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Abstract

We develop a novel methodology for solving constrained optimization problems in deterministic

simulation. In these problems, the goal (or objective) output is to be minimized, subject to one or

more constraints for the other outputs and for the inputs. Our methododology combines the ”Karush-

Kuhn-Tucker” (KKT) conditions with ”efficient global optimization” (EGO). These KKT conditions are

well-known first-order necessary optimality conditions in white-box mathematical optimization, but our

method is the first EGO method that uses these conditions. EGO is a popular type of algorithm that

is closely related to ”Bayesian optimization” and ”active machine learning”, as they all use Gaussian

processes or Kriging to approximate the input/output behavior of black-box models. We numerically

compare the performance of our KKT-EGO algorithm and two alternative EGO algorithms, in sev-

eral popular examples. In some examples our algorithm converges faster to the true optimum, so our

algorithm may provide a suitable alternative.

Keywords: Karush-Kuhn-Tucker conditions, efficient global optimization, Bayesian optimization,

machine learning, Kriging, Gaussian process
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1 Introduction

In this paper we try to solve constrained optimization problems in simulation. We focus on the search for

global optima of non-convex, multimodal problems. Furthermore, we focus on problems with at least one

binding (or active) constraint at the optima, but we also discuss problems without such constraints.

To solve these problems, we combine EGO and the KKT conditions. The name EGO is proposed in [1],

which refers to its predecessors [2] and [3]; also see [4], p. 42. EGO is closely related to Bayesian optimization

(BO), and is also related to active machine learning (AML). Nowadays, the name BO is more popular than

EGO; see the surveys [5] – [9]. We prefer the name BO if the methodology uses prior distributions and

posterior distributions; nevertheless, for example, [10] uses the name BO, without explicit mentioning of

these distributions. We follow the frequentist approach instead of the Bayesian approach. EGO, BO, and

AML use Kriging —named after Danie Krige—or Gaussian process (GP) models, to analyze input/output

(I/O) data. For brevity’s sake, below we will use the name “EGO” instead of “EGO and/or BO” if confusion

is not likely.

EGO methods are heuristics; the term “heuristic” has many meanings, but we define it as a problem-

solving technique that produces approximately correct solutions. To the best of our knowledge, no EGO

algorithm for optimization with output constraints has guaranteed convergence to the global optima ( [11]

provides a theoretical discussion of an algorithm for optimization over a compact domain that uses a statistical

model of the goal function; however, [11] does not consider output constraints).

Currently, there are many variants of EGO, but none uses the KKT conditions. Nevertheless, these

conditions are well-known first-order necessary optimality conditions in mathematical optimization (MO)

or mathematical programming; see the seminal textbook [12] and the recent textbook [13]. However, MO

assumes white-box problems; i.e., the output variables are known explicit functions of the input variables.

EGO assumes black-box problems; i.e., the simulation outputs are unknown implicit functions—defined by

the simulation model—of the simulation inputs. Consequently, we observe only a limited number of I/O

simulation combinations. So, we do not know whether the simulation model has a convex I/O transfer

function, and the simulation model itself does not give gradient information (the Kriging metamodel does,

as we shall see in Section 4.2).

Each EGO variant uses its own acquisition function—or infill criterion—to select the point to be sim-

ulated in the next iteration. For our EGO variant we develop a novel acquisition function that multiplies

the popular expected improvement (EI) by a specific cosine function (related to the popular coefficient of

determination R2) that quantifies how well the KKT conditions hold in case of a binding constraint. If there

is no binding constraint, then the infill criterion multiplies EI by a function that quantifies how close the
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goal gradient is to the zero vector.

Our methodology is flexible because it is modular, so other authors can replace our specific modules (or

building blocks) by their own preferred modules. Actually, our EGO methodology uses Kriging models that

need to be differentiable at least once, as we shall see in Section 4.1. We shall discuss our modules and

potential alternative modules, in several sections.

We numerically compare the performance of our algorithm with two alternative EGO algorithms that are

defined in [14] and [10]. We think that these alternatives are representative of state-of-the-art EGO variants

for constrained optimization in deterministic simulation; also see our literature review in the next section.

We apply these three algorithms to several popular mathematical examples and mechanical-engineering

examples; namely, [15]’s mathematical “toy” example (which is also used in [10] and [16]), [17]’s constrained

Hartmann-6 example, the tension-compression spring problem, and the three-bar truss design problem;

Appendix 4 also details [17]’s Hartmann-6 example without a binding constraint. (The literature offers

many more examples; e.g., [18] defines thirteen mathematical examples and four mechanical-engineering

examples.)

We organize the rest of this paper as follows. Section 2 reviews selected publications on EGO. Section

3 formalizes constrained optimization and first-order optimality conditions, including a least squares model

and a specific cosine function. Section 4 summarizes Kriging. Section 5 discusses the initial design (also

known as the pilot design or training set). Section 6 details our novel EGO methodology. Section 7 presents

the numerical results of our experiments with three EGO methods and five examples. Section 8 presents

conclusions, including future research topics.

2 Literature review of EGO

Originally, [1] developed EGO for unconstrained optimization in deterministic simulation. Since then, EGO

methods have become popular in computationally expensive black-box optimization—with or without con-

straints. Paraphrasing [10], p. 75, we state that EGO’s Kriging metamodels have desirable properties: they

closely approximate most simulation I/O functions (say) w(x) where x denotes an input combination, are

much faster to compute than w(x) is (because w(x) is computed via the corresponding simulation model),

and quantify the uncertainty of the Kriging predictor ŷ(x) through the estimated standard deviation s[ŷ(x)].

In the preceding section, we have already referred to the surveys [6]– [9]. Furthermore, [4] also reviews EI

extensions for various types of optimization, including multiple-step (non-myopic) algorithms; [19] derives

a two-step lookahead BO algorithm for constrained optimization. However, we focus on publications that

impact our methodology and present a few basic formulas. Therefore, we do not discuss methods that use
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trust regions, or Kriging but not EGO, or radial basis functions without EGO, etc. We present EGO methods

for unconstrained optimization in Section 2.1 and for constrained optimization in Section 2.2.1

2.1 Unconstrained EGO

Section 1 implies that the essence of a specific EGO variant is its acquisition function (say) a(x). In

unconstrained optimization, the most popular infill criteria are the EI and the probability of improvement

(PI). The following estimator of this PI is derived in [21] where Φ denotes the standard Gaussian (or

normal) cumulative distribution function, and wmin denotes the best simulated goal output among the n

“old” (already simulated) outputs so wmin = min1≤i≤n [w(xi)]:

P̂I(x) = Φ

(
wmin − ŷ(x)

s[ŷ(x)]

)
. (1)

The estimator of EI is also derived in [21] where ϕ denotes the standard Gaussian density function:

ÊI(x) = (wmin − ŷ(x)) Φ

(
wmin − ŷ(x)

s[ŷ(x)]

)
+ s[ŷ(x)]ϕ

(
wmin − ŷ(x)

s[ŷ(x)]

)
. (2)

2.2 Constrained EGO

Following [10], we distinguish two types of EGO methods for constrained optimization: (i) Classical methods

that combine EI or PI for the goal output (say) w0 and the probability of feasibility (PF) for the constrained

outputs wh′ with h′ = 1, ..., t − 1; see Section 2.2.1 below. (ii) Hybrid methods that combine EI or PI for

w0 and MO concepts for wh′ ; see Section 2.2.2.

2.2.1 Classical constrained EGO

For constrained optimization, the literature replaces wmin in (1) and (2) by

w0; min = min
1≤i≤n

[w0(xi): wh′(xi) ≤ ch′ ,∀h′], (3)

and ŷ(x) by ŷ0(x); these replacements give P̂I0(x) and ÊI0(x). However, (3) assumes that the n old

simulated points include at least one feasible point. Actually, in our numerical experiments we investigate

two engineering problems with feasible areas so small that the initial designs may give no feasible points.

We shall present a simple solution in Subsection 5.3.

