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Babić, D.; Babić, D. Exploring Factors

Influencing Speeding on Rural Roads:

A Multivariable Approach.

Infrastructures 2024, 9, 222.

https://doi.org/10.3390/

infrastructures9120222

Academic Editors: Alessia Ruggeri

and Orazio Pellegrino

Received: 30 October 2024

Revised: 25 November 2024

Accepted: 4 December 2024

Published: 6 December 2024

Copyright: © 2024 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

Article

Exploring Factors Influencing Speeding on Rural Roads:
A Multivariable Approach
Marija Ferko 1,2,3,* , Ali Pirdavani 3,4 , Dario Babić 2 and Darko Babić 2
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dario.babic@fpz.unizg.hr (D.B.); darko.babic@fpz.unizg.hr (D.B.)
3 UHasselt, Faculty of Engineering Technology, Agoralaan, 3590 Diepenbeek, Belgium;

ali.pirdavani@uhasselt.be
4 UHasselt, The Transportation Research Institute (IMOB), Martelarenlaan 42, 3500 Hasselt, Belgium
* Correspondence: marija.ferko@uhasselt.be

Abstract: Speeding is one of the main contributing factors to road crashes and their severity; therefore,
this study aims to investigate the complex dynamics of speeding and uses a multivariable analysis
framework to explore the diverse factors contributing to exceeding vehicle speeds on rural roads. The
analysis encompasses diverse measured variables from Croatia’s secondary road network, including
time of day and supplementary data such as average summer daily traffic, roadside characteristics,
and settlement location. Measuring locations had varying speed limits ranging from 50 km/h to
90 km/h, with traffic volumes from very low to very high. In this study, modeling of influencing
factors on speeding was carried out using conventional and more advanced methods with speeding
as a binary dependent variable. Although all models showed accuracy above 74%, their sensitivity
(predicting positive cases) was greater than specificity (predicting negative cases). The most significant
factors across the models included the speed limit, distance to the nearest intersection, roadway
width, and traffic load. The findings highlight the relationship between the variables and speeding
cases, providing valuable insights for policymakers and law enforcement in developing measures
to improve road safety by determining locations where speeding is expected and planning further
measures to reduce the frequency of speeding vehicles.

Keywords: road safety; speeding; prediction modeling; rural roads; spot measurements

1. Introduction

Speeding is known as one of the most common driving violations and one of the
leading causes of road crashes, especially ones with severe consequences. According to
the European Commission, speeding refers to driving at excessive (exceeding the legal
speed limit) or inappropriate speed (driving too fast for the traffic situation, infrastructure,
weather conditions, and/or other special circumstances) [1]. In the context of this study,
we used the first part of the definition, which refers to the speed limit.

Among the EU countries that monitor levels of speed compliance on urban roads,
between 35% and 75% of observed vehicle speeds are above the speed limit, while this share
on rural non-motorway roads is between 9% and 63%. When looking at fatalities, in the EU,
37% of fatalities occur on urban roads, and 55% on rural non-motorway roads. The majority
of the countries with a significantly lower road crash death rate compared with the EU
average (50 deaths per million inhabitants) prescribed a 70 or 80 km/h as a speed limit on
rural roads [2]. Additionally, high speed has been recognized as a factor that increases the
probability of a crash and increases injury severity [3,4]. A random parameter assessment
showed no significant effect of increased speed on the average number of crashes; however,
while the model results did not clearly link temporal shifts in parameters to the speed
increase, the rise in rollover crash probability in single-vehicle incidents suggests higher
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speeds may have contributed to more severe injuries in those crashes [5]. Similarly, higher
mean speeds are linked to an increased frequency of severe crashes, while lower speeds are
associated with more property damage-only crashes [6].

