NAVIGATING THE FUTURE OF SUSTAINABLE AVIATION FUEL (SAF): GLOBAL MARKET INSIGHTS AND CHALLENGES

Sumit Maharjan Oct 10, 2024

ക

STARGATE: Accelerating Greener Aviation

A Strong and Diverse European Partnership

3 main pillars

Decarbonization and Circularity

We test and develop a set of green energy solutions to further decarbonize ground & airline operations and green terminal operations.

Promote the use of SAF at airports & enabling on airport blending at high ratios

Testbed to demonstrate the benefits of renewable (electric & hydrogen) alternatives for mobility

Identify opportunities for resource saving and waste reduction in the terminal

Local Environment Quality

We improve air quality and reduce noise using innovative technological solutions:

Apply techniques to improve living quality by reducing air and noise pollution

Promote collaborative projects with the local communities

Enhance digitalization in the air cargo

Modal Split and Smart Mobility

We reduce the environmental impact of airport activities and access by innovative infrastructure, technology, equipment, digitalization and human engagement.

Sustainable Airport Mobility Plan: shift to low-carbon alternative multimodal mobility

Real-time mobility management and decisionmaking system for seamless door-to-door mobility around the airport

14th EASN International Conference

on "Innovation in Aviation and Space towards sustainability today & tomorrow"

8-11 October 2024 Concert Hall, Thessaloniki Greece

NAVIGATING THE FUTURE OF SUSTAINABLE AVIATION FUEL (SAF): GLOBAL MARKET INSIGHTS AND CHALLENGES

Global GHG emissions for the transport sector

12% Transport Sector

2.5% Global

Net Zero CO₂ goal of ICAO and role of \$AF

There is general agreement across industry and governmental actors that SAF is the biggest lever to drastically reduce aviation GHG emissions.

8

SAF Production Pathways: ASTM D7566

ASTM Ref	Conversion Process	Abbreviation	Possible Feedstocks	Blending Ratio	Year
Annex 1	Fischer-Tropsch hydroprocessed synthesized paraffinic kerosene	FT	Coal, natural gas, biomass	50%	2009
Annex 2	Synthesized paraffinic kerosene from hydroprocessed esters and fatty acids	HEFA	Bio-oils, used cooking oils, animal fats	50%	2011
Annex 3	Synthesized iso-paraffins from hydroprocessed fermented sugars	SIP	Biomass used for sugar production	10%	2014
Annex 4	Synthesized kerosene with aromatics derived by alkylation of light aromatics from non-petroleum sources	FT-SKA	Coal, natural gas	50%	2015
Annex 5	Alcohol to jet synthetic paraffinic kerosene	ATJ-SPK	Biomass from ethanol or isobutanol production	50%	2016
Annex 6	Catalytic hydrothermolysis jet fuel	СНЈ	Triglycerides	50%	2020
Annex 7	Synthesized paraffinic kerosene from hydrocarbon-hydroprocessed esters and fatty acids	HC-HEFA-SPK	Algae	10%	2020
Annex 8	Synthetic paraffinic kerosene with aromatics	ATJ-SKA	C2-C5 alcohols from biomass	50%	2023

Fuel Certification Process

Benefits of SAF

 $^{\circ}$

Climate Benefits

Air Quality

0

Industrialization

Employment

Energy Security

Life Cycle GHG emissions

Large emission reductions possible with SAF, compared to conventional jet fuel, but: Which type is used MATTERS!

World Bank Report

WORLD BANK GROUP

The Role of Sustainable Aviation Fuels in Decarbonizing Air Transport

Robert Malina, Megersa Abate, Charles Schlumberger and Freddy Navarro Pineda

MOBILITY AND TRANSPORT CONNECTIVITY SERIES

Key Messages

SAF will need to play a major role in the decarbonization mix as it is the only option that can generate significant GHG emissions reduction in the medium-term already.

SAF production can reduce up to 58% of aviation CO_2 emissions compared to business as usual in 2050 – this will require significant policy support.

Success Stories

77772-600

Braathens Regional Airlines Malmo – Bromma (1hr 20min) 100 % SAF June 2022

Success Stories

പ്പ

Heathrow – New York 100 % SAF Dec 2023

Success Stories

As of June 2023 ~ 499,000 flights powered by SAF Airlines are operating ~ 200 SAF flights per day Global SAF production ~ 300 million liters in 2022 Production is expected to reach ~ 1.9 billion liters in 2024

Source: https://www.iata.org/en/pressroom/2023-releases/2023-12-06-02/

Offtake Agreements

Summary per fuel producer

0

	Fuel producer	Total offtake volume (million liters) 🝷	Number of offtake agreements
1.	Gevo	9,550.03	14
2.	Fulcrum	6,719.1	3
3.	Alder Fuels	5,678.12	1
4.	Cemvita	3,785.41	1
5.	USA BioEnergy	3,255.45	1
6.	Shell	2,793.37	8
7.	Neste	2,474.9	24
8.	DG Fuels	2,300.67	3
9.	Raven SR	1,561.64	1
10.	OMV	1,436.57	7
11.	Aemetis	1,272.43	9
	Grand total	53,180	134
			1 - 51 / 51 < >