1 [20] reviews EI extensions for constrained optimization and other types of optimization. That review covers publications
appearing in the recent twenty years. The review has 181 references—but does not refer to the publications on constrained
optimization that we reference, except for [15].
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Furthermore, the literature defines the estimator of the probability of feasibility for constraint h′ (PFh′)

analogously to (1)):

P̂Fh′(x) = Φ

(
ch′ − ŷh′(x)

s[ŷh′(x)]

)
.

These P̂Fh′(x) give the estimator of PF:

P̂F = Πt−1
h′=1P̂Fh′ . (4)

Obviously, this P̂F treats all constraints as statistically independent.

ÊI0(x) and P̂F are combined in [22]’s constrained EI (CEI) acquisition function:

aCEI(x) = ÊI0(x)× P̂F. (5)

Clearly, the maximization of aCEI(x) implies unconstrained optimization. Carpio et al. [14] replaces ÊI0 in

(5) by P̂I0, which gives

aPI-PF(x) = P̂I0(x)× P̂F. (6)

We shall numerically evaluate (6), as a recent representative of classical constrained EGO.

2.2.2 Hybrid constrained EGO

Pourmohamad and Lee [10] derives barrier function (BF) methods, which outperform the (older) statistical

filter (SF) methods in [16] and the augmented Lagrangian (AL) methods in [15]. These BF, SF and AL

methods are hybrid; more precisely, BF methods—also known as MO’s interior point methods—try to

minimize w0(x) while ensuring that the boundary of the feasible region is never crossed. Therefore, BF

methods add an extra term in the acquisition function that is a penalty for approaching this boundary;

i.e., [10], eq. 18 uses

aBF(x) = ÊI0(x) + s2[ŷ0(x)]

t−1∑
h′=1

(log(−ŷh′(x)) +
s2[ŷh′(x)]

2[ŷh′(x)]2
) (7)

where −ŷh′(x) > 0. Like (5) and (6), maximization of aBF(x) implies unconstrained optimization. We note

that [10] uses univariate Kriging (like we do; see Section 4.1), whereas its predecessor [16] uses multivariate

Kriging.
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3 Constrained optimization and Karush-Kuhn-Tucker conditions

To present the mathematical definition of the optimization problem with output constraints, we use the

following symbols. We denote the multiple simulation outputs by wh(x) with h = 0, 1, ..., t− 1 and t > 1.

The goal output to be minimized is w0; the (t − 1) outputs wh′(x) (with h′ = 1, ..., t − 1) are constrained

outputs with the prespecified upper thresholds ch′ , so wh′(x) ≤ ch′ . We call x infeasible if ∃ h′ : wh′(x) > ch′ ;

an infeasible x does not necessarily make the simulation model crash. We assume k continuous simulation

inputs xj (j = 1, ..., k). These xj define the point or input combination x = (x1, ..., xk)
′. Whereas most

publications assume that these xj must satisfy the box constraints lj ≤ xj ≤ uj , we allow the more general

input constraints fg(x) ≤ cg with g = 1, ...v (e.g., x1 − x2 ≤ 0). Altogether, we focus on the following type

of constrained optimization problem (we use the compact notation that is also used in [10]):

min
x

[w0(x): wh′(x) ≤ ch′ ,∀h′, fg(x) ≤ cg,∀g]. (8)

Some publications (e.g., [10]) use ch′ = 0; i.e., they move ch′ to the left-hand side in (8). Actually, [10]’s

aBF(x) (defined in (7)) requires ŷh′(x) < 0, so the problem is defined such that ch′ = 0.

The KKT conditions use gradients. We denote the gradient of wh(x) at a new (not yet simulated)

point x∗ by ∇h(x∗) with the k partial derivatives ∂wh/∂xj evaluated at x∗. So, we assume that wh(x) is

differentiable, which is a realistic assumption in many applications. A constraint is binding at x∗ if x∗

lies on the boundary (or frontier) of the feasible area; i.e., if x∗ changes ≤ in (8) into = for at least one

constraint so the slack of this constraint becomes exactly zero. Let h′′ denote the indexes of the binding

output constraints at x∗ and Aλ (x∗) the index set with the indexes h′′ (obviously, Aλ (x∗) is empty if there

are no binding output constraints at x∗).

The input constraints fg(x) ≤ cg may include the box constraints xj ≤ uj and −xj ≤ −lj ((8) requires

that all constraints use ≤). These constraints imply that ∇g is a vector with either 1 or -1 at position j and

0 at the (k− 1) remaining positions with g = 1, ..., 2k. We let Aµ (x∗) denote the index set with the indexes

g′ of the binding input constraints at x∗.

These gradients give the KKT stationarity conditions (see [13], p. 274, [12], p. 243) where we denote the

Lagrangian multiplier for binding output constraint h′′ by λh′′ and for binding input constraint g′ by µg′ :

−∇0(x∗) =
∑

h′′∈Aλ(x∗)

λh′′(x∗)∇h′′(x∗) +
∑

g′∈Aµ(x∗)

µg′(x∗)∇g′(x∗)

with λh′′(x∗) ≥ 0 and µg′(x∗) ≥ 0. (9)
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Obviously, (9) is an orthogonal projection of −∇0 onto the linear space spanned by ∇h′′ , ∀h′′ and ∇g′ ,

∀g′. If no constraint is binding, then elementary analysis gives the following first-order necessary optimality

condition:

∇0(x∗) = 0. (10)

We do not discuss second-order optimality conditions—for problems with or without binding constraints—

because our algorithm does not need these conditions, as we shall see in Section 6.

In general, an orthogonal projection can be interpreted as a least squares (LS) model; see [13], pp. 83–84.

In our case, we compute λh′′ and µg′ in (9) via the LS model with the explained (dependent) variable −∇0

and the explanatory (independent) variables∇h′′(x∗) and∇g′(x∗). This LS computation gives λ̃h′′ and µ̃g′—

where a tilde denotes LS—which give −∇̃0. If we knew ∇h′′(x∗) and ∇g′(x∗) (in white-box optimization, we

do know ∇h′′(x∗) and ∇g′(x∗)), then we could simply check whether the KKT conditions hold exactly, at a

given point x∗; i.e., whether −∇̃0(x∗) (the LS estimate of the left-hand side of (9)) perfectly coincides with

the linear combination—with weights λ̃h′′ and µ̃g′—of ∇h′′ and ∇g′(x∗)—in the right-hand side. Perfect fit

implies a zero angle between −∇0(x∗) and −∇̃0(x∗); i.e. cos[−∇0(x∗), −∇̃0(x∗)] = 1 (this cos is related

to R2 with 0 ≤ R2 ≤ 1, which is a popular measure for fit in multiple regression, and is related to the

correlation coefficient ρ with −1 ≤ ρ ≤ 1 in simple regression; perfect fit implies R2= 1 and in case of a

single binding constraint ρ = 1). We abbreviate cos[−∇0(x∗), −∇̃0(x∗)] to c̃os(x∗). If the fit is imperfect,

then there may still be an acute angle between −∇0(x∗) and −∇̃0(x∗); i.e., these two vectors point into the

“same” direction so 0 < c̃os(x∗) ≤ 1. If the angle is obtuse (i.e., the fit is very poor), then -1 ≤ c̃os(x∗) <

0. Obviously, cos[−∇0(x∗), −∇̃0(x∗)] = cos[∇0(x∗), ∇̃0(x∗)], so we use the following well-known formula

(see, e.g., [23], p. 350) where • denotes the inner product of two vectors and ||∇|| denotes the L2 norm of

the vector ∇:

c̃os(x∗) =
∇0(x∗) • ∇̃0(x∗)

||∇0(x∗)|| × ||∇̃0(x∗)||
. (11)

We code the LS computations in MATLAB; see the LS formulas in Appendix 1. However, other authors

may use their own linear-regression code.