Speed management is a crucial component of the Safe System approach, with address-
ing unsafe speeds being the first step to improving a transport system that fails to protect
people [7]. Previous research states that operating speed is one of the main factors affecting
traffic safety [8]. Some studies primarily focused on drivers’ behavior and selected speeds,
exploring the relation of road safety with speeds. Different driving styles can be distin-
guished depending on the category of aggressiveness when driving (from non-aggressive
to very aggressive), which means that parameters such as speed, acceleration, and braking
will differ from driver to driver [9]. Various factors can influence the speed chosen by a
driver on different road sections. Some of the factors mentioned are the psychophysical
state of the driver, personal preference, social pressure, vehicle characteristics, and environ-
mental factors such as weather and road characteristics [10]. Further, depending on the
part of the road, drivers may misestimate the speed of movement [11]. Hence, it can be
concluded that regardless of the statutory speed limit, not all drivers will comply with it.

Obeying the set-up speed limits depends on various factors. Hence, the main objective
of this study is to identify these factors. In this research, the emphasis is on linking the main
characteristics of the location and type of vehicle with the extent of non-compliance with
legal speed limits. Time of day and average summer daily traffic (ASDT) are also considered.
To optimally manage speeds, it is necessary to gain insight into the characteristics of traffic
flow and operating speeds, both day and nighttime. Furthermore, the aim is to determine
which modeling approach fits the objective the best and to point out what factors contribute
to or influence the drivers’ speeding.

2. Literature Background

Many of the previous studies were based on a behavioral approach. A multilevel
logistic regression was utilized on GPS-based data to explore driving behaviors, including
speeding [12]. These data were supplemented with drivers’ demographics and self-reported
speeding behavior, emphasizing the impact of speed zones on speeding behavior. In
some studies, a driver behavior questionnaire (DBQ) and the theory of planned behavior
model (TPB) were utilized [13]. Regression techniques were applied, and the results
show that the components of TPB and DBQ variables can predict drivers’ intentions for
speeding and overtaking violations; however, it was found that speeding was a more
frequent violation than overtaking. A self-assessment questionnaire was used as a data
collection tool to investigate speeding behavior in low-visibility conditions [14]. The
authors employed structural equation modeling to explore the predictors influencing speed
choice under reduced visibility, highlighting driving ability as one of the main factors.
In residential areas, critical predictors of speeding intention included affective attitude,
descriptive and personal norms, perceived behavioral control, habits, and residential street
characteristics [15]. Intention emerged as the sole direct predictor of speeding behavior,
with street specifications and facilities significantly influencing it.

The speeding problem among young drivers was recognized, and a qualitative analysis
was performed by conducting a focus group experiment including 60 young drivers [16].
Findings revealed that the following factors influence the prevention of speeding: legal
consequences, fear of injury, and speed awareness monitors. Factors perceived to contribute
to violating speed restrictions included perceiving it as safe, a perceived norm to speed,
emotions, and unintentional speeding.

Factors influencing speeding behavior among Indian long-haul truck drivers were
explored using data collected through individual interviews and a questionnaire [17].
Further analysis of predicting speeding behavior included conventional modeling (binary
logit approach) and more advanced machine learning algorithms (Decision Tree, Random
Forest, Adaptive Boosting, and Extreme Gradient Boosting), with random forest showing
the best performance. The obtained results from the variable importance plot showed that
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the eight important factors influencing speeding behavior are pressured delivery of goods,
sleeping and driving duration per day, age and size of the truck, monthly income, driving
experience, and the driver’s age.

In addition to using self-reported data from questionnaires and focus groups, some
studies utilized naturalistic driving data. Safe, unsafe, and safe but potentially dangerous
behaviors were identified based on continuous speed data obtained from smartphone-
equipped vehicles on tangent and curve road sections [10]. The findings indicate that with
increasing age and driving experience, behavior tends to be safe, or drivers tend to drive at
low speeds, which can be dangerous for road traffic; however, if the driver lacks habit, the
behavior tends to be unsafe. Thus, young people with low driving experience are more
inclined toward unsafe driving behavior in terms of speeding. In another study, speeding
behavior was examined using naturalistic driving data gathered from field experiments on
typical two-lane mountainous rural highways in five provinces of China [18]. A speeding
prediction model was developed using random forest, achieving an accuracy of over 85%.
Logistic regression was also used to investigate factors influencing speeding behavior, with
an accuracy of around 70%. The speeding prediction model identified current acceleration
and driving speed as the most critical variables. Visual environment parameters, such
as visual curve length in the “near scene” and visual curve curvature in the “middle
scene,” are followed in importance. Additionally, drivers’ age and driving experience
significantly affected speeding behavior, and different roadside landscapes were found
to lead to distinct speeding behaviors. Speed modeling utilizing data from smartphone
sensors was conducted using linear regression to establish models for various road types
and times of day, and a general model was developed [19]. Similarly, naturalistic data from
smartphones were used to create an overall model applicable to all road environments,
along with separate models for urban and rural roads [20]. This study found that trip
distance and mobile phone use while driving were statistically significant factors positively
correlated with speeding.