Summary per fuel purchaser

	Fuel purchaser	Total offtake volume (million liters) ▼	Number of offtake agreements
1.	United Airlines	14,299.39	7
2.	Southwest Airlines	4,163.95	3
3.	Delta	3,862.25	8
4.	OneWorld	3,785.41	1
5.	Lufthansa	3,399.4	4
6.	Air France - KLM	3,094.54	6
7.	AirBP	2,192.71	2
8.	American Airlines	2,134.21	5
9.	Japan Airlines	1,661.95	2
10.	Cathay Pacific	1,477.07	2
11.	DHL Express	1,466.72	2
	Grand total	53,180	134
			1-71/71 < >

Source: https://www.icao.int/environmental-protection/GFAAF/Pages/Offtake-Agreements.aspx

SAF Demand Based on Mandates and Ambitions

Country	Year	SAF %	Fuel Volume
Japan	2030	10%	
EU	2030	6%	
UK	2030	10%	
India	2025	1%	
China	2025		50,000 tons
Turkey	2030	5%	
Brazil	2027	1%	
Sweden	2030	27%	
Finland	2030	30%	
Indonesia	2025	5%	
Australia	2030	10%	
Kenya	2030	10%	
Canada	2030		12gCO ₂ e/MJ
Philippines	2030		175,000 tons

8

~23 billion liters

Production ~21.6 billion liters

(Some) Challenges

- Production delays and failures
- 2 High Investment needs and speed of ramp-up
- ³ Geographical imbalances

- 4 Feedstock availability issues
- 5 Large, persistent cost premiums

Production delays and failures

Rate of SAF capacity expected to be in service by end of 2024 and currently operational, by process and facility type

SAF conversion process	Commercial	Demo	Pilot	Not indicated
Total	47%	9%	37%	54%
Synthesized iso-paraffins	20%	0%	100%	0%
Solar Thermochemistry	0%	100%	0%	0%
Pyrolysis	0%	0%	0%	0%
Power-to-Liquid	0%	2%	100%	0%
Not indicated	0%	0%	100%	0%
Methanol-to-jet	0%	0%	0%	0%
Hydrothermal Liquefaction	0%	0%	0%	0%
HEFA	44%	10%	100%	80%
Fischer-Tropsch	0%	3%	0%	0%
Distillation	100%	0%	0%	0%
Co-processing	74%	0%	0%	0%
Catalytic hydrothermolysis (CH-SK)	0%	100%	100%	0%
Alcohol-to-Jet	24%	8%	100%	0%

Share of announced SAF capacity expected to be in service by 2024 and currently operational:

46.75 %

Number of SAF project abandoned or paused:

Investment needs and speed of ramp-up

"Translating the SAF production volumes into CAPEX estimates shows that annual investment in the high scenario peaks at approximately **US\$125 billion**. This is equivalent to more than **370 SAF** producing facilities coming online during the peak year in the late 2030s or early 2040s—as the periods of highest SAF production growth"

Source: Malina et. Al, world bank report

ReFuelEU Mandate

Incentives for SAF Uptake

Incentive 1: SAF zero emissions under EU ETS

SAF that qualifies under the EU RED is assumed to have zero emissions under the EU ETS, so if an airline uses SAF, it does not need to surrender allowances.

Incentive 2: Free Allowances for SAF use

The EU has created a reserve of **20 million ETS allowances** until **31** December 2030 that will be reserved to incentivize the transition of aircraft operators from using fossil fuels. These are free for airlines if they use SAF to partially compensate for the cost difference between SAF and conventional jet fuel.

Incentives for SAF Uptake

The level of support will vary depending on the sustainability of the purchased SAF (based on a yearly report by aircraft operators). It will cover:

50% of the price gap between fossil kerosene and other eligible fuels under ReFuelEU Aviation (RED Annex IX, Part B):

For example Used cooking oil, Animal fats

70% of the price gap between fossil kerosene and renewable hydrogen for aviation and advanced biofuels (RED Annex IX, Part A):

For example, Algae, animal manure, sewage sludge 95% of the price gap between fossil kerosene and RFNBOs: For Example: PtL

Incentives for SAF Uptake

പ്പ

	Part I			
SAF cost multiplier	Incentive (€/L)	Airline Cost (SAF in €/L)	SAF Covered (Bn Lit)	Airline Cost (CAF in €/L)
2.0	0.02	1.07	108.11	1.30 (0.92)
2.5	0.19	1.24	10.75	1.30 (0.92)
3.0	0.35	1.40	5.66	1.30 (0.92)
3.5	0.52	1.57	3.84	1.30 (0.92)
4.0	0.69	1.74	2.90	1.30 (0.92)
4.5	0.86	1.91	2.34	1.30 (0.92)
5.0	1.02	2.07	1.95	1.30 (0.92)
5.5	1.19	2.24	1.68	1.30 (0.92)
6.0	1.36	2.41	1.47	1.30 (0.92)

Thank you for your attention! ECOTRON

Sumit Maharjan

HASSELT UNIVERSITY