We illustrate the KKT conditions via Fig. 1, which is based on [15]’s example that we shall further

discuss in Section 7.1. The dotted area denotes the feasible area, which lies between w1(x) = 0 (a nonconvex

function) and w2(x) = 0. The point A is the global minimum. B and C are local minima; C has one binding

input constraint, besides one binding output constraint. D and E are local maxima. F does not satisfy the

KKT conditions. Appendix 1 details how we compute the Lagrangian multipliers and the corresponding c̃os

for these points. A through E give c̃os ≈ 1, but F gives c̃os ≈ 0.52 because −∇0 and ∇1 point into very

different directions so F does not satisfy the KKT conditions.
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Figure 1: Example with inputs x1 and x2, goal output w0, constrained outputs w1 and w2, dotted feasible
area, and special points A through F

If no constraint is binding at the optimum point x∗, then (10) should hold. To quantify how well this

condition holds, we cannot use c̃os (defined in (11)) with ∇̃0(x∗) replaced by 0; this replacement would give

a denominator with the factor ||∇̃0(x∗)|| = 0. Obviously, (10) holds exactly at x∗ if ∂w0/∂xj(x∗) = 0, ∀j.

Therefore, we replace (11) by

d0; EGO(x∗) =
1

maxj [|∂w0/∂xj (x∗) |]
, (12)

where the symbol d0; EGO is a mnemonic for (partial) derivative.

Unfortunately, black-box simulation implies that the wh(x) are unknown. Simulation does give the I/O

data (xi, wi;h), which we can use to estimate metamodels that approximate wh(x) and ∇h(x). Actually, we

use Kriging metamodels— as we explain in the next section.

4 Kriging in simulation

Like most publications on Kriging, we assume that k (number of inputs) is small, (say) 1≤ k ≤ 20. Otherwise,

we must face the well-known curse of dimensionality. Actually, our numerical examples have k = 2, 3, or

6. Subsection 4.1 discusses mean functions E[y(x)] and covariance functions or kernels Cov[y(x,x′)], and

estimators ŷ(x) of w(x) and their estimated standard error s[ŷ(x)]. Subsection 4.2 derives the estimators

∇[ŷ(x)]—or briefly ∇̂(x)—of ∇(x). Subsection 4.3 summarizes leave-one-out- cross-validation (LOO-CV)

for the selection of the “best” combination of E[y(x)] and Cov[y(x,x′)].
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4.1 Kriging: mean functions and kernels

We use univariate Kriging; i.e., we treat all t outputs as being independent. Univariate Kriging drasti-

cally simplifies the analysis, and may be superior because multivariate Kriging—or co-Kriging—requires the

specification of a positive-definite covariance matrix and the estimation of extra covariances; namely, the

individual cross-covariances between the t outputs in that matrix; see [24]. Theoretical and empirical com-

parisons of univariate and multivariate Kriging are also presented in [25], showing that multivariate Kriging

may indeed be inferior. Univariate Kriging is used in nearly all publications that we reviewed in Section

2. Because we use univariate Kriging, we drop the subscript h for ŷh in this section—if h is not strictly

necessary.

For each output, univariate Kriging requires the selection of E[y(x)] and Cov[y(x,x′)] where x′ is a

point in the k-dimensional input space that may coincide with x. Obviously, if x = x′, then Cov[y(x,x′)]

= V ar[y(x)] = τ2 where τ2 is the usual symbol for V ar[y(x)] in Kriging. This E[y(x)] and Cov[y(x,x′)]

have (hyper) parameters that we collect in the vector (say) ψ. Popular specifications of E[y(x)] are: (i)

A constant which is also known as a zero-order polynomial β0; this specification is called ordinary Kriging

(OK). (ii) A first-order polynomial in x (say) β0 + β′x with β′ = (β1, ..., βk)
′, which is a type of universal

Kriging (UK). (iii) A second-order polynomial, which is another type of UK. Obviously, OK requires the

estimation of fewer parameters than UK does. The additional parameters of UK often lead to overfitting,

so s[(ŷ(x)] is higher for UK than it is for OK; see the references in [26], p. 198. We focus on OK, but in

Appendix 2 we also investigate UK; we shall discuss this appendix, in Sections 4.2 and 4.3.

Well-known specifications of Cov[y(x,x′)] include the Gaussian (or squared exponential) kernel and the

Matérn class. We give the well-known formulas for these kernels, because some Kriging software does not

give ∇̂ for this Matérn class so we derive the formulas for ∇̂ ourselves. The most popular kernel in simulation

(as opposed to geostatistics and machine learning) is the anisotropic Gaussian kernel, which we abbreviate

to G-kernel. This kernel has the parameter vector θ = (θ1, ..., θk)
′ with θj ≥ 0:

ρ(x,x′,θ) =
k∏

j=1

exp [−θj(xj − x′
j)

2]. (13)

Obviously, this kernel is separable, and ψ becomes the (2 + k)-dimensional vector (β0, τ2, θ1, ..., θk)
′.

Using [27], p. 85, 89, 106, we derive the anisotropic Matérn kernel for υ = 3/2—which we abbreviate to
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M-3/2—and υ = 5/2—abbreviated to M-5/2:

r = r(x,x′,θ) =

√√√√√√
k∑

j=1

(xj − x′
j)

2

θ2j

ρ(υ = 3/2, r) =
(
1 +
√
3r
)
exp

(
−
√
3r
)

ρ(υ = 5/2, r) =

(
1 +
√
5r +

5r2

3

)
exp

(
−
√
5r
)
. (14)

These kernels are non-separable, which affects the estimation of ψ; see Section 5. We shall derive ∇̂ for (13)

and (14), in Section 4.2.

It is hard to select a specific combination of E[y(x)] and Cov[y(x,x′)], because practical simulation

models imply implicit specifications of wh(x). Consequently, we do not know the characteristics of these

wh(x). We do assume that these wh(x) are differentiable at least once (so ∇h, ∀h exist), in the search

domain fg(x) ≤ cg, ∀g (see again Section 3). Therefore, we should select combinations of E[yh(x)] and

Cov[yh(x,x
′)] such that the resulting ŷh(x) is also differentiable at least once. Appendix 2 assumes that

we do know the degree of differentiability of wh(x); so, we should select Kriging models that have the same

characteristic degree ( [11], p. 602 speaks of “ensuring the conformity”, in the related but different context of

utility functions in EGO). [27], p. 85 states that—for the Matérn class—y(x) is (say) kυ times mean-square

differentiable if and only if υ > kυ. Hence, y(x) is non-differentiable for a Matérn kernel with υ =1/2.

The selection of a good combination of E[yh(x)] and Cov[yh(x,x
′)] is also discussed in Chapter 5 of [27].

Furthermore, [4], p. 44 mentions the ambiguity in the selection of a probabilistic model of the objective

function (and the constrained functions wh′ we would add).

To estimate ψ in (13) and (14), most authors use maximum likelihood estimation (MLE), which gives ψ̂.

The computation of ψ̂ is challenging, so most authors use standard Kriging software for this computation. Ac-

tually, we use a free-of-charge MATLAB toolbox called design and analysis of computer experiments (DACE),

which is well documented in [28] and can be obtained from http://www2.imm.dtu.dk/pubdb/pubs/1460-

full.html. DACE allows its users to choose among three mean functions and seven kernels; namely, the

three E[y(x)] specifications that we presented above and seven anisotropic kernels including the Gaussian—

but excluding the Matérn class. Matérn kernels are available in the MathWorks software on https:

//ch.mathworks.com/help/stats/regressiongp.html. All Kriging software gives ŷ(x) and s[ŷ(x)], af-

ter the users provide (xi, wi). DACE also gives ∇̂(x) (see [28], Eq. (2.18)). Therefore, we now derive ∇̂(x)

for the G-kernel and for the M-3/2 and M-5/2 kernels.
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4.2 Kriging estimators of output gradients

In Appendix 2 we detail the derivation of ∇̂(x) for nine combinations of E[y(x)] and Cov[y(x,x′)]; namely,

OK and two types of UK, combined with the G-kernel, the M-3/2 kernel, and the M-5/2 kernel. However,

in this subsection we focus on the most popular specification; namely, OK with G-kernel. (∇̂(x) is also

discussed in [29], albeit not in an EGO context.)