Another approach to examining speeding involves collecting spot speed data and
utilizing distinct modeling methods, focusing more on infrastructure characteristics. For
instance, the investigation of operating speeds on curved rural road sections was carried
out using regression models and artificial neural networks (ANNs) [21]. In the initial
analysis, regression models were employed to study the relationship between V85 and
horizontal alignment as well as roadway factors, with separate predictive models proposed
for cars and trucks. The subsequent ANN analysis revealed better predictive performance.
The curve radius was the most influential variable affecting V85 for cars, while for trucks,
it was the median width. Curve radius emerged as the most significant factor for the car
ANN model, followed by median width. For the truck ANN model, the median width was
the most influential variable, with the deflection angle coming next. In another study, a Beta
regression model was employed to analyze the proportion of speeding using probe speed
data, incorporating a grouped random parameter modeling structure to account for varying
effects of speed management strategies and other road attributes across different road types
(urban and suburban arterials) [22]. A fixed beta model was also developed for comparison.
The results indicated that the grouped random parameter model outperformed the fixed
beta model, offering better insights into how road features and other factors influence
speeding on various road types. Seven variables were significant in both models: AADT,
daily transit frequency, asphalt pavement, an indication of low-speed limits, outer shoulder
width, and the number of lanes.

In a recent study, speeding frequency was examined using roadside observational
surveys along with spatial and temporal attributes of selected locations [23]. A random
parameter negative binomial model was developed to analyze speeding behavior, incorpo-
rating unobserved heterogeneity across speeding locations, accounting for temporal, road
geometric, and built environment factors. The findings highlight significant variability in
speeding behavior at different locations. Based on the results, the authors suggest that
implementing temporary speed-calming measures during non-peak hours and weekends
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could be effective. Additionally, the use of speed humps, rumble strips, or enhanced law
enforcement and developing well-connected roads with frequent intersections and traffic
signals could also serve as a strategy to discourage speeding. Another study employed
a negative binomial statistical model to analyze data from traffic cameras, considering
both temporal and environmental factors [24]. The model revealed the significance and
likelihood of speeding tendencies by incorporating variables such as year, month, number
of lanes, dwelling unit types, school-related factors, and open green space. The results indi-
cated that aggregating speeding data tends to underestimate the influence of these factors.
For instance, the impact of posted speed limits was found to be up to twice as significant in
disaggregated models compared with aggregated ones. Additionally, speeding violations
in summer months were about 25% higher in aggregated models than 40% in disaggregated
models. Camera enforcement was associated with a 25% reduction in speeding over four
years. Built environment factors showed varied effects, with one-unit dwellings linked to
increased speeding, whereas proximity to schools was associated with a speed decrease.

Further, it is also possible to investigate speed data in artificial environments, such as
driving simulators. A mathematical model for an intelligent speeding prediction system
was developed, categorizing inputs into three types: model inputs and related in-vehicle
technology, a mathematical model along with a data processing module, and warning
messages combined with a human–machine interface [25]. The system was tested using
a driving simulator, and experimental data were utilized to validate models predicting
intentional and unintentional speeding, showing no statistically significant time difference
between the modeled and experimental results. A study involving a driving simulator in-
vestigated drivers’ speed compliance behavior in urban and rural environments, employing
a Generalized Linear Model with speed difference as the dependent variable and driving
environments and driver attributes as predictors [26]. The results indicated better speed
compliance in urban settings compared with rural ones. Additionally, drivers’ age was pos-
itively correlated with speed compliance. Male drivers exhibited lower speed compliance
than female drivers, while those with postgraduate or graduate education demonstrated
better compliance than those with only secondary education. Driving experience negatively
impacted speed compliance, and drivers with prior crash history showed better compliance.
Factors such as vehicle type and preferred driving time did not significantly affect speed
compliance. Another study used a driving simulator and numerical analysis to examine
road infrastructure design and operating speeds for establishing credible speed limits on
Italian roads [27]. The research concluded that increasing speed limits, combined with
safety countermeasures, could lead to a 23% reduction in crashes.

