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Abstract: In-home activities are inevitably important parts of individuals’ daily schedules, as people
spend more time working and doing various other activities (e.g., online shopping or banking) at
home. However, conventional activity-based travel demand models (ABMs) only consider travel
and travel-related out-of-home activities, ignoring the interaction between in-home and out-of-
home activities. To fill in this gap and increase the understanding of what people do at home
and how in-home and out-of-home activities affect each other, a new method is proposed in this
study. The approach predicts the types and durations of in-home activities of daily schedules
generated by ABMs. In model building, statistical methods such as multinomial logit, log-linear
regression, and activity sequential information are utilized, while in calibration, the Simultaneous
Perturbation Stochastic Approximation (SPSA) method is employed. The proposed method was
tested using training data and by applying the approach to the schedules of 6.3 million people in
the Flemish region of Belgium generated by a representative ABM. Based on the statistical methods,
the mean absolute errors were 0.36 and 0.21 for predicting the number and sum of the durations
of in-home activities (over all types) per schedule, respectively. The prediction obtained a 10%
and 8% improvement using sequential information. After calibration, an additional 60% and 68%
were gained regarding activity participation rates and time spent per day. The experimental results
demonstrate the potential and practical ability of the proposed method for the incorporation of
in-home activities in activity–travel schedules, contributing towards the extension of ABMs to a wide
range of applications that are associated with individuals’ in-home activities (e.g., the appropriate
evaluation of energy consumption and carbon emission estimation as well as sustainable policy
designs for telecommuting).

Keywords: in-home activities; multinomial logit; log-linear regression; activity sequential information;
calibration; simultaneous perturbation stochastic approximation (SPSA); activity–travel schedules

1. Introduction

Climate change phenomena represent one of the most severe threats to human well-
being and sustainable development [1,2]. To address the challenge of climate change, the
I-CHANGE (Individual Change of Habits Needed for Green European transition) H2020
EU project [3] has been initiated, aimed at engaging citizens and promoting sustainable
activity–travel behavior and lifestyles (i.e., choices that generate less energy consumption
and carbon emissions). In this context, activity-based travel demand models (ABMs) come
into play. ABMs are a type of highly disaggregated (agent-based) modeling framework
that captures individuals’ daily activity–travel routines [4,5]. Based on ABMs, the effects
of activity–travel behaviors (i.e., out-of-home activities and associated travel) on energy
consumption and carbon emissions can be estimated, and a simulation of policies/scenarios
that could motivate the shifts to sustainable lifestyle and activity patterns can be produced.

Nevertheless, most of the operational ABMs only consider travel and travel-related
out-of-home activities (i.e., activities conducted outside the home); in-home activities (i.e.,
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activities performed at home) are ignored in the process of scheduling individuals’ ac-
tivities [6,7]. Consequently, in-home activities are not contained in the daily schedules
generated by ABMs (ABM schedules), leading to incomplete activity sequences. However,
according to the US Bureau of Labor Statistics [8], on average, people in the United States
spend 1076 min (75% of the day) at home and only 69 and 295 (min) (5% and 20%) on travel
and out-of-home activities each day. Thus, while ABMs provide a more advanced frame-
work for modeling travel and travel-related activities, they cannot evaluate individuals’
activity behaviors throughout the day. To provide better information and policy recommen-
dations for behavior changes, a complete picture of time use patterns (activity sequences)
should be considered that accommodates both in-home and out-of-home activities.

In addition to evaluating behavioral changes, having a clear vision of time use patterns
can be helpful in other areas. The first utilization is related to the COVID-19 pandemic.
During this period, the outbreak drastically reduced economic activities and population mo-
bility as a result of lockdown measures, leading to a significant drop in visits to workplaces,
shops, and recreation locations, with a substantial increase in activities at home [9]. These
responses have been anticipated as a window of opportunity for long-term behavioral
changes in working and mobility patterns [10]. However, to attain the best perception of
the potential results of policies that enhance these sustainable behavioral changes, it is
essential to understand how individuals plan and schedule in-home activities to spend the
required time on obligatory activities (e.g., work and education), as well as how in-home
activities potentially replace their equivalent out-of-home ones (e.g., the reduction in vis-
iting shops as a result of e-shopping activities). The second utilization lies in the area of
energy supply chain designs. The increasing trend of doing activities at home has impacted
how residential buildings are used and how long people spend on various activities in
their homes. This leads to considerable changes in the occupancy patterns of residential
buildings compared to pre-pandemic norms. The availability of complete time use patterns
can provide necessary inputs for designing more efficient and sustainable supply chains
(grids) for water, gas, and electricity by associating people’s in-home activities with the
amount of these resources they consume [11]. From a sustainability perspective, optimized
supply chains contribute to energy conservation and emission reduction by reducing over-
production and resource losses. Demand-focused grid design integrates renewable energy
sources, aligning variable supply with usage patterns. This supports innovative building
development with energy-efficient systems.

In sum, the traditional ABMS are inadequate for meeting the requirements for the
applications mentioned above and addressing the challenges that the post-COVID-19 pan-
demic world is facing, and further development of the models is required. This necessitates
additional research to develop an effective method to enrich ABM schedules with in-home
activities to provide a complete picture of time use patterns in and outside homes.

2. Literature Review
2.1. Activity-Based Travel Demand Models

Activity-based models originate from the time–space prism theory presented by
Hägerstrand [12], where individuals perform their daily activities bound by time and
space constraints [13]. These models (ABMs) predict travel patterns in terms of where,
when, how, why, and with whom individuals travel and estimate the travel demand (e.g.,
the number of vehicles moving between different locations) [4,14]. The central premise
of ABMs is the treatment of travel as a derived demand for activity participation. In this
modeling framework, travel surveys that record the daily activity–travel sequences of a
small sample of respondents during one or a few days, along with land use, transporta-
tion network, and socio-economic data, are used to estimate models based on statistical
and machine learning techniques [4,6]. For example, [4] used a decision tree modeling
approach, and [12] employed statistical models within their ABM framework. Figure 1
depicts different components of a typical integrated ABM framework. The core modeling
components are dark grey blocks that require specific inputs, which are given as white



Sustainability 2024, 16, 10086 3 of 24

blocks. The primary outputs from the model are provided as light grey blocks. A typical
ABM model consists of an activity generation or daily pattern generation component and
an activity scheduling component. The activity generation component mainly contains
the models that represent the choice of a number of activities, their sequence, and several
tours (home-based tours) the individuals will perform in a day. The activity scheduling
component consists of multiple choices involving activity and travel decision-making, such
as time choice, mode choice, and location choice. Usually, a sequential approach is used
to model such decisions [15]. This results in individuals’ full-day schedules of all trip
information. The individual trip information is then processed into an origin–destination
matrix, and then fed to a supply-side model (dark grey block) that provides output through
traffic flows and travel times on the road network. The outputs of the ABM model, which
are a list of activities and their schedule (sometimes referred to as plans), are fed to the
traffic assignment model. The traffic assignment model generates a new set of travel times
(skim matrices), which serve as input to the ABM for the next iteration.
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However, while ABMs concentrate on modeling travel and travel-related elements
(e.g., travel modes and activities performed at travel destinations), less attention has been
given to analyzing and simulating in-home activities. The role of in-home activities in the
process of planning and scheduling of individuals’ daily activities has been disregarded.
This can be attributed to two major reasons: (1) the fact that in-home activities are not
directly involved with trips, and (2) the scarcity of data sources that provide required
details on planning and scheduling in-home activities. Consequently, in-home activities are
not accommodated in ABM schedules, leading to incomplete daily activity sequences. For
instance, a typical ABM schedule would be ’activities at home at 4–8 h→ working in the
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office at 9–17 h → shopping in supermarkets at 17:20–18:20 h → activities at home at 19–4 h
(next day)’, with travel being implicit between every two consecutive locations. According
to this schedule, the person conducted three trips and two out-of-home activities (i.e., work
and shopping), while staying at home for two periods (i.e., 4–8 h and 19–4 h). However,
the specific activities that the person performed during these two periods are unknown.
There exist empirical studies that investigated individual time allocation behavior for
in-home activities, along with their impact on out-of-home activities, but the incorporation
of in-home activities in an operational ABM is scarce in the literature. This research aims to
present a methodological framework to further enrich these home periods with detailed
in-home activities.

2.2. Factors Affecting In-Home Activities

In-home activities have been studied based on various statistical models, and both
individual–household and activity–schedule attributes have been identified as essential fac-
tors affecting in-home activity choices and time allocation. Regarding individual-household
attributes, Bhat and Koppelman [16] and Yamamoto and Kitamura [17] analyzed individu-
als’ time allocation patterns for weekly in-home and out-of-home discretionary activities,
and showed that both individual (e.g., age, gender, and income) and household (e.g., house-
hold size and the number of children) variables are important determinants of location
choices (between in-home and out-of-home places) and time allocation for discretionary
activities. Meanwhile, Bhat and Gossen [18] identified similar influences of these vari-
ables on leisure activity choices in and outside the home. Concerning activity–schedule
attributes, Doherty [19] and Shabanpour et al. [7] found that the start time and duration
of an activity have a significant impact on the location choice of the activity. Along with
that, the attributes of other activities or travel on the same day also influence a particular
activity. For instance, Miller and Roorda [20] revealed that the time spent on work or house-
hold maintenance affects the location choice of a discretionary activity, while Yamamoto
and Kitamura [17] recognized that individuals who spend more time commuting tend to
perform more activities at home.