We define the n×n covariance matrixCov[y(xi, xi′)] = Σ̂ with i, i′ = 1, ..., n where n denotes the number

of old simulated I/O combinations (xi, wi). Furthermore, we define the related n-dimensional covariance

vector σ(x∗) = Cov[y(x,x∗)]. Finally, we define w = (w1, ..., wn)
′ and 1n = (1, ..., 1)′. OK plugs ψ̂ (which

determines β̂0, σ̂(x∗) and Σ̂) into the formula that assumes a known ψ, which gives

ŷ(x∗) = β̂0 + σ̂(x∗)
′Σ̂−1(w−β̂01n). (15)

We note that plugging-in ψ̂ implies that ŷ(x∗)—defined in (15)—is a nonlinear estimator. Consequently,

the true mean squared prediction error (MSPE) is underestimated by

s2[ŷ(x∗)] = τ̂2 − σ̂(x∗)
′Σ̂−1σ̂(x∗) +

[1− 1′
nΣ̂

−1σ̂(x∗)]
2

1′
nΣ̂

−11n

. (16)

To estimate the true MSPE, we might use parametric bootstrapping and conditional simulation; see the

references in [26], p. 209. However, we stick to (15) and (16)—computed via Kriging software—as most

authors on EGO do.

In (15), all factors depend only on the old simulation data, except for σ̂(x∗); so, we can write

∇[ŷ(x∗)] = ∇[ĉ′σ̂(x∗)] = ∇[ĉ′τ̂2ρ̂(x∗,x)] with ĉ = Σ̂−1(w − β̂01n) (17)

For the G-kernel we obtain from (13) (suppressing the dependence of ρ̂ on θ̂, to simplify the notation):

∂ρ̂(x∗,x)

∂x∗;j
= −2θ̂j(x∗;j − xi;j)exp

 k∑
j′=1

− θ̂j′(x∗;j′ − xi;j′)
2

 . (18)

For the M-3/2 kernel and the M-5/2 kernel, we use the chain rule (∂ρ̂/∂r̂)× (∂r̂/∂x̂∗;j) to obtain

∂ρ̂(v = 3/2, r̂)

∂x∗;j
=

−3r̂exp
(
−
√
3r̂
)(x∗;j−xi;j

θ̂2
j

)
√√√√ k∑

j′=1

(x∗;j′−xi;j′ )
2

θ̂2
j′
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∂ρ̂(v = 5/2, r̂)

∂x∗;j
=

− 5
3 r̂

(
1 +
√
5r̂
)
exp

(
−
√
5r̂
)(x∗;j−xi;j

θ̂2
j

)
√√√√ k∑

j′=1

(x∗;j′−xi;j′ )
2

θ̂2
j′

. (19)

Obviously, (18) and (19) give the component (i, j) of the n× k matrix ∇ρ̂(x∗,x). Combing with (17) gives

∇[ŷ(x∗)] = τ̂2∇ρ̂(x∗,x)
′ĉ. (20)

4.3 Cross-validation for selection of mean functions and kernels

In Appendix 2 we compare (i) the combination of OK with a G-kernel per output type h, and (ii) the

combination that is automatically selected from the nine combinations of E[y(x)] and Cov[y(x,x′)]. This

comparison is made after the initial simulation I/O data (xi, wi;h) (with i = 1, ..., n0) have become available.

For this automatic selection we adapt [30]’s LOO-CV; i.e., per output type h, we estimate which combination

minimizes the median of |PESi;h| = |wi;h − ŷ−i;h| /s(ŷ−i;h) where ŷ−i;h denotes the Kriging predictor—for

wi;h—computed after dropping (xi, wi;h). Obviously, LOO-CV does not require new—possibly computa-

tionally expensive—simulation data, besides the old initial data. For fast computation of CV, we refer

to [31].

This appendix shows that for the toy example (with t = 3) the best combination is OK with M-3/2, in all

five macroreplications—except for macroreplication 1 where OK with G-kernel and OK with M-5/2 kernel

give the same best combination for w1 and w2 as OK with M-3/2 kernel does. However, after the initial

design, the fixed combination of OK with G-kernel gives lower sample medians of w0 after (say) ten iterations

and non-overlapping interquartile ranges (IQRs) after (say) forty iterations. The constrained Hartmann-6

example has t = 2 output functions wh(x) that are infinitely differentiable. The initial design does not

give a clear pattern. Our fixed combination of OK and G-kernel for both outputs gives better w0-values for

the first (say) 15 iterations; the combinations (i) and (ii) give the same w0-value after (say) 110 iterations.

Altogether, we see no strong reasons to replace our combination of OK with G-kernels; most authors on

EGO also use this combination, but other authors may use their own preferred combination.

We could have applied our LOO-CV not only after the initial design, but after each iteration. However,

we leave that generalization for future research. We also refer to [32] and [33].
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5 Initial design

Though EGO methods are sequential, they require an initial design that determines the input combinations

that are needed to compute the initial values of ψ̂h, ŷh(x∗), s
2[ŷh(x∗)], and ∇̂h(x∗). Subsection 5.1 discusses

the type of initial design, focusing on Latin hypercube sampling (LHS). Subsection 5.2 discusses the number

of initial points n0. Subsection 5.3 discusses initial designs that turn out to give no feasible points.

5.1 Type of initial design

We select the most popular design type in Kriging—namely, LHS. More specifically, we use LHS with

midpoints, which fixes the distances among the n0 values projected onto the k axes of xi; i.e., per axis, the

midpoints lie at distances that are multiples of 1/n0. So, these midpoints are not clustered. We expect that

these midpoints give better ψ̂h in the G-kernel (defined in (13)), which is separable. We conjecture that these

midpoints also give better ψ̂h in the M-3/2 kernel and the M-5/2 kernel. Appendix 2 demonstrates that

these Matérn kernels can give numerical problems after the initial design (because new points may cluster);

i.e., the covariance matrixes Σ̂h—used to compute ŷh(x∗), s[ŷh(x∗)], and ∇̂(x∗)—are ill-conditioned. LHS

with midpoints is an option in MATLAB’s function lhsdesign.

Besides LHS, there are other space-filling designs, which are applicable in global modeling such as Kriging.

For example, [34] discusses many types of space-filling designs, including 197 references. [29], [35], and [36]

also discuss space-filling designs. [37] discusses composite grid designs for Kriging models.

5.2 Number of initial points

LHS does not imply a mathematical relationship between n0 and k. Yet—given k—a higher n0 results in a

lower s2[ŷh(x∗)]. Actually, we select

n0 =
(k + 1)(k + 2)

2
if k ≤ 6; else n0 = 5k, (21)

following [38]’s rule for selecting n0 in sequential optimization in simulation via Kriging without EGO; for

n = 5k, [38] refers to [18].

The literature presents several other rules for selecting n0. For example, [39] proposes n0 = 10k, as a

rule-of-thumb for “one-shot” (non-sequential) designs in sensitivity analysis (not optimization) via Kriging;

that rule is also used in [40] for sequential optimization in random simulation. Furthermore, [41] states that

5k to 10k is often used, and also refers to [42]. For sequential optimization in simulation with k = 2, [10]

uses n0= 20 in the “modified Townsend” example but uses n0 = 10 in the toy example.
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5.3 Initial designs without feasible points

Most publications—including [1], [14], and [10]—implicitly assume that at least one initial point is feasible.

All initial points do satisfy all input constraints (so, fg(x) ≤ cg,∀g). However, some problems may turn

out to have not a single initial point that satisfies all output constraints; e.g., the spring example in Section

7.2 has a very small feasible area that—using the white-box equations—we estimate to be 9.7% of the total

experimental area; so, an initial design with n0 = 10 (see (21) with k = 3) has an expected number of feasible

points less than one, and is quite likely to have no feasible point at all.

In practice, we may ask the users to specify a point that is feasible (albeit with a high value for w0); e.g.,

the current system—if it already exists—provides a feasible suboptimal point. However, in our numerical

experiments we do not need such human intervention; i.e., we use the following simple method to estimate

a feasible point that is compatible with the initial simulation I/O data (xi, wi;h). (In Section 7 we shall

see that we also use this method for the competing algorithms—defined in [14] and [10]—so we help these

competitors to get started with their search for the optimum.)