Previous studies on speeding behavior have employed various methodologies to ex-
plore its influencing factors and to develop predictive models. Behavioral approaches have
highlighted how intentions and self-reported behavior can predict speeding, including
drivers’ demographics, self-assessment questionnaires, driver behavior questionnaires
(DBQ), and the theory of planned behavior (TPB). Legal consequences, fear of injury, and
speed awareness monitors were found to be influential in preventing speeding, while
factors such as perceived safety, norms, emotions, and unintentional speeding contributed
to speeding violations. Several studies utilized naturalistic driving data to analyze speeding
behavior. For instance, based on these data, prediction models with high accuracy highlight
acceleration, driving speed, trip distance, mobile phone, and visual environment param-
eters as significant predictors. Studies employed several techniques, such as regression
models, random forests, and artificial neural networks, revealing different infrastructural
factors influencing operating speeds. The results showed that factors differ on urban and
rural roads.

A limited number of studies have focused on spot speed measurement data, which is
essential for capturing real-time speeding behavior at specific locations. This gap is par-
ticularly significant in rural road environments, where unique challenges such as varying
road conditions, limited enforcement, and distinct driving behaviors, compared with urban
areas, complicate speed management. The diversity of speeding behaviors across different
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locations, influenced by cultural, environmental, and infrastructural factors, underscores
the need for targeted research in rural settings. Although some research has addressed
infrastructure characteristics, a more comprehensive analysis that integrates traffic flow,
road design, and speed management is necessary to develop effective interventions for
reducing speeding.

3. Methodology
3.1. Data Collection

Raw data for this paper are based on two years of data collection (for July) and
were collected through traffic counters installed on state roads (secondary roads) in the
Republic of Croatia. Road authorities use them to control the amount and the heterogene-
ity of traffic and gain insight into the operating speed at a particular location. Station-
ary traffic counters with electromagnetic inductive loops were installed in characteristic
places (tangent road parts on regularly maintained pavement and with the appropriate
lane width) on two-way, two-lane roads. The type of these counters, QLD-6CX nano
(vehicle detection accuracy > 99.9%, vehicle classification precision ~97%, speed measure-
ment error: at 50 km/h < 2.8% and at 160 km/h < 8%), can measure the times of individual
vehicles passing through the measuring point and their current speeds [28], and which is
why they are placed on the road parts where free traffic flow is expected. The counter has a
built-in software solution for recognizing and eliminating double counting of vehicles that
pass through the counter by occupying two lanes simultaneously. The vehicle is counted in
the lane corresponding to the movement’s direction.

Selecting tangent road sections for measuring and assessing speeding is justified since
the highest and the most uniform speeds are expected on these sections [29]. Moreover,
significant acceleration is expected on the tangents following the curve and decelerating on
the tangents preceding the curve [30]. The white central line and edge road markings were
painted at all measuring locations, emphasizing road alignment. Since no law enforcement
cameras are installed at the measuring locations, nor are there regular police patrols, drivers
know they cannot be fined based on the counters installed on the roadway. This is another
factor that speaks in favor of freely choosing the speed of movement.

Most measuring points on Croatian state roads meet the requirements for speed
measurement, allowing drivers to choose their speed freely based on subjective assessments
of road conditions and speed limits. Free traffic flow is defined as vehicle movement in
one direction, on straight roads, outside intersections, with dry pavement and no speed-
restricting factors, where vehicles are far enough apart to drive independently. Ideally,
vehicle speeds in free flow should be measured in dry conditions, but the current system
cannot guarantee this; however, the impact of wet roadways is minimized by analyzing
speed data from July and August [28], which is in accordance with the previous study that
showed speeding is most likely to occur in summer months [24].