The literature also investigates changes in people’s activities (both in and outside the
home) and travel behavior because of the COVID-19 pandemic. As described in Section 1,
during the pandemic, the combination of social distancing and travel restrictions, as well
as people’s decisions to avoid the infection risk, resulted in an unprecedented change in the
mobility styles of individuals [21,22]. Activities, including work, education, and shopping,
witnessed a significant shift to online settings, and the total number of in-home activities
soared. Among the activities, the shift to working from home (WFH) was a significant
change in people’s routines [23], and is a long-lasting trend rather than a temporary
phenomenon that just occurred during the pandemic [24–26]. The shift towards the new
work modality will further result in reduced commuting trips and changes in activity
routines [27,28], leading to the emergence of new activity and travel patterns featuring
an increasing level of probabilities for in-home activity choices and time allocation. This
signals the growing importance of in-home activities in the scheduling of individuals’ daily
activities and prompts further research.

2.3. In-Home Activity Prediction

While the rich literature described above analyses the characteristics and influencing
factors of in-home activities, only a few efforts have focused on the prediction of these
activities within an ABM framework. The studies [6,7] upgraded the existing ABM, namely
ADAPTS, by integrating in-home activity planning and scheduling into the modeling
process, making the new framework capable of simulating in-home activities alongside
out-of-home activities. A joint discrete–continuous model consisting of multinomial logit
and log-linear regression [7] and a sequential conditional probability approach composed
of multinomial logit and hazard-based duration modeling [6] were employed to predict
in-home activity types and duration. Both of these studies employed time use survey
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data alongside household travel data to estimate behavioral models. Six general in-home
activity types were used and the prediction focused on activity episodes (i.e., the type
and duration of each activity instance being estimated), while the derived results were
a sequence of in-home activities in the temporal order. Khalil and Fatmi [29] utilized
machine learning techniques; six learning methods were considered, including artificial
neural networks, regression trees, ensembles, support vector machines, k-nearest neighbor,
and Gaussian process regression. They considered four activity types; the prediction
concentrated on the occurrence of each activity type in the schedule, while the obtained
results were a two-dimensional vector for each type, indicating whether the corresponding
activity type occurs (with at least one instance) and how long the activity would be (if
it occurs). Hesam et al. [30] presented their activity-based modeling framework, namely
SALT, which only incorporated two types of in-home activities i.e., home chores and home
leisure. Their modeling framework employed behaviorally based econometric, machine-
learning, and data-mining techniques and used the Halifax Space Time Activity Research
(STAR) household survey.

In addition to the methods adopted, differences and shortcomings exist between the
studies mentioned in the above paragraph. These are given below:

• In studies [6,7], six general in-home activity types were used; in comparison, study [29]
predicts only four types of in-home activities, and study [30] incorporates only two
in-home activity types. Given that there may be several activity episodes of the same
type performed at different times of the day, the studies [6,7] provide more detailed
information on activity patterns than the third study, such as the total number of
episodes of each type and the start times of these episodes, as well as the sequential
order of episodes of different types.

• None of these studies conducted additional analysis to examine how the predicted
results perform in the context of daily activity sequences that are under a specific
sequential constraint. As standard statistical models or machine learning methods
offer an effective technique for modeling each single activity episode, they discard the
details of activity ordering and transitions embedded in activity and travel patterns.
When the predicted activities are filled into an individual’s daily schedule, the activity
patterns (composed of both in-home and out-of-home activities) should follow a
specific sequential constraint, i.e., the choice of activities is dependent on the preceding
activity engagement [31]. For instance, if a sports activity is carried out (either in or
outside the home) in the morning, there is a slight chance that it is performed again in
the evening. These interdependencies of daily activities are crucial in activity–travel
decision-making.

• While time use surveys, which are commonly used for in-home activity modeling [6,7,29,30],
provide valuable information on activity–travel behavior, they have an intrinsic weak-
ness (e.g., the lengthy period of data processing and under-reporting of short-duration
or infrequent activities) [31]. This leads to a certain level of deviation between the
predicted results and the ones that reflect the actual behavior of the current situation.
Similar problems have arisen from the OD matrix generated by ABMs, in which differ-
ences have been identified between the derived matrix (along with its assignment to
road networks) and the actual traffic flow patterns. To reduce these discrepancies, a
calibration process has been used to match the predicted OD as closely as possible to
the actual measurements collected from the road network. However, in the previously
described in-home activity prediction methods, no similar (calibration) processes were
considered to update the prediction results to make the marginal distributions of the
estimated activities well aligned with the observed ones and to generate the prediction
results as an accurate representation of current in-home activity behavior.

2.4. Research Contributions

Extending the current research on predicting in-home activities while addressing the
limitations mentioned above, this study proposes a new approach that integrates statistical
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models, activity sequential information, and calibration into the prediction framework.
The goal of the approach is to predict the types and durations of activities for each given
home period of an ABM’s predicted activity–travel schedule. Compared with the existing
prediction methods, the new approach offers significant advantages. (1) It is based on
integrating conventional statistical models and activity sequential information inherent to
human activity and travel behavior. (2) A calibration process is employed to better match
the predicted results to the observed marginal activity distributions (e.g., the percentage
of people who perform at least one activity of a given type each day and the average time
spent on the activities per person). (3) By calibration, the proposed method can be easily
transferred to other application regions with marginal activity data and similar conditions
to the originally model-developed area (regarding road networks and social-economic
development) which do not have detailed time use surveys. (4) The method is tested by
applying the approach to the schedules (around 6.3 million) of individuals in the Flemish
region of Belgium generated by a representative ABM, and the potential and practical
ability of the approach is demonstrated.

3. Methodological Approach for the Enrichment Method
3.1. Overall Structure of the Enrichment Method

The method proposed here consists of two major parts: model building and model
calibration, as outlined in Figure 2. The Model Building Section (namely the MB pro-
cess, Section 3.3) is further divided into four steps, including (1) data processing, (2) the
prediction of activity types and durations of each single in-home activity record, (3) the
prediction of each given home period (HomeP), and (4) prediction enhancement based on
activity sequential information (ASI). In the Model Calibration Section (denoted as the MA
calibration process, Section 3.4), the previously derived models are further improved based
on observed marginal activity (MA) data.
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mance measures.

3.2. The Training Data

The data for training and testing the model were obtained from the 2019 Ameri-
can Time Use Survey (ATUS) (U.S. Bureau of Labour Statistics, 2019) [8], which was
administered to obtain detailed information about the time use patterns of a sample of
9435 individuals along with their socio-economic conditions. The data were collected for a
full schedule of a random day, including every in-home, out-of-home, and travel activity
performed by the respondent during that day. The U.S. data from 2019 reflect pre-COVID-19
conditions. This means they capture typical household behaviors, occupancy patterns, and
daily activity distributions as they existed before the significant lifestyle changes prompted
by the pandemic. Table 1 illustrates the activity records of a respondent on a Thursday; all
the activities are arranged according to the temporal order, forming an observed schedule
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(i.e., ScheO). The detailed categories of the in-home activities of the survey provide valu-
able information for studying these activities. The original data featuring weekdays from
4642 individuals were extracted into a dataset (i.e., ATUS-wd), which was further divided
into training and test sets with 80% and 20% of the individuals for model estimation and
validation, respectively. For each day, the continuous time interval for doing (one or a few)
activities at home is defined as a home period (i.e., HomeP). For instance, Table 1 shows
two HomePs spanning 4:00–7:15 and 20:50–4:00 (next day), respectively.

Table 1. Activity records of a respondent on a single day.

Start Time End Time Activity Duration Activity Type * Location

4:00 6:30 150 S Home

6:30 7:15 45 P Home

7:15 8:20 65 Travel /

8:20 13:00 280 Mo Office

13:00 14:00 60 Po Office

14:00 19:30 330 Mo Office

19:30 20:15 45 Travel /

20:15 20:50 35 H Home

20:50 21:50 60 P Home

21:50 23:00 70 L Home

23:00 4:00 300 S Home
* Activity types can be referred to in Table 2.

Table 2. In-home activity types *.