Suppose that the initial design with n0—defined by (21)—points gives no feasible points. Then our

algorithm and the competing algorithms obtain a larger LHS design with 10k points. We use LHS without

midpoints (so the inputs are continuous); LHS with midpoints may imply that a small feasible area does

not overlap any of these midpoints. In our examples, the experimental areas are defined by box constraints

(instead of the more general fg(x) ≤ cg,∀g in (8), which may complicate the selection of an initial design).

The original initial design with n0 points enables the algorithm to compute ψ̂h. So, the algorithms can

compute ŷh(xi) with i = 1, ..., 10k. Finally, the algorithms determine the best feasible point among these

10k points:

ŷ0; min = min
1≤i≤10k

[ŷ0(xi): ŷh′(xi) ≤ ch′ , ∀h′], (22)

if at least one of these 10k points is estimated to be feasible; else the algorithms obtain another LHS design

with 10k points. If the experimental area has a non-empty feasible subarea, then this method does find

ŷ0; min. So, the algorithms can return w0; min = ŷ0; min; see (3).

6 EGO and KKT conditions

We present our novel algorithm in Algorithm 1. Some steps of this algorithm are discussed in the following

subsections. Subsection 6.1 estimates which output constraints are binding at x. Subsection 6.2 derives our

novel acquisition function aKKT(x). Subsection 6.3 presents several methods for finding the point that

maximizes aKKT(x). Subsection 6.4 summarizes some other steps of the algorithm.
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Algorithm 1 Pseudocode for the KKT algorithm

1: Select algorithm’s control variables αBC; 0, αBC; min, smax

2: Select n0, and use LHS with midpoints to sample an n0 × k initial design matrix X with n0 simulation
inputs xi = (xi;1, ..., xi;k) such that fg(xi) ≤ cg, ∀g, and i = 1, ..., n0

3: Set n← n0

4: Set iteration number s← 0
5: Obtain the n× t matrix with simulation outputs W by simulating xi, ∀i
6: while s ≤ smax do
7: Compute ψ̂
8: Find xmin = argmin

1≤i≤n
{w0(xi) : wh′(xi) ≤ ch′ ,∀h′, fg(xi) ≤ cg,∀g}, and w0;min = w0(xmin); if there is

no feasible xi, use LHS without midpoints to determine w0;min (see Algorithm 2)
9: Set αBC ← αBC;0

10: Find x̂o (see Algorithm 3)
11: Add x̂o to X, and update n← n+ 1
12: Obtain wh(x̂o),∀h, by simulating x̂o, and augment W
13: Present the current best input xmin and its goal output w0;min

14: Update s← s+ 1
15: end while

Algorithm 2 Finding w0;min through LHS in case of infeasible inputs

1: Input: ψ̂
2: Set w0;min ←∞
3: while (w0;min ==∞) do
4: Use LHS without midpoints to sample 10k points, satisfying fg(xi) ≤ cg,∀g
5: Find ŷ0; min = min

1≤i≤10k
{ŷ0(xi) : ŷh′(xi) ≤ ch′ ,∀h′}

6: if (ŷ0; min ̸=∞) then
7: Set w0;min = ŷ0; min

8: end if
9: end while

10: Output: w0;min

Algorithm 3 Finding x̂o

1: Inputs: ψ̂, w0;min, αBC, αBC; min

2: Set x̂o ← ∅ and Aλ(x)← ∅
3: while (x̂o == ∅ and αBC ≥ αBC; min) do
4: for h′ = 1 : t− 1 do

5: if
(

|ŷh′ (x)−ch′ |
s[ŷh′ (x)]

≤ z1−αBC/[2(t−1)]

)
then

6: Update Aλ(x)← Aλ(x) ∪ {h′}
7: end if
8: end for
9: if Aλ(x) ̸= ∅ then

10: Find Aµ(x) at current x

11: Compute ∇̂h′′(x) for h′′ ∈ Aλ(x) and ∇̂0(x) at current x

12: Solve x̂o = argmax
{
ÊI0(x)× ˜̂cos(x) : ŷh′(x) + z1−(αBC/(t−1))s[ŷh′(x)] ≤ ch′ ,∀h′, fg(x) ≤ cg,∀g}

13: else
14: Set αBC ← αBC/2
15: end if
16: end while
17: Output: x̂o
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6.1 Estimation of binding output constraints

The KKT conditions in (9) use Aλ(x) (the set with the indexes h′′ at x), so our algorithm needs to estimate

which output constraints are binding. Let x̂o denote the estimated optimal (subscript o) point that is to

be simulated in the next iteration. We use confidence intervals (CIs) around ch′ (threshold for wh′) that

are symmetric and two-sided (see |.| and the factor 2 in (23) below), because we wish x̂o to lie exactly on

the boundary. Furthermore, we use a familywise error rate αBC (BC stands for binding constants); i.e., we

apply Bonferroni ’s inequality, so we use a per-comparison rate αBC/(t− 1) per output constraint. We test

all (t − 1) estimated constrained outputs ŷh′(x̂o), but we include h′ in Aλ(x̂o) only if the CI for ŷh′(x̂o)

covers ch′ . Obviously, s[ŷh′(x̂o)] denotes the square root of s2[ŷh′(x̂o)] that follows from (16). Altogether,

we use the following decision rule:

If
|ŷh′(x̂o)− ch′ |
s[ŷh′(x̂o)]

≤ z1−αBC/[2(t−1)], then h′ ∈ Aλ(x̂o). (23)

Typically, familywise error rates are higher than per-comparison rates are; also see [43]. In our examples

we start with αBC = 0.20. If this αBC-value leaves Aλ(x̂o) empty, then we decrease this value. Actually,

in our algorithm we halve αBC. If the new αBCvalue still leaves Aλ(x̂o) empty, then we again halve this

value—until the latest αBC-value reaches a prespecified minimum value (say) αBC; min. If αBC = αBC; min

still gives an empty Aλ(x̂o), then we may infer that the problem has no binding constraints. We then switch

from the KKT conditions to the condition that requires a zero goal-gradient; see (10).

In practice, simulation optimization may have no constrained outputs wh′ at all; see the numerous publi-

cations on such problems. Nevertheless, many simulation optimization problems do have binding constraints;

see the spring example in Section 7.2 and the truss example in Section 7.3. Our own research on logistic

problems also reveals binding constraints; i.e., we try to minimize the costs of the logistic system, while

meeting the threshold for the service provided by that system.

6.2 A novel acquisition function

Whereas our algorithm uses the two-sided CIs defined in (23) to estimate which output constraints are

binding, our algorithm subsequently finds x̂o that is estimated to lie inside the feasible area (i.e., on the safe

side of the estimated boundary) and close to that boundary. So, x̂o satisfies the following one-sided CIs:

ŷh′(x̂o) + z(1−αBC/(t−1)) × s[ŷh′(x̂o)] ≤ ch′ , ∀h′. (24)
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It may happen that s[ŷh′(x̂o)] is so high that—even if αBC is relatively small—no x̂o within the experimental

area satisfies (24). In that case, our algorithm replaces the safety factor z(1−αBC/(t−1)) by 0 in (24).2

If the binding constraints and the gradients∇h were known, then (9) should hold. Actually, our algorithm

uses (23) to estimate which constraints are binding, and uses ∇̂h (which include ∇̂0 and ∇̂h′′) to estimate

∇h. Next the algorithm uses ∇̂h′′ , to compute the LS estimate − ˜̂∇0. To estimate how well the KKT

conditions hold, the algorithm computes cos(−∇̂0, −
˜̂∇0) via (11). We abbreviate cos(−∇̂0, −

˜̂∇0) to ˜̂cos.
Our algorithm uses this ˜̂cos as a multiplicative correction factor—or penalty—for ÊI0 (this ÊI0 was defined

in Section 2.2.1). Altogether, our novel acquisition function is

aKKT(x) = ÊI0(x)× ˜̂cos(x) (25)

where our algorithm searches for x that satisfies the (t− 1) constraints for the estimated outputs ŷh′ in (24)

and the v input constraints fg(x) ≤ cg.
3

In summary, our algorithm searches within the estimated feasible area, which satisfies the one-sided CIs

defined in (24) and the known input constraints fg(x) ≤ cg. Within this area, our algorithm selects the

point that maximizes aKKT defined in (25). In (25), ÊI0 makes our algorithm prefer points with a high ÊI0-

value; these points lie near the estimated boundary of the feasible area, because we assume that the global

optimum lies on this boundary. The factor ˜̂cos(x) makes our algorithm select the point near this boundary

that is estimated to best satisfy the KKT conditions. To compute ˜̂cos, our algorithm must estimate which

constraints are binding; therefore, our algorithm uses the two-sided CIs defined in (23).