Data for this research were collected from 20 traffic counters on 15 distinct Croatian
state roads, considering five different speed limits. The traffic counters are located on the
roads referred to as rural since they are outside the urban area, although some pass through
small, non-urban settlements. After filtering out empty rows and rows with unclassified
vehicles, the sample consisted of 4,623,852 unique records. After rejecting irregular records
and considering that an error could have occurred with the counter, speed was not observed
as a continuous variable. Still, the dependent variable was set as “Speeding,” distinguishing
cases in which the amount of overspeed was >0 km/h as “Yes” and all other cases as “No”.

In addition to speeding, additional data were collected through the field inspection and
from road authorities: roadside state, whether the location is inside the settlement, posted
speed limit, whether overtaking was allowed, the width of the roadway, the distance
to the nearest intersection, and the average summer daily traffic (ASDT). The last two
were considered especially important, assuming they indicate the characteristic of the
traffic flow (i.e., where there is higher traffic and the intersection is close, the speed might
decrease). In addition, the roadside was considered, given the presumption that unsafe
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roadside elements could impact the severity of crash injuries [31]. Based on the above, the
measurement locations were carefully chosen to encompass a variety of conditions, such as
different speed limits, varying traffic loads, distances to the nearest intersection, and other
traffic and infrastructure characteristics.

3.2. Data Analysis

After the previous research examination, several methods were selected to find the best-
fitting model to explain each independent variable’s importance. All statistical analyses
were performed using the statistical software SPSS (version 29.0) and R (version 4.3.3).

Since the primary focus was understanding the factors influencing the decision to
speed rather than the degree of speeding, we treated speeding as a binary variable. This
approach aligns with legal standards, where any speed above the limit constitutes a viola-
tion. While different levels of speeding may have distinct implications, binary classification
provides clear interpretability, making it valuable for policymakers and practitioners. It
also helps mitigate the impact of measurement inaccuracies in spot speed data.

The aim was to use conventional binary logistic regression since “Speeding” was
set as the dependent/outcome variable with a binary result (1—speeding occurred;
0—speeding did not occur); however, given the extensive data sample available in this
study, the potential for utilizing some of the machine learning algorithms was noticed.

Regression analysis is a technique used to predict the relationship between a dependent
(outcome) variable and one or more independent (predictor) variables using a mathematical
equation called a model [32–34]. Since the proposed dependent variable is categorical,
logistic regression was preferable over linear regression.

Artificial neural networks mimic the functioning of the human brain through a vast
network of interconnected processing nodes. They excel at recognizing patterns. A usual
neural network comprises numerous simple, interconnected processing elements known
as neurons [35,36]. Each neuron generates a series of real-valued activations for the target
outcome. The mathematical model of an artificial neuron includes inputs (Xi), weights (w),
bias (b), a summation function (Σ), an activation function (f), and the corresponding output
signal (y), as shown in Figure 1.
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For this paper, a Multi-layer Perceptron (MLP) was used. The Multi-layer Per-
ceptron (MLP) is a supervised learning approach and a feedforward artificial neural
network [35,37,38]. A typical MLP is a fully connected network comprising an input
layer that receives input data, an output layer that makes a decision or prediction about the
input signal, and one or more hidden layers between these two that serve as the network’s
computational engine. The output of an MLP network is determined using various acti-
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vation functions, also known as transfer functions, such as ReLU (Rectified Linear Unit),
Tanh, Sigmoid, and Softmax. An MLP maintains the structure of a single layer but includes
one or more hidden layers, with all nodes connecting between layers. The network trains
itself using an algorithm called backpropagation.

Random forest extends a decision tree approach by using an ensemble method that
constructs multiple decision trees [39,40]. A decision tree is a supervised learning technique
primarily employed for classification tasks, though it can also be used for regression. It
starts with a root node representing the initial decision point for splitting the dataset based
on a single feature that best separates data into distinct classes. Each split leads to a new
decision node, which applies another feature to refine these data into more homogeneous
groups or a terminal node that provides the final class prediction. This method of dividing
data into binary partitions is known as recursive partitioning. Instead of utilizing all
features to build each tree, a random subset of features is used for each decision tree in the
forest. Each tree then predicts a class outcome, and the final prediction is determined by
a majority vote among all the trees [41]. Thus, a random forest model predicts values or
categories by aggregating the results from numerous decision trees [42].