Activity Type Le Definition Sub-Category Leo

Sleep S Sleep and rest at night and
during the daytime 1 (100%)

Personal care P
Washing, dressing, and

grooming (1); eating and
drinking (11)

1 (52%), 11 (48%) Po

Household H
Household maintenance (2), and

caring for household (3) and
non-household members (4)

2 (79%), 3 (20%), 4 (1%) Ho

Leisure L Socializing, relaxing, and leisure
(12); sports and exercise (13) 12 (98), 13 (2%) Lo

Discretionary D

Online shopping (7), personal
care (8), and household (9)
services; religious (14) and

volunteer (15) activities

7 (18%), 8 (4%), 9(6%), 14
(50%), 15 (22%) Do, SHo

Mandatory M Work and work-related activities
(5) and education (6) 5 (79%), 6 (21%) Mo

*: The columns from the left to right denote the in-home activity types, represented letters, definitions, sub-
categories, and corresponding letters for out-of-home activities. In ‘Definition’, the number in the bracket indicates
the sub-categories, while in ‘Sub-category’, the value in the bracket represents the share of the sub-category among
the total activity records of the corresponding type.

3.3. Model Building (MB Process)
3.3.1. Data Processing

Six commonly used activity types, including sleep (S), personal care (P), household
(H), leisure (L), discretionary (D), and mandatory (M) activities were considered [7]. The
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definition of these types, along with the sub-categories of each type [32], is described in
Table 2. To explore the sequential correlations of in-home activities with out-of-home ones,
activities performed outside the home were also utilized. These activities were divided into
personal care (Po), household (Ho), leisure (Lo), mandatory (Mo), discretionary (Do), and
shopping (SHo) activities, with the former four types being equivalent to P, H, L, and M,
while the latter two (Do and SHo) originate from D.

The explanatory variables (presented in Table 3) include information on the classifi-
cation of the attributes (such as individual, household, and activity schedules) to account
for the impact of these variables on the prediction. The survey adopts the classification
of individual and household variables, while the decision tree method [33] was used for
activity–schedule variables. This approach was employed to choose the most significant
cutting points for each variable, such that the response values (i.e., in-home activity types)
were as similar as possible within each obtained interval while as different as possible
across intervals. In addition to the explanatory variables, the other major variables used in
the process are listed in Table A1 in the Appendix A.

Table 3. Explanatory variables.

Variable Name Variable Classification

Individual variables (4)

Work Employment status; 1: full-time, 2: part-time, and −1: unemployed

Edu Student status; 1: full-time student, 2: part- time student, and −1: not a student

Age Age; 1: 0–12, 2: 13–17, 3: 18–34, 4: 35–54, 5: 55–64, 6: 64–74, and 7: 75+

Sex Gender; 1: male, and 2: female

Household variables (6)

WoS Employment status of spouse; 1: full-time, 2: part-time, and −1: unemployed, and 0:
no spouse

Nchi Number of children under the age of 18; 0: none, 1: one, 2: two, and 3: 3+

Nper Number of people in the household; 1: one (the respondent alone), 2: two, and 3: 3+

Earn Weekly earnings; 0: none, 1: USD 0–1000, 2: USD 1000–2000, and 3: USD 2000+

Achi Age of the youngest child under the age of 18; 0: none, 1: 0–12, and 2: 13–17

Aold Age of the oldest person; 1: 18–34, 2: 35–54, 3: 55–64, 4: 65–74, and 5: 75+

Activity–schedule variables (26)

ActST
Start time of the predicted time interval; 1: 0–4:00 a.m., 2: 4:00–6:15 a.m.; 3: 6:15–9:10
a.m., 4: 9:10 a.m.–16:30 p.m., 5: 16:30–19:25 p.m., 6: 19:25–20:50 p.m., 7: 20:50–21:50

p.m., and 8: 21:50–24:00 p.m.

PerD Duration (min) of the predicted home period, for which one or several activities are to
be predicted; 1: 0–75, 2: 75–520, 3: 520–670, and 4: 670+

Out1, Out2, Out3, Out4, Out5, Out6

Total duration (min) of out-of-home activities of each type; Out1 (Po): 1: 0–15, 2:
15–105, 3: 105+; Out2 (Ho): 1, 0–15, 2: 15–215, 3: 215+; Out3 (Lo): 1: 0–15; 2: 15–215; 3:
215+; Out4 (Do): 1: 0–15; 2: 15–170; 3: 170+; Out5 (Mo): 1: 0–15; 2: 15–80; 3: 80–480; 4:

480+; and Out6 (SHo): 1: 0–15; 2: 15–200; 3: 200+

Trip1, Trip2, Trip3, Trip4
Total duration for each mode of travel; Trip1 (car driver): 1: 0–15; 2: 15–150; 3: 150+;

Trip2 (car passenger): 1: 0–65; 2: 65–240; 3: 240+; Trip3 (walking or biking): 1: 0–60; 2:
60+; and Trip4 (bus, subway, or train): 1: 0–15; 2: 15+

OutT, TripT Total duration for all out-of-home activities and trips; OutT: 1: 0–315; 2: 315–695; 3:
695+; TripT: 1: 0–45; 2: 45–180; 3: 180+
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Table 3. Cont.

Variable Name Variable Classification

In1, In2, In3, In4, In5, In6

Total duration for each type of in-home activities conducted before the predicted time
interval; In1 (S): 1: 0–10; 2: 10–275; 3: 275+; In2 (P): 1: 0–10; 2: 10–65; 3: 65+; In3 (H): 1:
0–10; 2: 10–80; 3: 80+; In4 (L): 1: 0–150; 2: 150–400; 3: 400+; In5 (D): 1: 0–10; 2: 10–95; 3:

95+; and In6 (M): 1: 0–10; 2: 10–120; 3: 120+

Pre1, Pre2, Pre3,
Pre4, Pre5, Pre6

Duration of the preceding in-home activity before the predicted time interval; Pre1 (S):
1: 0–60; 2: 60–85; 3: 85+; Pre2 (P): 1: 0–20; 2: 20–160; 3: 160+; Pre3 (H): 1: 0–10; 2:

10–190; 3: 190+; Pre4 (L): 1: 0–35; 1: 35–120; 3: 120–245; 4: 245+; Pre5 (D): 1: 0–30; 2:
30+; and Pre6 (M): 1: 0–135; 1: 135+

3.3.2. Prediction for Each Activity Record

Various statistical methods have been explored to model in-home activity choices
and time allocation. Among the methods, the multinomial logit model (MNL) is the most
basic form of discrete choice models and provides a closed form and efficient computa-
tion for choice probabilities. This model is particularly suitable for large-scale activity
prediction [6,7]. Given the potential application of the proposed approach to a large area,
as well as the multiple runnings of an iterative process in the calibration, the computation
time is regarded as an important factor. Thus, the MNL was adopted in the approach. In
terms of activity durations, the log-linear regression model [7] was chosen to estimate the
durations of activities of each type.

Specifically, K is the total number of in-home activity types, M is the total number of
explanatory variables, and xm and Cm (m = 1, . . ., M) are each of the explanatory variables
and the number of categories of this variable, respectively. Moreover, Y is the dependent
variable for in-home activity types, and Pr(Y = k) (k = 1, . . ., K − 1) and Pr(Y = K) are the
probabilities of Y = K and Y = K. The log ratio (i.e., logit) between Pr(Y = k) and Pr(Y = K)
for an individual is modeled as follows.

log Pr(Y=k)
Pr(Y=K) = βk,0 + βk,1·x1 + . . . + βk,M·xM + εk (k = 1, . . . , K − 1)

K
∑

k=1
Pr(Y = k) = 1

(1)

where, βk,0 and βk,1, . . ., and βk,M are the intercept and slope parameters;
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where, βk,0 and βk,1, …, and βk,M are the intercept and slope parameters; єk is the random 

error term corresponding to unobserved factors, with a standard type-I extreme value 

distribution. 

Similarly, for a given activity type k, Z is the dependent variable for activity duration; 

the log of Z is characterized as follows: 

 kxMMkxkkkZ  ,...11,0,)|log(   (2)

where, αk,0 and αk,1, …, and αk,M are the intercept and slope parameters, respectively; while 

 k  is the random error depicting unobserved factors and is assumed to have a normal 

distribution. Note that in Equations (1) and (2), a linear function of the explanatory 

variables is considered, and the error terms єk and  k  are identically distributed across 

individuals [12,13]. Moreover, there are (M + 1) × (K − 1) and (M + 1) × K parameters in the 

two equations, respectively. The models containing all the parameters which are 

estimated using the in-home activity records in the training set are denoted as LMtype and 

LMdur. LMtype contains only one model characterizing the probabilities of all the activity 

types, whereas LMdur is composed of six independent sub-models for the prediction of the 

durations of different activity types. 

3.3.3. Prediction for Each Given Home Period (HomeP) 

Based on LMtype and LMdur, the activities of each given home period HomeP are 

predicted. To this end, a home period prediction method, namely the HomePPM method 

(see Figure 3), is designed to estimate the activity type and duration of each possible in-

home activity in HomeP. Specifically, ts, te, and Inthome are the start time, end time, and the 

time interval of HomeP, with Inthome = te − ts; r, Y rˆ , and Zrˆ  are the order, activity type, and 

duration of the predicted activity in HomeP; and t and Intrem are the start time and 

is the ran-
dom error term corresponding to unobserved factors, with a standard type-I extreme
value distribution.