Before we further detail our algorithm, we briefly compare our aKKT(x) with the acquisition functions

of the two competing algorithms.

(i) [14] replaces ÊI0 by P̂I0, and multiples this P̂I0 by P̂F. Our algorithm uses the more popular ÊI0 ( [10]

also uses ÊI0; see (7)). Both P̂F and ˜̂cos(x) have values within the interval [0, 1]. However, P̂F includes all

output constraints (binding or non-binding) and P̂F decreases as the number of constraints (t−1) increases.

(ii) [10]’s aBF(x) (defined in (7)) adds an extra term to ÊI0; this term is a penalty for approaching the

estimated boundary. So, both [10]’s algorithm and our algorithm search within the estimated feasible area.

We note that [10]’s penalty term includes all output constraints, like [14] does. Moreover, aBF(x) may mix

different measurement scales used by ŷh(x), for different h. Finally, that algorithm solves an unconstrained

2Even if x̂o satisfies (24)—or satisfies (24) with a zero safety-factor—then the next simulation run with x̂o as input may
turn out to be infeasible. Then the new simulation I/O data (x̂o, wh(x̂o))—added to the old data—improves the accuracy of

ψ̂, but w0(x̂o) does not improve w0; min.
3The computation of ÊI0(x) in (2) gives numerical problems if s[ŷ0(x)] is close to zero (which happens if x is close to an

old point xi). Actually, if s[ŷ0(x)] < 10−5, then our algorithm uses ϕ(x) = 0 and either Φ(x) = 0 if w0; min − ŷ0(x) < 0 (so

ÊI0(x) = 0) or Φ(x) = 1 if w0; min − ŷ0(x) ≥ 0 (so ÊI0(x) = w0; min − ŷ0(x)).
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problem, whereas our algorithm solves a constrained problem as it uses (24) and input constraints.

For problems with optimal solutions inside their feasible areas, we replace ˜̂cos(x) by d̂0; EGO(x), which

follows from (12) replacing w0/∂xj by ŷ0/∂xj :

a0; EGO(x) = ÊI0(x)× d̂0; EGO(x). (26)

6.3 Maximization of the acquisition function

In general, EGO uses different methods to maximize their acquisition functions. The conceptually simplest

method uses LHS to generate a large set of candidate points, computes ŷh at these points, and finds the point

that maximizes a(x).; e.g., [16], p. 308 uses 1000 candidates for the toy problem (with k = 2) and [16], p.

310 discusses the size of the LHS sample for the “welded beam” example with k = 4. Obviously, a set with

candidates implies discretization of the experimental area.

To avoid such a discretization, we may apply numerical optimizers. These optimizers are either global

or local. Global optimizers include evolutionary algorithms, which include genetic algorithms; references are

given in [26], p. 268. Local optimizers may get trapped in local optima, because ÊI0(x) has many local

optima; i.e., old points xi imply s[ŷ0(xi)] = 0 (i = 1, ..., n), so there are n local minima ÊI0(xi) = 0

and ÊI0 may be positive between these minima. Our algorithm uses MATLAB’s pattern search (PS) with

restarts. To sample these multiple starting points, our algorithm uses LHS without midpoints (because we

wish to ensure that the probability of selecting an old point is zero; midpoints may give PS endpoints that

are the same as the corresponding starting points). Our algorithm uses only 10 PS-restarts, to speed-up

our numerical experiments. Our algorithm and [14]’s algorithm use the same 10 restarts.4 [10]’s algorithm

also uses 10 restarts, but some restarts may require a slightly different method.5 We detail PS including our

choice of PS options (e.g., mesh size), in Appendix 1.6

6.4 Some other steps

Like other EGO algorithms do, our algorithm uses x̂o to obtain wh(x̂o). The algorithm finds out whether

wh′(x̂o) satisfies the threshold ch′ , ∀h′. If x̂o is feasible, then w0(x̂o) may (or may not) improve w0; min.

Next, the algorithm uses all n available simulated I/O combinations, to re-estimate ψ, etc.

4Initially, we used 10k starting points for an example with k = 6; namely, the Hartmann-6 example ( [40] also uses 10k
starting points selected by LHS, but uses fmincon instead of PS). Next, we find that 10 restarts give results similar to the
results of 10k restarts.

5 [10]’s aBF(x) (defined in (7)) requires ŷh′ (x) < 0 so we define the problem such that ch′ = 0 (see again the text below
(8)). Binding constraints imply that the feasible area is less than 100% of the experimental area. We denote the number of
acceptable PS-starting points (with ŷh′ (x) < 0) by nacc. We expect that LHS with 10 restarts gives nacc < 10. Therefore, we
use LHS without midpoint as defined below (22), and find the first 10− nacc acceptable points.

6PS gives better results than MATLAB’s fmincon does, for the toy example. Therefore we decide to apply PS to all our
examples.
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Like other EGO algorithms, our algorithm does not test the validity of the estimated Kriging metamodels;

i.e., the algorithm uses the fitted Kriging model only to guide the selection of the next point, after the initial

design. As n increases, s[ŷh(x∗)] decreases. We conjecture that an inadequate Kriging model gives our

algorithm a bad start, but the algorithm may still give a good final estimate of the global optima—albeit

after a longer search than in case of a good start. This conjecture is not rejected by our numerical experiments.

Expensive simulation means that computing wh for a given x requires so much time that impatient

users must wait relatively long for the presentation of the final w0; min. A convergence plot for w0; min (by

definition) displays w0; min(s) as a function of s = 0, 1, ..., where s = 0 corresponds with the initial design and

s > 0 corresponds with iteration s. Users might inspect this plot while it is being built after each iteration,

and stop the algorithm’s search as soon as they are satisfied with the solution—at the risk of premature

stopping. However, to eliminate the role of these users, we automate our experiments; i.e., we execute a few

preliminary experiments with each example, and next we select a maximum number of iterations (say) smax

per example such that each algorithm can converge to the true optimum goal value of that example. To

estimate this true value, we apply PS to the white-box equations of that example.

We point out that [44], p. 787 states: “one may want to avoid spending too many evaluations on the

infeasible regions, while exploring the regions close to the boundaries, where the optimum is likely to be”.

Similar advice is given in [19], [45], and [46]. Actually, our algorithm is compatible with that advice.

7 Numerical examples

We obtain numerical results for our algorithm and the two alternatives derived in [14] and [10], respectively.

More specifically, we apply these three algorithms to five examples; namely, the toy example (in Section

7.1), the spring example (in Section 7.2), the truss example (in Section 7.3), and a constrained variant and

an unconstrained variant of the Hartmann-6 example (in Section 7.4). For these five examples, we (not the

three algorithms) know the white-box equations, so we can derive their true global minima.

As we mentioned in our literature review in Section 2, the essence of an EGO algorithm is its acquisition

function a(x). For a better comparison of the two alternative algorithms with our algorithm, we use their

acquisition functions aPI-PF(x) and aBF(x)—but we use our algorithm for the selection of an initial LHS

design with n0 points, our univariate OK models with G-kernels, etc. So, for all three algorithms we use

DACE to compute ψ̂7. If the initial design does not give a feasible solution, then we use our method for

estimating a feasible solution (see Section 5.3). We apply PS—with 10 restarts—to estimate x̂o for the three

7To compute θ̂h;j , we must select a search area—but we do not know a reasonable range for θ̂h;j . After some trial-and-error,
we select a small lower bound 0.001 and a large upper bound 10.
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algorithms. Each algorithm uses the same 10 restarts—so, they use common random numbers (CRN)—for

a specific iteration of the algorithm; however, different iterations use different restarts. The variable αBC

features only in our algorithm; we use the initial value αBC; 0 = 0.20 in all five examples.

