From Refinery to Aircraft Navigating the Complex Journey of Sustainable Aviation Fuel in the EU

Elisabeth Woeldgen, University of Hasselt, Belgium

International Conference

10 October 2024 Thessaloniki, Greece

14th EASN

Aviation Fuel Supply Chain

SBC Production

- SAF production facilities locations depend mostly on where the feedstock is coming from, and how it is supplied.
- Current feedstock most widely used for SAF production in the EU: **Used cooking oil** (UCO).
- Most of operational SAF production facilities are located near a port.
- This could **change** as we ramp up SAF production.

Keyboard shortcuts Map data ©2024 Google, INEGI

Facility Status

- 🌒 1 Initial Announcement 🛛 🕘 4 In service producing other renewable fuels 🔵 5 In service producing SAF 🔵 2 Front End Engineering Design (FEED)
- 🛑 0 cancelled/dormant project 🥚 3 Under construction

ICAO tracker of SAF facilities, 2024

Intermediate Storage Facilities

- Strategic location, typically located near ports or industrial areas (cheap land)
- **Connectivity**: Access to pipeline, railway, waterway, and road tankers
- Large **storage capacity** for different fuels (crude oil, biofuels, refined petroleum products, chemical and feedstocks, LNG, LPG)
- Fuel handling expertise and facilities (e.g. additives)
- Fuel lab on site or partnership with another lab
- Provides storage buffer
- Blending facilities

From Fuel Terminals to Airports Fuel transportation

- Pipeline, rail, waterway (barge), road tanker
- Depends on the geography, infrastructure, contractual partnerships, and fuel demand

СМК

Stargate

Brussels Airport

- Central European Pipeline System (CEPS)
- Fuel injected at a terminal (e.g. Rotterdam) and directly available at BAC

Lisbon Airport (own estimation)

- Primarily supplied by trucks
- ≈66,667 truckloads annually, or 183 daily

SAF Sustainability Certificates

Airport Fuel Storage

Overall distribution of type of access to fuel infrastructure* Fully open 11 11 Fully restricted 50 On-airport restrictions Off-airport restrictions

*across a sample of 123 airports IATA, 2024

Fuel Distribution System

Refueling truck

Blending Certification & Transportation

Blending Types of blending processes*

EI 1533

Quality assurance requirements for semi-synthetic jet fuel and synthetic blending components (SBC)

A supplement to El/JIG Standard 1530

Stargate

- Sequential blending
 - Introducing the denser component before the lighter one into the tank.
 - Additional equipment (e.g. tank side entry mixers or recirculation systems) required to meet the homogeneity requirements.
- Inline blending
 - Introduced the two components together in a separate tank with adequate mixing energy.
 - Preferred option.

* Pouring the two fuels together in a tank is not acceptable as layers would form in the tank, with the higher density (CJF) on the bottom of the tank, and the lower density (SBC) on top.

lending

Opportunit

Opportuni

SAF Distribution Strategies Opportunity

Imperial College London

Reductions in EF_{total} from the SAF allocation by $\Delta EF_{contrail}$ with a **50%** p_{blend} (-6.5 to -6.2%) is approximately **9 to 15 times larger** than the baseline scenario with uniform distribution (-0.8 to -0.4%)*.

(Teoh et al., 2022)

Motivation

- 1. Teoh et al. studied the **theoretical best case** climate benefit of **allocating SAF** on specific flights.
 - ↔ Large potential benefits
 - ⇔ Complex supply chain
- 2. **ReFuelEU** mandate: SAF uniformly distributed across all airports following a transition period.
- 3. Project **Stargate** offered valuable insights and expertise on SAF.

→ Collaboration between Roger Teoh, Marc Stettler, Robert Malina and Elisabeth Woeldgen

What are **feasible** SAF **distribution strategies** to enhance climate benefits of ReFuelEU and UK SAF mandates?

Oppor

What are **feasible** SAF **distribution strategies** to enhance climate benefits of ReFuelEU and UK SAF mandates?

Opport

Deployment Strategies – Baseline

Imperial College London

Baseline

Opportuni

Deployment Strategies – Diurnal

CENT ENVIE	CMK CENTRE FOR ENVIRONMENTAL SCIENCES		
•	UHASSELT		

Imporial College

<u>Assumptions</u> – Diurnal

- A fixed mass of SAF supply is supplied to airports every day by road tanker.
- SAF is stored in separate (additional) tanks at the airport.
- SAF is transferred to A/C the same way as with conventional aviation fuel (CAF).
- Targeted distribution: all flights departing from 16:00 local time will be provided with SAF at a 30% blend ratio until the supply runs out (total SBC volumes amount to 10% of total jet fuel supply).