Similarly, for a given activity type k, Z is the dependent variable for activity duration;
the log of Z is characterized as follows:

log(Z|k) = αk,0 + αk,1·x1 + . . . + αk,M·xM + Φk (2)

where, αk,0 and αk,1, . . ., and αk,M are the intercept and slope parameters, respectively;
while Φk is the random error depicting unobserved factors and is assumed to have a
normal distribution. Note that in Equations (1) and (2), a linear function of the explanatory
variables is considered, and the error terms
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3.3.3. Prediction for Each Given Home Period (HomeP) 

Based on LMtype and LMdur, the activities of each given home period HomeP are 

predicted. To this end, a home period prediction method, namely the HomePPM method 

(see Figure 3), is designed to estimate the activity type and duration of each possible in-

home activity in HomeP. Specifically, ts, te, and Inthome are the start time, end time, and the 

time interval of HomeP, with Inthome = te − ts; r, Y rˆ , and Zrˆ  are the order, activity type, and 

duration of the predicted activity in HomeP; and t and Intrem are the start time and 

and Φk are identically distributed across
individuals [12,13]. Moreover, there are (M + 1) × (K − 1) and (M + 1) × K parameters
in the two equations, respectively. The models containing all the parameters which are
estimated using the in-home activity records in the training set are denoted as LMtype and
LMdur. LMtype contains only one model characterizing the probabilities of all the activity
types, whereas LMdur is composed of six independent sub-models for the prediction of the
durations of different activity types.

3.3.3. Prediction for Each Given Home Period (HomeP)

Based on LMtype and LMdur, the activities of each given home period HomeP are
predicted. To this end, a home period prediction method, namely the HomePPM method
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(see Figure 3), is designed to estimate the activity type and duration of each possible
in-home activity in HomeP. Specifically, ts, te, and Inthome are the start time, end time, and
the time interval of HomeP, with Inthome = te − ts; r, Ŷr, and Ẑr are the order, activity type,
and duration of the predicted activity in HomeP; and t and Intrem are the start time and
remaining interval of HomeP, respectively. Moreover, Durmin is defined as the threshold for
the minimum duration of activities. This process begins with r = 1, t = ts and Intrem = Inthome,
and Ŷr and Ẑr are obtained based on LMtype and LMdur, respectively. Afterwards, Intrem is
updated with Intrem ≤ Intrem − Ẑr and compared against Durmin. If Intrem ≥ Durmin, this
process is repeated for the prediction of the next activity (i.e., r ≤ r + 1 and t ≤ t + Ẑr) using
the updated values of the predictors. Otherwise, if Intrem < Durmin, the remaining interval
is not sufficiently long for a possible activity; this process stops, and Intrem is assigned to Ẑr
(i.e., Ẑr ≤ Ẑr+ Intrem). Note that only some of the activity–schedule variables (e.g., ActST,
PerD, In1-In6, and Pre1-Pre6) are renewed in the update of the predictors. The values of
the other variables (e.g., the individual and household variables) remain identical (for the
same schedule). The final output of this process is a set of estimated in-home activities
with the predicted types and durations performed within HomeP. A daily schedule may
contain several HomePs; the predicted in-home activities of all the periods, along with the
original out-of-home activities in the schedule, form a complete (predicted) daily sequence
according to the temporal order (i.e., ScheI).
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Differences exist between the models (LMtype and LMdur) and HomePPM. LMtype and
LMdur predict each given activity record, whereas HomePPM handles an additional uncer-
tain factor, which is the number of activities possibly contained in HomeP. Thus, HomePPM
provides the estimation of three elements, including the number of activities in HomeP as
well as the activity type and duration of each of these activities.

3.3.4. Prediction Enhancement Based on Activity Sequential Information (ASI)

A method (i.e., the ASI-based method) was developed to take the previously obtained
schedules (ScheIs) as well as the sequential information (derived from the survey data) as
inputs and aimed to generate improved inferences. Using GPS and mobile phone data,
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a similar process was utilized to improve the machine learning results on travel modes
and out-of-home activities [34]. This method can be illustrated by the predicted activity–
travel schedule of a respondent depicted in Figure 4. According to the observed data, the
respondent has conducted the sequence of activities, ‘S-H-P-Mo-M-P-L-H-S.’ However,
based on the results of HomePPM, the predicted sequence is ‘S-H-P-Mo-L-P-L-H-S’; the
activity of M at the fifth position in the observed sequence is wrongly forecasted in the
predicted schedule as L (i.e., because the predicted probability Pr(Y = ‘L’) = 0.31 is the
maximum probability across all the activity types). To identify and possibly correct this
error, the probability Pr(·) for each in-home activity in the predicted sequence was examined.
If Pr(·) is smaller than a threshold TH1 (e.g., 0.5 in this experiment), the corresponding
activity (denoted as Afal) is assumed to have a high likelihood of being a false inference,
and an enhancement process is applied to this activity to improve its prediction in the
following manner.
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1. If Afal is adjacent to an out-of-home activity (e.g., Mo at the fourth position of the
predicted sequence), this out-of-home activity is regarded as a reference activity
(referred to as Aref).

2. Otherwise, if Afal (e.g., L at the seventh position) is in the middle of a set of consecutive
in-home activities and does not neighbor any out-of-home activities, a second in-home
activity (e.g., P or H at the sixth or eighth position) is selected if it is adjacent to Afal and
has Pr(·) exceeding a threshold TH2 (e.g., 0.9). The selected activity is considered to
be a possibly correct prediction and is used as Aref to fix the potentially false inference
of Afal.

3. The above obtained Aref (from step 1 or 2) is used to compute the correction factor
CrQ, and the activity (denoted as Amod) with the maximum value of CrQ is chosen as
the revised activity of Afal.

4. After the revision, the duration of the new activity Amod is re-estimated using LMdur
for the corresponding type.

5. In case Aref is not found (i.e., no activities appear in the adjacent area which are either
out-of-home activities or in-home activities with a high probability), the revision is
not performed.

With the appropriate thresholds TH1 and TH2, it is more likely to correct the false
prediction while maintaining accurate inference results.

The sequential information is represented in a transition probability matrix between
different activity types, e.g., 6 × 6 in this study. The correction factor CrQ is a combination of
the sequential information and the predicted probability previously obtained from LMtype.
Specifically, k1 and k2 (k1, k2 = 1, . . ., 6) are the types of activities performed consecutively
according to the temporal order (i.e., ‘k1-k2’), and Tr(k2|k1) is the transition factor from k1
to k2. Tr(k2|k1) can be calculated as follows.

Tr(k2|k1) =
F(k2|k1)

6
∑

k1=1
F(k2|k1)

(3)
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where, F(k2|k1) is the observed frequency of k2 followed by k1. Based on Tr(k2|k1), we
derive a factor (i.e., CrT(Y = k2)) of the succeeding activity with the type of k2 given the
previous activity of k1 as follows:

CrT(Y = k2) = Pr(Y = k2)·Tr(k2|k1). (4)

where Pr(Y = k2) is the prediction probability obtained from LMtype. Based on Equation (4),
however, the correction factor of activity is biased towards frequently performed activities
(e.g., H and P), as transition probabilities Tr(k2|k1) to these activities are likely to be higher
than to other less-common activities. Consequently, most of the activities under such
modification would be redirected to these frequent types. To avoid this problem, Tr(k2|k1)
is divided by the observed frequency of the succeeding activity type k2, resulting in the
factor Qr(k2|k1).

Qr(k2|k1) =
F(k2|k1)

6
∑

k1=1
F(k2|k1)·

6
∑

k2=1
F(k2|k1)

(5)

The modified correction factor (i.e., CrQ(Y = k2) is as follows:

CrQ(Y = k2) = Pr(Y = k2)·Qr(k2|k1). (6)

Similarly, the modified correction factor of the previous activity with the type of k1 (i.e.,
CrQ(Y = k1) provided so that the succeeding activity has the type of k2 can be obtained
as follows:

CrQ(Y = k1) = Pr(Y = k1)·Qr(k1|k2) (7)

In Figure 4, the transitions from Mo to L and from Mo to M are Qr(L|Mo) = 2.2 and
Qr(M|Mo) = 4.7 (see corresponding case study Section 4.4 b), respectively, leading to CrQ(L)
(6.82 × 10−7) being smaller than CrQ(M) (9.40 × 10−7) (calculated by Equation (6)). The
initially predicted activity L at the fifth position is thus revised as M after the modification.

3.4. Model Calibration

The Simultaneous Perturbation Stochastic Approximation (SPSA) method is a stochas-
tic gradient approximation algorithm, which is based on an easily implemented and highly
efficient gradient approximation that can calibrate a large number of parameters simultane-
ously using only two measurements of the objective function [35]. The performance of the
algorithm for solving large-scale multivariate optimization problems has been documented
in several studies [36,37]. Therefore, SPSA was chosen for model calibration.

Specifically, to find the optimal parameters, the algorithm starts from an initial esti-
mation of the parameter vector, and iteratively traces a sequence of parameter estimations
which make the objective function converge to a small value based on gradient approxima-
tion. The iterative form is as follows.