We stop all three algorithms when their number of iterations reaches smax (see Section 6). Our numerical

results show that all three algorithms have indeed converged at smax, in all our examples; each example has

its own smax (also see the convergence plots in the subsections below). In expensive simulation, the EGO

computations require negligible time; i.e., wall-clock time mainly depends on the total number of simulation

observations that an EGO algorithm uses to search for the global optima.

We code all three algorithms in MATLAB; we are willing to share our code with the readers. To sample

pseudorandom numbers (PRN), we use the generator called mrg32k3a, which can create 263 independent

substreams of length 2127 so we can control the seeds such that macroreplications use non-overlapping sub-

streams; see [47] and https://www.mathworks.com/help/matlab/ref/randstream.randstream.create.

html.

In Appendix 4 we present individual convergence plots per algorithm and per example. Each plot is the

result of a macroreplication that starts with its own initial design, so that we can better compare algorithms

(i.e., each macroreplication uses CRN for the initial LHS). In the following subsections we summarize these

individual convergence plots, presenting the estimated medians and IQRs for w0;min at selected iterations

s. In each convergence plot, we also display the true global minimum. We select smax such that in each

macroreplication, each algorithm has converged before s reaches smax; i.e., the convergence plots end as

horizontal lines. The number of macroreplications is 50 in all examples—except for the unconstrained

Hartmann-6 example where we use only 10 macroreplications, which saves time and yet gives informative

results (as we shall see).

7.1 Toy example

In Appendix 4 we present the white-box equations wh(x) and lj ≤ xj ≤ uj for the toy example, which

gave Fig. 1. To estimate the relative size of the feasible area, we sample 100,000 points x with lj ≤ xj

≤ uj—through LHS with midpoints—and use these points as inputs for wh′(x). This gives an estimated

feasible area that is 46% of the total experimental area. This 46% gives a 98% probability of obtaining at

least one feasible input and an expected number of feasible points equal to 2.76, for an initial LHS design

with n0 = 6. Actually, 46 of our 50 macroreplications give initial designs with at least one feasible point; for

the other macroreplications, our algorithms obtain ŷ0; min (defined in (22)) instead of w0; min. Appendix 4

shows selected iterations for macroreplication 1, which give more details.
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Figure 2: Convergence plots: medians and quartiles for w0;min at selected s, esimated from 50 macroreplica-
tions for three algorithms applied to the toy example

Figure 3: Final optimum input combination xmin for our algorithm (left pane), Carpio’s algorithm [14]
(middle pane), and Pourmohamad’s algorithm [10] (right pane), in 50 macroreplications for the toy example

Fig. 2 displays convergence plots for the three algorithms. More precisely, these plots display the median

goal value per iteration, and after every five new iterations these plots display the 25% and the 75% percentiles

(or quartiles), which give the IQRs. For small iteration numbers, we estimate some medians and ranges from

less than 50 macroreplications because we use ŷ0; min instead of w0; min; e.g., in the initial design (or iteration

0), there are 4 out of 50 macroreplications without a feasible input. We infer: (i) In the early iterations,

our algorithm converges slightly faster. (ii) All three algorithms converge to values close to xA. (iii) The

IQRs of our algorithm are relatively big; this occurs because our algorithm converges to xC in 5 out of 50

macroreplications, as Fig. 3 shows. Appendix 4 also displays 50 individual convergence plots and additional

percentiles. Actually, we help both alternative algorithms in case they cannot find a feasible input (i.e., we

let them use ŷ0; min); e.g., our convergence plot is better than Fig. 4 in [10].

Fig. 3 displays the final xmin for the three algorithms, in 50 macroreplications. Our algorithm (left-most
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Figure 4: Tension-compression spring example

pane) gives 5 macroreplications close to xC (as we mentioned above). In practice, the users might restart

an algorithm using different initial designs and select the result of the best restart; actually, Fig. 3 shows

50 restarts, and its best restart gives xmin extremely close to the true optimum. In practice the users may

decide to use either fewer than 50 restarts or a parallel computer (so the wall-clock time does not increase;

it is simple to implement our algorithm on a parallel computer). In general, we recommend restarts for any

local optimizer (for PS, we do use restarts, which do not require much computer time because PS uses ŷh

instead of wh).

Corresponding with Fig. 3, Appendix 4 displays a boxplot of the slack c1 - w1(x) for our algorithm; the

estimated median slack is 0.0013, so our algorithm gives final xmin-values that we expect to be feasible and

close to the boundary.

7.2 Tension-compression spring example

Fig. 4 (based on [48]) displays the engineering view of the spring example, including the k = 3 inputs d, D,

and N where d denotes the wire diameter, D the mean coil diameter, and N the number of “active” coils

which implies that N is continuous. The input constraints are 0.05 ≤ d ≤ 0.20, 0.25 ≤ D ≤ 1.30, and 2 ≤

N ≤ 15. The goal output w0 is the weight; the constraint w1 is the minimum deflection of the spring caused

by the axial loading, w2 is the maximum shear stress in the wire that should be smaller than the allowable

shear stress of the material, w3 is the surge frequency that should be greater than a specified value, and w4

is a limit for the outside diameter of the spring. Appendix 4 gives the white-box equations wh(x) with h

= 0, ..., 4 and x1 = N , x2 = D, x3 = d, and right-hand thresholds ch′ = 0; these equations are nonlinear
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Figure 5: Convergence plots for spring example: medians and IQRs for w0; min at selected iteration numbers
s, estimated from at most 50 macroreplications for three algorithms

except for w4(x).
8

Furthermore, [49] states that this example is a convex optimization problem. Hence, we do not expect

that this problem benefits from EGO; i.e., a simpler algorithm would have sufficed. Nevertheless, this

problem is popular in constrained global optimization; see the examples in [18]. Table 3 in [49] lists fifteen

optimal points that are found in the literature. From that table we conclude that these points indeed give

(virtually) the same goal value, but some points differ substantially. Next, we apply PS with 10,000 starting

points to the white-box equations; this gives 154 different optimal points. The first point and the second

point give two binding constraints (namely, the constraints 1 and 2). So, the decision rule in (23) may infer

that several constraints are binding; the importance of multiple binding constraints is emphasized in [50].

Altogether, we conclude that the goal function is not strictly convex.

We estimate that the feasible area is nearly 10% of the total experimental area (for this estimate we use

LHS with midpoints to sample 100, 000 points x that give wh′(x)). Our initial design uses n0 = 10. In

our experiment, 11 of our 50 macroreplications give initial designs without any feasible point. For these 11

macroreplications the algorithms use ŷ0; min instead of w0; min. We note that [14] and [10] do not apply their

algorithms to this example, so they are not confronted with initial designs without any feasible solution.

After some preliminary experimentation, we fix smax at 80; Fig. 5 shows that 80 is generous for our

algorithm and [14]’s algorithm, whereas 80 hardly suffices for [10]’s algorithm. This graph displays estimated

medians and IQRs, for each algorithm. The IQRs for our algorithm and for [14]’s algorithm are so short that

they are invisible. These two algorithms perform very similarly. [10]’s algorithm performs relatively poorly;

8Different publications use different symbols, and include wrong equations; e.g., [48] misses the division sign (/) between the
third factor and the fourth factor of its equation (26). [49] also mentions several problems.
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Figure 6: Three-bar truss example

i.e. it has hardly converged after 80 iterations.

Because this example has more than two inputs, we cannot display the analogue of Fig. 3. However,

Appendix 4 does display boxplots of the slacks for the binding constraints 1 and 2. These boxplots show

that these slacks are always small and positive. Next we investigate an example with a bigger feasible area

than the spring example.

7.3 Three-bar truss example

Fig. 6 displays the engineering view of the truss example with the cross-sectional areas x1 = A1 = A3 and

x2 = A2, where w0 is the volume of the (statically loaded) truss structure while accounting for three stress

constraints wh′ (with h′ = 1, 2, 3) and the input constraints 0 ≤ x1 ≤ 1 and 0 ≤ x2 ≤ 1; see [18] and [51].

(Instead of three bars, [48] gives truss examples with ten, eighteen, and twenty-five bars.)

