogen. For instance, Virlogeux
et al32 report the 99th percentile and range of the incubation
period of human avian influenza A (H7N9), and the systematic
review of Lessler et al1 on incubation periods of acute respiratory
viral infections gives an idea of the range of the incubation
period for different diseases. Such empirical knowledge can help
in finding a choice for tu that supports with high confidence

most of the probability mass of the incubation period distribution.
Another practical aspect worth mentioning is that exposure times
and symptom onset times are in practice reported at a daily time
resolution (calendar dates), while our model is in continuous time.
A common strategy to transit from discrete to continuous obser-
vations is to assume that exact times are uniformly distributed
throughout the day and hence to perturb symptom onset times
and exposure window bounds by a uniform random variable
between 0 and 1.11 Appendix S3 contains arguments regarding the
choice of tu, detailed datasets (after continuity correction) consid-
ered hereafter, as well as estimates for the standard deviation and
selected quantiles.

COVID-19 infections among travelers from
Wuhan
First, we attempted to estimate the incubation density based on
exposure times and symptom onset dates of confirmed COVID-
19 cases with travel history to Wuhan.8 The analysis considers
25 visitors to Wuhan with a closed exposure window from which
we removed an individual who had a quite large exposure period
(20 days) as compared with the remaining observations. Backer
et al8 obtained a lognormal fit with a mean incubation period of
4.5 days (95% CrI, 3.7-5.6) and a 95th percentile of 8.0 days (95%
CrI, 6.3-11.8). From a discussion with the first author of the latter
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Figure 4. Estimated incubation densities for scenarios 9-12. The dash-dotted line is the pointwise median across the S = 1000 simulations, and the
solid black line is an artificial incubation density constructed as a mixture of two Weibull distributions.

study regarding the analysis of the visitors to Wuhan who had a
closed exposure window, we were informed that a Gamma density
with a mean of 4.6 days (95% CrI, 3.8-5.4) and a 95th percentile of
7.4 days (95% CrI, 6.2-9.7) fitted equally well. Our methodology
provided a similar fit, namely a lognormal density with mean
4.4 days (95% CrI, 4.0-4.8) and a 95th percentile of 7.7 days
(95% CrI, 7.2-8.5).

Transmission pair data on COVID-19
Next, we considered a dataset on transmission pairs for COVID-
19 from Hart et al33 that was analyzed in Xia et al.34 The latter
study obtained a Weibull fit for the incubation density with a
mean of 4.9 days (95% CI, 4.4-5.4) and a 95th percentile of 9.9
days (95% CI, 8.9-11.2). Restricting our analysis to a subset of
n = 74 individuals with closed exposure windows that do not

exceed 8 days, we obtained a Weibull with a mean of 4.5 days

(95% CrI, 4.2-4.9) and a 95th percentile of 10.5 days (95% CrI, 9.8-

11.4). Removing the constraint on the exposure window width

leads us to a subset of n = 115 individuals with closed exposure

windows (and maximum exposure width of 21.6 days) and we

obtained a Weibull fit with mean of 5.5 days (95% CrI, 5.1-5.8) and
a 95th percentile of 12.2 days (95% CrI, 11.7-12.9). Figure 6 reports
the estimated incubation period with n = 74.

Middle East respiratory syndrome
In a third application, we considered a dataset given in Cauchemez
et al35 that reported lower and upper bounds of the incubation
period for 7 individual Middle East respiratory syndrome (MERS)
coronavirus (CoV) cases in the United Kingdom, France, Italy, and
Tunisia. Based on this data, the latter study obtained a best fit to
the incubation density that is lognormal with a mean of 5.5 days
(95% CI, 3.6-10.2) and a 95th percentile of 10.2 days, extrapolated
from the reported standard deviation in the reference (95% CI, not
available). Our approach selects the lognormal fit with a mean of
5.4 days (95% CrI, 4.5-6.5) and a 95th percentile of 10.7 days (95%
CrI, 9.5-13.1).