θn+1 = θn − sn·ĝn(θn) (8)

ĝn(θn) =



O(θn+bn ·∆n)−O(θn−bn ·∆n)
2bn ·∆n1

. . .

. . .

O(θn+bn ·∆n)−O(θn−bn ·∆n)
2bn ·∆nq

 =
O(θn + bn·∆n)− O(θn − bn·∆n)

2bn
·[∆−1

n1 , ∆−1
n2 , . . . , ∆−1

nq ]
T

(9)

sn =
s

(A + n + 1)η , bn =
b

(n + 1)γ (10)
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In Equation (8), θn denotes the estimate of the parameter vector with q-dimensions (i.e.,
θn = (θn1, . . ., θnq)T) in the nth iteration of the algorithm, ĝn(θn) (with q-dimensions) is the
approximation of the gradient at θn, and sn is a non-negative coefficient controlling the nth
step size in the updates of θn. In Equation (9), O(·) represents the objective function, ∆n is an
q-dimensional perturbation vector (i.e., ∆n = (∆n1, ∆n2, . . ., ∆nq)T), with each component ∆ni
(i = 1, . . ., q) being randomly chosen as either 1 or −1 under the same probability of 0.5 (i.e.,
under a Bernoulli distribution), and bn is a positive coefficient defining the region where
two measurements (i.e., θn + bn·∆n and θn − bn·∆n) of the objective function are calculated
in order to obtain the gradient approximation. In Equation (12), s, A, η, b, and γ are the
algorithm parameters, generating sn and bn. As n increases, both sn and bn become smaller.

The calibration process aims to update the parameter vectors β = (βk,0, βk,1, . . ., βk,M)
(k = 1, . . ., K − 1) and α = (αk,0, αk,1, . . ., αk,M) (k = 1, . . ., K) in LMtype and LMdur, respectively,
in order to make the deviations between the predicted and observed marginal activity
distributions as small as possible. To this end, two object functions (i.e., O(·) in Equation (9))
are defined, including Otype(β) for activity types and Odur(α) for the average time spent,
and they are formulated as follows.

Otype(β) =
K
∑

k=1
|R̂k−Rk|+

m
∑

j=1

Cm
∑

c=1

K
∑

k=1
|R̂k,m,c−Rk,m,c|

Odur(α) =
K
∑

k=1
|T̂k−Tk|+

m
∑

j=1

Cm
∑

c=1

K
∑

k=1
|T̂k,m,c−Tk,m,c|

(11)

where, Rk, Rk,m,c, Tk, and Tk,m,c are the observed marginal activity variables (i.e., MA
variables); Rk and Rk,m,c are defined as the percentage (participation rate) of the population
and of people with a certain category of xm = c who perform at least one activity of type
k each day, while Tk and Tk,m,c are the average time spent on the activities per person
per day over the population and this group, respectively. R̂k, R̂k,m,c, T̂k, and T̂k,m,c are
the corresponding predicted MA variables, and obtained from the estimated schedules
according to Equation (12).

R̂k =

D
∑

d=1
Ind(N̂k,d > 0)

D
, T̂k =

D
∑

d=1
Ûk,d

D

R̂k,m,c =

Dm,c

∑
d=1

Ind(N̂k,d > 0)

Dm,c
, T̂k,m,c =

Dm,c

∑
d=1

Ûk,d

Dm,c

(12)

In Equation (12), d represents a schedule; D and Dm,c are the total numbers of schedules
of all individuals and of individuals with xm = c; while N̂k,d and Ûk,d are the predicted
number and sum of durations of activities of k in d, respectively. Ind (·) is a Boolean
function, being equal to 1 if N̂k,d > 0 and 0 if otherwise. In the calibration process, if there
are small changes in Otype(β) and Odur(α) for several successive iterations or if the maximum
allowable number of iterations (denoted as THite) is reached, the process terminates.

4. Case Study

In this section, the performance of the MB process was examined using the test set, in
terms of the prediction accuracy (or errors) in each step (including LMtype, LMdur, HomePPM,
and the ASI-based method) of the process.

4.1. Composition of In-Home Activities

Out of all the activity records, in-home activities account for the largest share of 63%
while out-of-home activities and travel only undertake 19% and 18%, respectively. In
addition, large variations are observed across all the in-home activities, with household (H),
personal care (P), leisure (L), and sleep (S) displaying high frequencies of 19%, 16%, 14%,
and 12%, while the remaining discretionary (D) and mandatory (M) activities have merely
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a small proportion of 1% each. Similarly, large discrepancies exist in activity durations,
with S having the longest average duration of 292 min, M and L possessing the median of
112 and 99 (min), while D, H, and P are featured with the shortest durations of 47, 39, and
29 (min), respectively. Table 4 lists the mean, minimum (min), and maximum (max) for the
durations of single activities of each type as well as for the numbers and sum of durations
of all activities of each type on a day.

Table 4. The average, minimum, and maximum values for the durations (min) and numbers
of activities.

Duration for Single Activities Number of All Activities on a Day Sum of Durations of All Activities
on a Day

Mean Min Max Mean * Min Max Mean * Min Max

S 312 60 720 2.22 1 4 693 418 1190

P 32 5 120 2.95 1 8 87 10 300

H 38 5 240 3.57 0 17 139 0 660

L 97 10 475 2.59 0 9 264 0 910

D 72 5 320 0.15 0 2 7 0 165

M 177 10 630 0.23 0 3 27 0 630

*: The mean is computed over all the schedules with or without activities of type k.

4.2. Prediction for Each Activity Record

Out of all the 36 explanatory variables (in Table 3), 34 for LMtype and 24, 27, 30, 25,
14, and 14 for the six sub-models of LMdur (predicting the durations of S, P, H, L, D, and
M, respectively) were significant (with p-value < 0.05), and they were selected as the
predictors in the corresponding models. To measure the model performance, Acck and
Accall are defined as the prediction accuracy by LMtype for activities of type k and of all types,
respectively. Regarding LMdur, the mean absolute percentage errors (MAPEk,Z and MAPEZ),
which are used to represent the average errors in the estimation of activity durations [38],
are adopted. These variables can be computed as follows.

Acck =
RECk,cor

RECk,all
, Accall =

RECcor

RECall
(13)

MAPEk,Z =
1

RECk,all

RECk,all

∑
i=1

∣∣∣∣∣ Ẑk,i − Zk,i

Zk,i

∣∣∣∣∣
MAPEZ =

1
RECall

K
∑

k=1

(
RECk,all

∑
i=1

∣∣∣∣∣ Ẑk,i − Zk,i

Zk,i

∣∣∣∣∣ )
(14)

In Equation (13), RECall and RECcor as well as RECk,all and RECk,cor represent the numbers
of all and the correctly predicted activities of all types, as well as of type k, respectively,
while in Equation (14), Ẑk,i and Zk,i are the predicted and actual durations of activity i of
type k.

Table 5 presents the results by LMtype, showing that S has the highest accuracy (Acck) of
0.8, followed by H, P, and L with 0.65, 0.66 and 0.63, while D and M suffer from the lowest
accuracy with 0.56 and 0.58, respectively. The overall accuracy (Accall) is 0.67. In addition,
it was noted that, among all the incorrect prediction results, H is the targeted type for most
of the false positive prediction, with 7%, 22%, 21%, 19%, and 20% of S, P, L, D, and M being
wrongly estimated as H. This can be attributed to two major reasons; H accounts for the
largest share (i.e., 19%) among all the activity records, and the explanatory variables share
common values between the records of H and those of the other types. Table 6 describes
the results by LMdur, and different levels of accuracy were also exposed. Specifically, S has
the smallest error (MAPEk,Z) of 0.14; P, H, and L have the median error of 0.18%, 0.17, and
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0.15; while D and M exhibit the largest errors of 0.23 and 0.21, respectively. The overall
error (MAPEZ) is 0.16.

Table 5. Prediction results for activity types by LMtype.

Actual Types
Predicted Types

S P H L D M

S 0.80 0.05 0.07 0.06 0.01 0.01

P 0.04 0.65 0.22 0.05 0.01 0.03

H 0.07 0.08 0.66 0.13 0.02 0.04

L 0.06 0.06 0.21 0.63 0.01 0.03

D 0.08 0.09 0.19 0.07 0.56 0.01

M 0.03 0.11 0.20 0.07 0.01 0.58

Table 6. Prediction results for activity durations by LMdur.

S P H L D M All Types

MAPEk,Z 0.14 0.18 0.17 0.15 0.23 0.21 0.16

4.3. Prediction for Each Given Home Period

In HomePPM, Durmin (i.e., the threshold for the minimum duration of activities) is
designated as the minimum duration over all the in-home activities, i.e., 5 min. To measure
the prediction performance, four variables are defined, including MAEk,N and MAEk,U
as well as MAEN and MAEU. MAEk,N and MAEk,U represent the mean absolute errors
for the estimation of the number of activities of type k and the sum of durations of these
activities between each pair of the observed (i.e., ScheO) and predicted (i.e., ScheI) schedules,
while MAEN and MAEU depict the average errors over all the types. These variables are
computed as follows.