Appendix 4 gives the white-box nonlinear equations wh(x) (with h′ = 0, 1, 2, 3) and the (known) input

constraints that correspond with Fig. 6. Using these equations and input constraints, we derive Fig. 7

(which is the analogue of Fig. 1 for the toy example). Our graph shows a single global optimum xA and no

local optima, so the feasible area is convex (like in the spring example). We apply PS to wh(x), and find

xA ≈ (0.79, 0.41)′. Next, we compute wh(xA), which includes w0(xA) ≈ 263.90 and shows that w1(xA) is

binding. Furthermore, this graph shows that the iso-goal line w0(x) ≈ 263.90 lies “close” to the boundary

of the feasible area (defined by w1(xA) = 0), so a change in x̂o such that the resulting x̂o lies “near” that

boundary (on either the feasible or the infeasible side) gives a relatively small change in w0(x̂o) and hence

in ÊI0(x̂o). Appendix 4 shows selected iterations of macroreplication 1 with more details.

Fig. 8 displays convergence plots estimated from 50 macroreplications for three algorithms. These plots
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Figure 7: Three-bar truss example with inputs x1 and x2, goal output w0 and constrained outputs w1, w2,
and w3; dotted area denotes feasible area

Figure 8: Convergence plots for truss example: medians and IQRs for w0; min at selected iteration numbers
s, estimated from 50 macroreplications for three algorithms
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Figure 9: Final optimum input combination xmin for our algorithm (left pane), Carpio’s algorithm [14] (mid-
dle pane), and Pourmohamad’s algorithms [10] (right pane), in 50 macroreplications for the truss example

show that (i) our algorithm converges faster than the two alternative algorithms do and (ii) the IQRs of our

algorithm and [10]’s algorithm become very short after iteration 10.

Fig. 9 displays xmin for our algorithm (left pane), [14]’s algorithm (middle pane), and [10]’s algorithm

(right pane), in 50 macroreplications for the truss example; [10]’s xmin-values show the smallest variation,

and [14]’s values show the highest variation. The boxplot of the slack for the binding constraint in Appendix

4 shows that the slack values are very small positive numbers.

7.4 Hartmann-6 examples

Finally, we investigate an example with both a global optimum and local optima (as in the toy example);

after all, EGO was originally developed for such problems. The popular unconstrained Hartmann-6 example

has k = 6 inputs (there are also variants with k = 3 or k = 4). The input constraints are 0 ≤ xj ≤ 1

with j = 1, ..., 6. This example has 52 constants (αi, Ai;j , and Pi;j) that define a nonlinear goal function

w0(x,αi, Ai;j , Pi;j)); see Appendix 4. To this example, [17] adds one output constraint:

w1(x) =

√√√√ 6∑
j=1

x2
j ≤ c1. (27)

Because our focus is on problems with binding output constraints, we replace [17]’s c1 = 1.25 by our tighter

threshold c1 = 0.946. In Appendix 4, we use the white-box equations to derive the true global optimal point

xA, which gives w0(xA) ≈ −3.32 and w1(xA) ≈ 0.95 (so, xA indeed lies on the boundary defined by (27)

with c1 = 0.946 ≈ 0.95). Moreover, we derive one local optimum; namely, w0(xB) ≈ −2.2719 (> w0(xA) ≈

−3.322), which also lies on this boundary. We estimate that the feasible area is less than 6% (we again use

LHS with 100,000 points). Our initial LHS design has n0 = 28 points (see (21)). So, the expected number

of feasible initial points is less than 2; actually, 6 of the 50 macroreplications use ŷ0;min instead of w0; min.
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Figure 10: Convergence plots for constrained Hartmann-6 example: medians and IQRs for w0; min at selected
iteration numbers s, estimated from at most 50 macroreplications for three algorithms

To speed-up our experiment with this example (with k = 6 inputs, so its search area is relatively large), we

stop each macroreplication after smax = 120 iterations (after the initial design). We find that after these 120

iterations, αBC (used by our algorithm) still has the initial value; namely, 20%.

Fig. 10 displays the medians and IQRs of the convergence plots for the three algorithms, estimated

from at most 50 macroreplications; Appendix 4 displays the 50 individual plots and selected percentiles

per algorithm. From these plots we infer: (i) Our algorithm converges to the local minimum seven times,

whereas [14]’s and [10]’s algorithms converge to this local minimum one and five times, respectively. (ii) Our

algorithm performs better than [10]’s, until iteration 75. (iii) [14]’s IQRs become very small, after iteration

50. (iv) The IQRs of our algorithm and [10]’s overlap, until iteration 115; i.e., these ranges do not differ

significantly, until that iteration. Appendix 4 displays a boxplot of the slack c1 - w1(x) with c1 = 0.946, for

our algorithm; the estimated median slack is 0.0096, so we expect that our algorithm gives final xmin-values

that are feasible and close to the boundary.

Finally, we obtain numerical results for the Hartmann-6 example with a non-binding output constraint;

namely, (27) with c1 = 1.25 (instead of our c1 = 0.946; [17] communicated his correct c1 in a personal e-mail).

These results are detailed in Appendix 4, from which we infer: (i) Our algorithm with a0; EGO(x) (defined

in (26)) converges faster to the global minimum than the two alternatives do. (ii) The performance of [10]’s

algorithm is relatively poor. (iii) After iteration 50, our algorithm and [14]’s algorithm converge to the same

estimated median goal value. (iv) After iteration 60, [14]’s algorithm gives IQRs that are almost zero.
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8 Conclusions and future research

In this paper, we focussed on constrained optimization in deterministic simulation. We derived a novel al-

gorithm that combines popular EGO with the KKT conditions, which account for constraints—for outputs

and inputs—that are binding at the global optima. Our algorithm estimates which simulation input combi-

nation x maximizes our novel acquisition function that multiplies the current Kriging (or GP) estimates of

(i) EGO’s EI(x) and (ii) c̃os(x) which quantifies how well the KKT conditions hold at x, using a LS model

for the KKT conditions. We obtained numerical results for several mathematical examples and mechanical-

engineering examples, for our algorithm and two alternatives; these alternatives are recent representatives

for either classic EGO algorithms or hybrid algorithms that combine EGO with MO. We used the white-box

equations of the spring example and the truss example, and discovered that these examples have convex

feasible areas. In the truss example, our algorithm converges faster to the true global optimum than the

two alternative algorithms do; consequently, our algorithm can serve impatient customers in computation-

ally expensive simulation. Altogether we conclude that our algorithm may be a suitable EGO variant for

constrained optimization in deterministic simulation.

Our algorithm is flexible, because it is modular; i.e., it includes the following modules: (i) A specific

statistical model; namely, OK combined with a G-kernel. (ii) An initial design selected via LHS with a

number of points specified by a simple formula. (iii) The PS numerical search algorithm for finding x̂o that

maximizes the acquisition function.

In general, (black-box) simulation implies that we do not know whether the problem has global optima

besides local optima so we do not know whether EGO is desirable. Nevertheless, to be “safe”, we may still

apply EGO. In some simulations we might conjecture that the optima lie at the boundaries of the feasible

areas, because the simulations have conflicting outputs. In practice, the users might restart an algorithm

with different initial designs—possibly on a parallel computer—and select the result of the best restart.

We briefly discussed problems without binding constraints. Then we replaced the KKT conditions in our

algorithm by the zero goal-gradient condition. In future research we may further investigate these problems.

We applied LOO-CV after the initial design, to investigate our combination of OK with a G-kernel. We

could also apply LOO-CV after each iteration, to select the best combination of UK and a specific kernel

(including an M-3/2 kernel and an M-5/2 kernel); however, we leave that generalization for future research.

In future research we may also investigate: (i) Choice of initial space-filling design. (ii) Customization

of PS, and replacement of PS by an alternative numerical optimizer (e.g., fmincon). (iii) Comparison

with additional alternative algorithms, including convergence proofs. (iv) High-dimensional optimization.

(v) Parallel optimization. (v) Non-continuous inputs; e.g., integer and categorical inputs. (vi) Chance-
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constrained problems in reliability engineering.
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