Mpox
The last application is on a dataset reporting n = 18 confirmed
Mpox cases in the Netherlands.9 The latter analysis used a
parametric Bayesian approach similar to Backer et al,8 and the
best fitting model was given by a lognormal distribution with
a mean incubation period of 9.0 days (95% CrI, 6.6-10.9) and
a 95th percentile of 17.3 days (95% CrI, 13.0-29.0). Analyzing
the same dataset with our flexible Bayesian approach, we
obtained a lognormal fit with mean incubation period of 8.9 days
(95% CrI, 7.9-9.9) and a 95th percentile of 16.6 days (95% CrI,
14.7-19.1).
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Figure 5. Estimated incubation densities for scenarios 13-16. The dash-dotted line is the pointwise median across the S = 1000 simulations, and the
solid black line is the Gamma incubation density from Donnelly et al.31

Table 6. Proportion of selected models with our methodology across S = 1000 simulations under different
scenarios. First column is the target incubation density.

n = 40 n = 100

∼ Lognormal SP LN G W SP LN G W

(1 day coarseness) 0% 67.7% 25.7% 6.6% 0% 73% 26.5% 0.5%
(2 days coarseness) 0.3% 67% 26.7% 6% 0% 74.3% 23.7% 2%

∼ Weibull n = 40 n = 100

(1 day coarseness) 7.8% 3.4% 19.5% 69.3% 3.9% 0.2% 9.1% 86.8%
(2 days coarseness) 10% 3.1% 17.6% 69.3% 4.5% 0.2% 9.4% 85.9%

∼ Weibmix n = 40 n = 100

(1 day coarseness) 99.8% 0.1% 0% 0.1% 100% 0% 0% 0%
(2 days coarseness) 100% 0% 0% 0% 100% 0% 0% 0%

∼ Gamma n = 40 n = 100

(1 day coarseness) 10.5% 8.9% 45.1% 35.5% 2.7% 1.2% 58.1% 38%
(2 days coarseness) 13.2% 7.6% 38.5% 40.7% 3.9% 0.6% 42.6% 52.9%

Abbreviations: LN, lognormal fit; G, gamma fit; SP, semiparametric fit; W, Weibull fit; Weibmix, mixture of two Weibull
distributions.

Discussion
This article presents a flexible semiparametric approach based
on Laplacian-P-splines to tackle the challenging problem of

estimating the incubation period distribution based on coarse

data. The semiparametric model approximates the incubation

density via a finite mixture density smoother, and the latter is
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Figure 6. Incubation bounds, estimated probability density function and cumulative distribution function with our flexible Bayesian approach using
data on severe acute respiratory syndrome (SARS) coronavirus (CoV)-2,8,33 Middle East respiratory syndrome (MERS)-CoV,35 and Mpox.9

By design, the proposed methodology will perform better than
classic parametric models when fitting incubation densities as
the latter may not be able to capture incubation distributions
characterized by more acute flexibilities. This benefit comes

used to fit three popular parametric distributions that are often
considered in the estimation of incubation times. The Bayesian
information criterion is then able to arbitrate between the
competing density estimators.
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without any overfitting risk thanks to the P-splines smoother and
the fact that parametric candidates informed by the semipara-
metric model are accounted for. At a broader scale, our method
can be applied to estimate the incubation period of virtually any
infectious disease, provided that intervals of exposure time and
symptom onset data are available. Furthermore, it can be used
as an intermediate step in mathematical models of infectious
diseases (eg, compartmental models) to calibrate the incubation
period.

EpiLPS, an R (R Foundation for Statistical Computing, Vienna,
Austria) package, provides user-friendly routines to easily esti-
mate the incubation distribution based on the flexible method
described here. This can be done at a relatively low computational
cost thanks to integration of C++ code for some subroutines
in EpiLPS via the Rcpp package.36 Further documentation and
examples are also available on the associated website (https://
epilps.com/). Simulation results and real data applications in
this paper can be reproduced by using the code available at
the GitHub repository linked in the Data Availability statement
below.

From here, several interesting research paths can be explored.
The present model can for instance be enriched by not only
considering a two-component mixture in the semiparametric
approach, but also a multiple-component mixture with a multiple
imputation approach. Another possibility is to extend our model
to handle estimation of the generation interval (time difference
between infection events of a primary case and a secondary case)
by working under a convolution setting. We also noticed that
our approach consistently produces narrower credible intervals
as compared with other studies. It would be thus interesting to
compare the coverage performance of credible intervals obtained
with our flexible approach against more traditional parametric
models.
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