MAEk,N =
1

D
∑

d=1
Nk,d

D
∑

d=1

∣∣N̂k,d−Nk,d
∣∣, MAEk,U =

1
D
∑

d=1
Nk,d

D
∑

d=1

∣∣Ûk,d − Uk,d
∣∣

MAEN =
1

K
∑

k=1

D
∑

d=1
Nk,d

K
∑

k=1
(

D
∑

d=1

∣∣N̂k,d−Nk,d
∣∣), MAEU =

1
K
∑

k=1

D
∑

d=1
Nk,d

K
∑

k=1
(

D
∑

d=1

∣∣Ûk,d − Uk,d
∣∣) (15)

where, Nk,d and N̂k,d as well as Uk,d and Ûk,d are the observed and predicted numbers and
sum of durations of activities of k in schedule d, respectively. Note that there are differences
between MAPEk,Z and MAEk,N (or MAEk,U). In MAPEk,Z (Equation (14)), the sum of the
relative deviations between Ẑk,i and Zk,i (i.e., |Ẑk,i − Zk,i|/Zk,i) is used, whereas in MAEk,N
(or MAEk,U) (Equation (15)), due to the possibility that Nk,d and Uk,d are equal to zero, the
absolute (instead of relative) deviations between N̂k,d and Nk,d and between Ûk,d and Uk,d
(i.e., |N̂k,d − Nk,d| and |Ûk,d − Uk,d|) are considered.

The results obtained from HomePPM are listed in Table 7. Compared to the prediction
accuracy (Acck and MAPEk,Z) for single activity records, both similarities and differences
were noted. Regarding MAEk,N, S has the least error (i.e., 0.26), followed by P, H, and L (i.e.,
0.37, 0.38, and 0.39), while D and M display the largest errors (i.e., 0.48 and 0.46), respectively.
The error levels across the types are consistent with those for single activity records (i.e.,
1-Acck = 0.2, 0.35, 0.34, 0.37, 0.44, and 0.42, respectively) (see Table 5). Nevertheless, due
to the additional estimation for the number of activities in HomeP, MAEk,N has a higher
level of errors than 1-Acck for each type, and the overall error MAEN (0.36) is higher than
1-Accall (0.33). Similar phenomena occur for MAEk,U, which has the smallest value for S
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(i.e., 0.18), middle values for P, H, and L (i.e., 0.21, 0.22, and 0.24), and largest values for D
and M (i.e., 0.28 and 0.26), in line with the error trend of MAPEk,Z for single activity records.
Moreover, MAEk,U is larger than MAPEk,Z for each type (see Table 7), and the overall error
MAEU (0.21) is higher than MAPEZ (0.16). In addition to the forecasted number of activities,
the increased errors of MAEk,U can be attributed to the process of HomePPM, in which the
prediction of activity durations is based on the previously derived activity types and thus
is affected by the accuracy of the estimated types.

Table 7. Prediction results by HomePPM and by the ASI-based method.

S P H L D M All Types

HomePPM
MAEk,N 0.26 0.37 0.38 0.39 0.48 0.46 0.36

MAEk,U 0.18 0.21 0.22 0.24 0.28 0.26 0.21

ASI-based
method

MAEk,N 0.22 0.25 0.26 0.29 0.32 0.30 0.26

MAEk,U 0.11 0.13 0.14 0.14 0.16 0.14 0.13

Differences
MAEk,N 0.04 0.12 0.12 0.10 0.16 0.16 0.10

MAEk,U 0.07 0.08 0.08 0.10 0.12 0.12 0.08

4.4. ASI-Based Enhancement

Tables 8 and 9 depict Tr(k2|k1) and Qr(k2|k1); large differences were noted between
these two types of factors. In Table 9, the highest transition factors from in-home activities
are dominated by the transitions to H, P, and L. In contrast, in Table 9, the dominance of
these types is reduced by their high frequencies, and transitions to other less-common
activities (e.g., D and M) are exposed. Furthermore, as reflected in Table 9, there exists a
certain degree of correlation between in-home and out-of-home activities, represented by
the varied values of in-home (or out-of-home) activities after an out-of-home (or in-home)
activity. For example, after personal care (P) at home, the most likely out-of-home activities
are Do and Mo (i.e., ‘P-Do’ and ‘P-Mo’); while after mandatory activities (Mo) outside home,
the most oriented in-home activities are M and P (i.e., ‘Mo-M and ‘Mo-P). In addition,
a relationship was also observed across different types of in-home activities, e.g., ‘S-P’,
‘P-L’ and ‘L-S’. Particularly, the same types of activities are likely to be chained together,
e.g., ‘H-H’, ‘D-D’ and ‘M-M’. All the above results further confirm the statements [7,18]
that the characteristics (e.g., activity types and durations) of activities conducted prior
to and directly following an activity have a significant impact on the location choice and
characteristics of the activity.

Table 8. Transition matrix Tr(k2|k1) *.

Previous
Activity

Succeeding Activity

S P H L D M Po Ho Lo Do Mo SHo

S 0.18 0.39 0.23 0.10 0.01 0.01 0.01 0.02 0.02 0.004 0.01 0.01

P 0.10 0.13 0.26 0.29 0.01 0.02 0.02 0.03 0.04 0.02 0.05 0.03

H 0.04 0.28 0.35 0.21 0.01 0.02 0.01 0.03 0.02 0.01 0.01 0.02

L 0.24 0.21 0.24 0.18 0.01 0.02 0.01 0.02 0.03 0.01 0.01 0.03

D 0.14 0.19 0.24 0.22 0.06 0.02 0.01 0.02 0.02 0.03 0.01 0.04

M 0.08 0.22 0.24 0.23 0.02 0.06 0.02 0.04 0.03 0.01 0.04 0.03

Po 0.02 0.05 0.06 0.08 0.003 0.01 0.04 0.09 0.23 0.02 0.30 0.09

Ho 0.02 0.09 0.19 0.08 0.003 0.01 0.08 0.20 0.12 0.03 0.06 0.10

Lo 0.05 0.13 0.11 0.09 0.003 0.01 0.11 0.09 0.17 0.04 0.13 0.07
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Table 8. Cont.

Previous
Activity

Succeeding Activity

S P H L D M Po Ho Lo Do Mo SHo

Do 0.01 0.11 0.12 0.07 0.01 0.01 0.09 0.06 0.10 0.26 0.02 0.14

Mo 0.02 0.12 0.10 0.05 0.002 0.01 0.25 0.06 0.13 0.02 0.16 0.07

SHo 0.01 0.11 0.27 0.09 0.002 0.01 0.11 0.07 0.07 0.02 0.03 0.20

* The largest value in each row is in bold, and the sum over all values of each row is 1.

Table 9. Transition matrix Qr(k2|k1) *.

Previous
Activity

Succeeding Activity

S P H L D M Po Ho Lo Do Mo SHo

S 13.8 14.4 6.8 4.0 7.0 5.9 2.6 3.9 2.5 1.5 1.7 1.7

P 7.6 4.6 7.8 12.2 9.6 10.8 3.0 4.6 5.4 8.1 7.8 4.5

H 2.7 10.1 10.5 8.7 7.6 7.2 1.1 5.5 2.4 3.3 2.0 3.7

L 18.0 7.8 7.1 7.5 9.3 7.4 2.1 3.4 3.7 3.7 1.5 4.4

D 10.5 7.1 7.2 9.1 44.7 9.7 1.3 2.7 2.9 11.1 1.9 6.4

M 6.1 8.2 7.2 9.3 13.4 28.1 3.0 5.8 4.2 2.6 5.9 4.2

Po 1.9 1.8 1.9 3.4 1.8 3.0 7.7 14.2 31.5 6.5 46.1 14.9

Ho 1.7 3.5 5.6 3.4 2.4 6.0 16.2 32.3 15.9 10.1 9.6 16.2

Lo 3.7 4.7 3.4 3.8 2.9 3.1 20.4 14.2 22.6 12.3 20.4 12.1

Do 9.9 3.9 3.7 3.0 4.1 2.8 17.6 9.3 13.4 90.2 3.8 23.1

Mo 1.8 4.6 3.0 2.2 1.6 4.7 48.5 10.0 17.1 6.4 23.7 12.0

SHo 8.5 4.0 8.0 3.7 1.8 3.4 22.1 11.5 10.0 8.7 5.1 32.1

*: The largest value in each row is in bold, and the actual probability for each transition is the cell value multiplied
by 1 × 10−7.

After testing on different values, TH1 and TH2 were set as 0.5 and 0.9 respectively;
the obtained prediction results are presented in Table 8. Compared to those before the
enhancement, MAEk,N decreases by 0.04, 0.12, 0.12, 0.10, 0.16, and 0.16 for S, P, H, L, D,
and M, with an overall decrease of 0.10. This reduction also leverages the estimate for
durations, leading to MAPEk,U falling by 0.07, 0.08, 0.08, 0.10, 0.12, and 0.12, with an overall
decrease of 0.08. When the reduced errors were compared across different activity types, it
was noted that, while the ASI-based method strengthens the prediction for all the types,
this method particularly enhances the accuracy for less-common activity types (e.g., D and
M). This can be due to the fact that the statistical models (or machine learning algorithms)
usually favor majority classes if the classification accuracy is used as the model evaluation
criterion, whereas the ASI-based method puts equal weights on all classes of the dependent
variable (i.e., the in-home activity types).