Diurnal Supply SAF to A/C between 1600 – 0300 UTC.

Deployment Strategies – Diurnal & CF

CENT	CENTRE FOR		
ENVIR	ENVIRONMENTAL SCIENCES		
••	UHASSELT		

<u>Assumptions</u> – Diurnal and contrail forecasting

- A fixed mass of SAF supply is supplied to airports every day by road tanker.
- SAF is stored in separate (additional) tanks at the airport.
- SAF is transferred to specific A/C only by refueler tank (no hydrant system).
- Targeted distribution: all flights departing from 16:00 local time will be provided with SAF at a 30% blend ratio until the supply runs out (total SBC volumes amount to 10% of total jet fuel supply).

Diurnal Supply SAF to fights departing 1600 – 0300 UTC.

Imperial College London

Diurnal and contrail forecasting Supply SAF to fights departing 1600 – 0300 UTC and forecasted to form at least 250 km of persistent contrails

Deployment Strategies – Seasonal

CMK CENTRE FOR ENVIRONMENTAL SCIENCES >> UHASSELT

Imporial College

<u>Assumptions</u> – Seasonal

- SAF is only used from October to February.
- SBC is produced all year-long and stored at a fuel terminal.
- When SAF is used, more CAF is stored at the terminal.
- SAF is transported to airports, stored at airports and refueled on A/C the same way as CAF.
- SAF blended at 30% and targeted to flights during the winter (October – February) until supply runs out.

Diurnal Supply SAF to fights departing 1600 – 0300 UTC.

Diurnal and contrail forecasting Supply SAF to fights departing 1600 – 0300 UTC and forecasted to form at least 250 km of persistent contrails

What are **feasible** SAF **distribution strategies** to enhance climate benefits of ReFuelEU and UK SAF mandates?

Opportu

Overview Contrail Model

Imperial College London

EF_{contrail} Results

CMK CENTRE FOR ENVIRONMENTAL SCIENCES

Seasonal Supply SAF to airports from October to February.

Diurnal and contrail forecasting Supply SAF to fights departing 1600 – 0300 UTC and forecasted to form at least 250 km of persistent contr

Valuation of EF_{contrail} in monetary terms:

EF_{contrail} Valuation

Seasonal Supply SAF to airports from October to February.

Diurnal Supply SAF to fights departing 1600 – 0300 UTC.

Imperial College London

CMK CENTRE FOR ENVIRONMENTAL SCIENCES

Diurnal and contrail forecasting Supply SAF to fights departing 1600 – 0300 UTC and forecasted to form at least 250 km of persistent contrails

EF_{contrail} Valuation

What are **feasible** SAF **distribution strategies** to enhance climate benefits of ReFuelEU and UK SAF mandates?

Supply Chain

ing Opp

14th EASN International Conference | Thessaloniki, Greece | 10 October 2024 26

Overview Cost Model

Imperial College London

Total Supply Chain Costs

CENT ENVIE	IK RE FOR RONMENTAL SCIENCES
¥	UHASSELT

Imperial College London

,
+ contrail casts
0
0
238 2%)
338 8%)
-5 2%)
582 8%)

Total supply chain costs for the baseline strategy, and the additional supply chain costs for the proposed SAF allocation strategies relative to the baseline strategy.

Which of the distribution scenarios has the **best benefit cost ratio**?

Opport

Cost-benefit comparison

CMK CENTRE FOR ENVIRONMENTAL SCIENCES		
¥	UHASSELT	

Imperial College London

Strategy	Cost-benefit comparison (€ million)
Seasonal	+341 (4.91)
Diurnal	-240 (0.58)
Diurnal + contrail forecasts	-20 (0.96)

- Cost-benefit comparison for the three targeted SAF allocation strategy relative to the baseline strategy.
- The cost-benefit comparison is evaluated using two different metrics:
 - Annual monetary benefits, estimated by subtracting the additional annualised supply chain costs from the annual monetised climate benefits (in € millions), with a positive value indicating a net benefit.
 - Benefit-to-cost ratio (presented in brackets).

Summary

Imperial College London

- The distribution of SAF involves numerous stakeholders along the supply chain.
- While the development of new policies should consider the existing supply chain constraints, it can also challenge it to accelerate the deployment of SAF.
- Blending is a complex operation.
- Targeted use of SAF could enhance climate benefits, but with an increase in supply chain complexity.
- We recommend a seasonal allocation strategy, where SAF is provided to all flights only between October and February, because its benefit-to-cost ratio is the highest (4.9) and is above one.

elisabeth.woeldgen@uhasselt.be