4.5. Model Calibration

To inspect the practical ability of the MA calibration process, the ABM schedules
generated from a synthetic population of Flanders, Belgium by a representative ABM,
Feathers, were used. We acknowledged that the real activity behavior between Belgium
and the United States is likely to be different on a certain degree. Consequently, the
illustration serves to underline the applicability of the calibration, but not to infer activity
behavioral relationships between these two countries. The analysis was carried out in
two steps, including the prediction of in-home activities using the MB process, and the
improvement of the predicted results by the MA calibration.
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4.5.1. Feathers

Feathers [39] is an ABM that provides detailed spatial-temporal microsimulations for
human mobility. It allows for more realistic and consistent linkages across activity and
travel choices made by individuals in the course of a day, simulating individual agents
along with their prediction of activity–travel schedules [40]. Based on Feathers, the schedule
of each individual (older than 6) in the Flemish region of Belgium was generated, resulting
in a total of 6.3 M (million) daily sequences, accounting for 94% of the population. The ABM
schedules accommodate 14.2 M home periods, with 2.25 periods per person. The average
time spent at home is 1149 min per schedule (79.8% of the day) and 510 min per period.

4.5.2. The Calibration Process

Based on the MB process, the in-home activities of the ABM schedules were predicted,
forming a set of initially estimated schedules (i.e., ScheFs). ScheFs were further improved
based on the calibration process, resulting in the finally obtained schedules (i.e., ScheCs).
While the observed marginal activity data can be obtained from various sources, e.g., the
survey on economics and life quality; in this study, the information was collected from the
Belgian official site of statistics on the Belgian economy, society, and territory [41]. Moreover,
without losing generalization, two explanatory variables were considered, including the
gender (Sex) and employment status (Work) of respondents. During the calibration, five
parameters (including A, s, η, b, and γ) were defined, and these parameters control the
optimization process through sn and bn. A small value of sn or bn may lead to the algorithm
being stuck in the current position regardless of whether it is optimal or not; whereas
a large value could cause the algorithm to take a big step far away from the optimal
solution. A more detailed discussion on these parameters can be referred to in [35]. In
this study, the values suggested by [36] were adopted, which are 100, 0.2, 0.602, 0.5,
and 0.101 for A, s, η, b, and γ, respectively. For performance measures, MAPEtype and
MAPEdur are used to represent the average percentage differences between the observed
and predicted participation rates and time spent over all the MA variables, respectively.
They are computed as follows:

MAPEtype =
1

Var
(

K
∑

k=1

∣∣∣∣ R̂k−Rk
Rk

∣∣∣∣+ m
∑

j=1

Cm
∑

c=1

K
∑

k=1

∣∣∣∣∣ R̂k,m,c − Rk,m,c

Rk,m,c

∣∣∣∣∣)
MAPEdur =

1
Var

(
K
∑

k=1

∣∣∣∣ T̂k−Tk
Tk

∣∣∣∣+ m
∑

j=1

Cm
∑

c=1

K
∑

k=1

∣∣∣∣∣ T̂k,m,c − Tk,m,c

Tk,m,c

∣∣∣∣∣)
(16)

where, K = 6, m = 2, C1 = 2 for Sex (including men and women) and C2 = 3 for Work
(including unemployed, full-time, and part-time), leading to the total number of the MA
variables (i.e., Var) for participation rates (Rk and Rk,m,c) and time spent (Tk and Tk,m,c) to
be 36.

4.5.3. Calibration Results

Figure 5a,b describes the evolution of the object functions Otype(β) and Odur(α) when
the number of iterations (n) increases, showing that Otype(β) and Odur(α) gradually decrease
and reach the lowest points around n = 500 and n = 100, respectively. To obtain the
minimum values of both object functions, THite was specified as 500, under which the
differences between Otype(βn+1) and Otype(βn) as well as between Odur(αn+1) and Odur(αn)
over several successive iterations are smaller than 0.0001.

Table 10 describes the values of Rk, R̂k1, and R̂k2 as well as Tk,T̂k1, and T̂k2, where
R̂k1 and T̂k1 as well as R̂k2 and T̂k2 are extracted from ScheFs and ScheCs over all individuals,
respectively, and ∆Rk1 = R̂k1 − Rk, ∆Rk2 = R̂k2 − Rk, ∆Tk1 = T̂k1 − Tk, and ∆Tk2 = T̂k2 − Tk. It
shows that, for each activity type, the absolute values of ∆Rk1 and ∆Tk1 (before the calibra-
tion) are larger than those of ∆Rk2 and ∆Tk2 (after the calibration) (i.e., |∆Rk1| > |∆Rk2|
and |∆Tk1| > |∆Tk2|). Similar results were derived for the other MA variables (i.e., Rk,m,c,
R̂k,m,c, Tk,m,c, and T̂k,m,c). Over all the MA variables, MAPEtype and MAPEdur were obtained
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as 0.35 and 0.28 from ScheFs and 0.14 and 0.09 from ScheCs; an overall improvement of
60% and 68% for participation rates and time spent was gained by the calibration.
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Table 10. The predicted and observed participation rates and time spent for all individuals.

Participation Rates Time Spent (min)

Observed ScheFs ScheCs Observed ScheFs ScheCs

Rk
^
Rk1

∆Rk1
^
Rk2

∆Rk2 Tk
^
Tk1

∆Tk1
^
Tk2

∆Tk2

S 1 0.98 −0.02 0.98 −0.02 543 579 36 548 5

P 0.96 0.75 −0.21 0.85 −0.11 147 121 −26 134 −13

H 0.86 0.71 −0.15 0.75 −0.11 152 222 70 166 14

L 0.95 0.64 −0.31 0.84 −0.11 242 194 −48 239 −3

D 0.12 0.03 −0.09 0.09 −0.03 5 3 −2 4 −1

M 0.08 0.03 −0.05 0.06 −0.02 34 21 −13 32 −2

4.5.4. Comparing Between ScheFs and ScheCs

To further examine the differences between ScheFs and ScheCs, the average numbers
of activities of k per schedule (i.e., Nk, N̂k, N̂k1, and N̂k2) over all ScheOs, ScheIs, ScheFs,
and ScheCs were derived. In addition, using Nk as a reference, the differences between
Nk and the other variables were computed (i.e., ∆Nk = N̂k − Nk, ∆Nk1 = N̂k1 − Nk, and
∆Nk2 = N̂k2 − Nk). These results are presented in Table 11.

Table 11. Average number of activities of each type per schedule.

ScheOs ScheIs ScheFs ScheCs

Nk
^
Nk

∆Nk ∆Nk/Nk
^
Nk1

∆Nk1 ∆Nk1/Nk

^
Nk2

∆Nk2 ∆Nk2/Nk

S 2.22 2.54 0.32 0.14 2.48 0.26 0.12 2.30 0.08 0.04

P 2.95 2.50 −0.45 −0.15 2.16 −0.79 −0.27 2.61 −0.34 −0.11

H 3.57 4.43 0.86 0.24 5.50 1.93 0.54 4.39 0.82 0.23

L 2.59 2.09 −0.5 −0.19 1.66 −0.93 −0.36 2.12 −0.47 −0.18

D 0.15 0.10 −0.05 −0.33 0.08 −0.07 −0.47 0.11 −0.04 −0.27

M 0.23 0.16 −0.07 −0.30 0.13 −0.10 −0.43 0.18 −0.05 −0.22
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Based on Tables 10 and 11, the following important features were noticed. (1) The
MB process tends to over-estimate certain activity types (e.g., S and H) while it under-
estimate other types (e.g., D and M). This can be demonstrated by the results in Table 11,
where N̂k and N̂k1 increase by 14% and 12% for S and 24% and 54% for H, whereas they
decrease by 33% and 47% for D and 30% and 43% for M, respectively, when compared to
the observed number (Nk). (2) However, despite the over- or under-estimation of individual
activity types, the participate rate R̂k1 is lower than the actually observed rate Rk, leading
to ∆Rk1 ≤ 0 for all the types (see Table 10). This suggests that, most of the activities for a
same schedule tend to be forecasted with identical types, which could be due to the fact
that for a same person, most of the explanatory variables (e.g., the individual–household
variables) are unchanged, and only a few (e.g., the activity–schedule variables) may differ.
Consequently, each ScheF (or ScheI) is inclined to contain more activities of the same types,
whereas it lacks a variety of different types within the daily sequence. This leads to the
percentage of individuals who perform at least one activity of a given type being low.
(3) Affected by the biased estimation for individual activity types, the time spent T̂k1 also
shows a certain degree of orientation, with T̂k1 increasing for S and H (i.e., ∆Tk1 > 0) but
reducing for D and M (i.e., ∆Tk1 < 0) in relation to the observed time (Tk) (see Table 10).

In comparison, the calibration improves the initial prediction results by adjusting the
model parameters (in LMtype and LMdur) in order to reduce the discrepancies between the
predicted and observed marginal activity variables. During this process, the above, biased
estimations were mitigated, as manifested by the following results. (1) The occurrences of
over-estimated activity types (e.g., S and H) decreased, while those of the under-estimated
types (e.g., D and M) increased, resulting in the deviations between Nk and N̂k2 being
smaller (than between Nk and N̂k1). For instance, N̂k2 increases by 4% and 23% for S and H
while it decreases by 27% and 22% for D and M relative to Nk (see Table 11), demonstrating
smaller changes than N̂k1 does for the same types (i.e., |∆Nk2/Nk| < |∆Nk1/Nk|). (2) The
diversity of activity types per schedule was enlarged, leading to R̂k2 elevating and the
difference between R̂k2 and Rk diminishing (i.e., |∆Rk2| < |∆Rk1|) (see Table 11). (3) The
variations in time spent between the observed and predicted schedules were also reduced,
with |∆Tk2| for each type being smaller than its counterpart |∆Tk1| (see Table 10).

5. Discussion

In this study, a new method of enriching in-home activities for ABM schedules was
proposed, based on the integration of statistical modeling, activity sequential information
and calibration. Given a number of well-established ABMs across the world, the proposed
method can be generically applied to the output of these models and can contribute to the
extension of ABMs to a wide range of applications that are associated with individuals’
in-home activities (e.g., energy consumption and carbon emission estimations).

By applying the approach to real activity–travel schedules in the test set as well as to
the millions of ABM-schedules generated by Feathers, the potential and practical ability
of the method were evaluated. In an ideal situation, we would have used data from
Belgium time use surveys for model estimation; this may negate the advantage in terms of
improving the predictions using the calibration step, but this step has been recommended
in the transport literature in order to match the sample surveyed aggregate outcomes
with population-based aggregate outcomes [42]. Because of the unavailability of the raw
time use survey from Belgium, we used the US time use survey for model estimation and
then performed a calibration process to match the marginal distributions (i.e., aggregate
statistics from the Belgium time use survey). This workflow has an advantage and provides
a holistic methodological approach, which is suitable for the availability of datasets in
different contexts (as is the case here) and provides flexibility and transferability benefits,
but the calibration step is equally important, even if the datasets are consistent in terms of
time and space. Detailed surveys often represent a small sample of the population, and
models estimated using these surveys require a calibration process to match population
statistics. Based on the statistical modeling (HomePPM), the mean absolute errors (MAEN
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and MAEU) were 0.36 and 0.21 for the prediction of the number and sum of durations of
in-home activities (over all types) per schedule, respectively. By means of the ASI-based
approach, the prediction obtained a 10% and 8% improvement. After the MA calibration
process, an additional advancement of 60% and 68% (MAPEtype and MAPEdur) was gained
regarding the activity participation rates and time spent per day.

Individual–household and activity attributes both played vital roles in appropri-
ately predicting the in-home activity types and their duration. This is in line with the
findings of the existing literature, where statistical models were used to model these
two outcomes [17,18,20]. In total, we had 36 such variables and in all estimated models, the
majority of them were found to be significant. Additionally, the ASI based enhancement
proved its importance in further adjusting and ordering the right activities in an appro-
priate sequence. The ASI-based enhancement is based on the fact that certain activities
have more chances to appear next in the schedule based on what activities were conducted
before. The results obtained confirmed the findings of [7,18].

Nevertheless, despite the promising results, there is still a certain level of misclassifica-
tions. To further reduce the errors, enhancement could be performed in each major step
of the approach. (1) In LMtype and LMdur, more comprehensive models (e.g., mixed logit
models and hazard functions) could be adopted, and a non-linear correlation between the
dependent and explanatory variables could be considered [14,16]. In addition, information
on a broad picture of individuals’ daily schedules and habits (e.g., how often an individual
works or shops online at home) could be used as extra explanatory variables. (2) Regarding
the HomePPM method, an additional process could be utilized to examine the total number
and duration of in-home activities of each type k over all the home periods of a schedule,
in order to ensure that the number and duration fall between corresponding minimum and
maximum values for k of an observed schedule (see Table 4). Through the above checking,
the possibly biased estimation of activity types in a schedule (as described in Section 4.4)
could be alleviated. (3) In terms of the ASI-based method, the transition probabilities
Qr(k2|k1) should be derived for different time periods of the day (e.g., morning, afternoon,
and evening), as activity sequential patterns may differ across these periods. (4) With
respect to calibration, more MA variables can be utilized, and the threshold THite can be
set larger (than the present value), which, however, requires more iterations and a longer
running time.

As indicated in the literature review, there are existing methods to forecast in-home
activities, for instance, a method that builds the prediction process within an ABM modeling
framework (ADAPTS) [6,7] (See Section 2.3). However, such ABMs are quite scarce, and it is
not easy to overhaul an operational ABM to include in-home activities in its core modeling
framework. The proposed approach provides a more flexible way to enrich the outputs
of operational ABMs without interfering with the core modeling components. Therefore,
the ASI-based method and MA calibration process proposed in this study, along with the
previously suggested methods for major enhancement, can be easily integrated into the
existing ABM approaches in order to advance the prediction methods that do not only
provide high accuracy (in relation to the model training and testing data) but also a good
match with activity sequential patterns and actual marginal activity distributions.

6. Conclusions

This study proposes a new method to predict the types and durations of in-home
activities using activity–travel schedules from an activity-based travel demand model
(ABM). The method uses statistical methods like multinomial logit, log-linear regression,
and activity sequential information and calibration process based on the SPSA algorithm.
Tested on 6.3 million people in Belgium, the method showed a 10% and 8% improvement in
prediction accuracy using sequential information. After calibration, it gained an additional
60% and 68% in activity participation rates and time spent per day. With a few limitations,
the method has the potential to incorporate in-home activities into the outcomes of ABMs



Sustainability 2024, 16, 10086 22 of 24

for various applications, such as evaluating energy consumption and carbon emissions in
different sustainable urban policy contexts.
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Appendix A

Table A1. Definition of certain major variables.

Variables Definition

Activities

K and k The total number of in-home activity types (K) and each of these types (k) (k = 1, . . ., K)

M, xm and Cm
The total number of explanatory variables (M), each of these variables (xm) (m = 1, . . .,
M), and the number of categories of xm (Cm)

Y and Z The dependent variables for in-home activity types (Y) and activity duration (Z)

Ẑk,i and Zk,i The predicted (Ẑk,i) and observed (Zk,i) durations of activity i of type k

MAPEk,Z and MAPEZ
The mean absolute percentage error in the estimation of durations for activities of type
k and of all types (MAPEZ) (see Equation (14))

Schedules

ABM-schedule and HomeP A daily schedule generated by ABMs (ABM schedule), and each given home period of
the schedule (HomeP) that is to be enriched with in-home activities

ScheO, ScheI, ScheF and ScheC
An observed (ScheO) and corresponding predicted (i.e., in-home activity enriched)
(ScheI) schedule from ATUS-wd; the predicted schedule for an ABM-schedule of
Feathers before (ScheF) and after (ScheC) calibration

d and D Each schedule (d) and the total number of schedules (D) in the relevant set

Nk,d,N̂k,d, Uk,d and Ûk,d
The observed (Nk,d) and predicted (N̂k,d) numbers of activities of k in d; the observed
(Uk,d) and predicted (Ûk,d) sum of durations of activities of k in d

MAEk,N, MAEk,U, MAEN and MAEU

The mean absolute error in the estimation of the number (MAEk,N) and sum of
durations (MAEk,U) of activities of k between each pair of the observed and predicted
schedules; the average of MAEk,N (MAEN) and MAEk,U (MAEU) over all the types (see
Equation (15))

Activity sequential information

Tr(k2|k1) and Qr(k2|k1) Transition probabilities from activity types k1 to k2 (k1, k2 = 1, . . ., K)

PrT(Y = k2) and PrQ(Y k2) New probabilities of activities with the type of k2 given the previous activity of k1
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Table A1. Cont.

Variables Definition

Marginal activity variables

Rk, R̂k, Tk and T̂k

The observed (Rk) and predicted percentage (R̂k) of individuals who perform at least
one activity of k each day (schedule), and the observed (Tk) and predicted (T̂k) average
time spent on activities of k on a day (schedule) per person (see Equation (11))

Rk,m,c, R̂k,m,c, Tk,m,c and T̂k,m,c

The observed (Rk,m,c) and predicted (R̂k,m,c) percentage of people with xm = c who
perform activities of k, and the observed (Tk,m,c) and predicted (T̂k,m,c) average time
spent on activities of k per person per day among this group.

MAPEtype and MAPEdur

The average absolute percentage difference between the observed and predicted
participation rates (MAPEtype) and time spent (MAPEdur) over all the activity types
(see Equation (16))
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