The receiver operating characteristics (ROC) curves were generated for the neural
network and random forest models, with the calculation of the area under the curve (AUC).
The AUC is a scalar value that assesses the overall performance of a binary classifier. The
AUC ranges from 0.5 to 1.0, where 0.5 indicates the performance of a random classifier, and
1.0 corresponds to a perfect classifier with zero classification error. AUC is a robust measure
for evaluating score classifiers as it accounts for the entire ROC curve, incorporating all
possible classification thresholds. The AUC is calculated by summing the areas of successive
trapezoids under the ROC curve [43].

Among other tree-growing algorithms, Chi-square Automatic Interaction Detector
(CHAID) was employed as one of the modeling approaches. CHAID accommodates
nominal, ordinal, and continuous data, with continuous predictors being categorized into
groups with approximately equal numbers of observations [44–47]. After identifying the
target (dependent variable), which is the decision or classification tree’s root, CHAID
divides the root into two or more categories, referred to as parent nodes, and further splits
these nodes into child nodes. CHAID analysis constructs a predictive model or tree to
identify how variables interact to explain the outcome of a given dependent variable.

4. Results
4.1. Variables’ Description

Given that the research aims to determine the influencing factors on speeding, the
dependent variable is binary (the vehicle exceeded or did not exceed the speed limit). Of
the recorded vehicles, 57.7% drove faster than permitted at a particular measuring location
(Table 1).

Table 1. Description of the dependent variable.

Dependent Variable Description Frequency Cumulative Percent Mean St. Dev.

Speeding (0) No 1,956,378 42.3
0.58 0.494(1) Yes 2,667,474 100

Total 4,623,852

Before conducting further analysis, a Variance Inflation Factor (VIF) was investigated
to check the multicollinearity between independent variables. Since all considered variables’
VIFs were <3, all of them were included, as shown below.

Seven categorical variables were included in the further analysis. Table 2 shows the
characteristics and frequencies of each categorical variable, with their encoding values.
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Table 2. Description of the categorical explanatory variables included in the analysis.

Variable Description Frequency Cumulative Percent Mean St. Dev.

Vehicle group

(0) Motorcycles 85,351 1.8

1.2 0.613
(1) Passenger cars with or without trailer 3,915,205 86.5
(2) Vans with or without trailer 284,847 92.7
(3) Cargo vehicles 300,090 99.2
(4) Buses 38,359 100

Roadside state
(1) Shoulder/Maintained 3,034,433 65.6

1.66 1.228(2) No shoulder/Not maintained 1,094,420 89.3
(5) Open drain canal 494,999 100

In settlement
(0) No 2,374,668 51.4

0.49 0.5(1) Yes 2,249,184 100

Overtaking
allowed

(0) No 2,991,094 64.7
0.35 0.478(1) Yes 1,632,758 100

Day of the week

(1) Monday 771,045 16.7

3.96 2.065

(2) Tuesday 696,168 31.7
(3) Wednesday 553,363 43.7
(4) Thursday 565,909 55.9
(5) Friday 643,012 69.8
(6) Saturday 750,335 86.1
(7) Sunday 644,020 100

Part of the day

(1) Daytime 3,792,118 82.0

1.35 0.815
(2) Twilight 314,927 88.8
(3) Nighttime 268,968 94.6
(4) Dawn 247,839 100

Speed limit

50 1,324,261 28.6

65.81 14.454
60 1,499,306 61.1
70 321,978 68.0
80 745,813 84.2
90 732,494 100

Table 3 describes the continuous variables, where “Width across the roadway” im-
plies the overall width of traffic lanes and nearby roadside, and “Average Summer Daily
Traffic” (ASDT) implies average traffic in summer months (July and August). Finally,
“Distance to the closest intersection” considers the distance to the intersection nearest to the
measuring point.

Table 3. Description of the continuous variables included in the analysis.

Mean Std. Dev. Min. Max.

Width across the roadway (m) 6.868 0.534 5.00 8.00
Average Summer Daily Traffic—ASDT (vehicles) 10,577.51 10,577.51 2867.00 21,562.00

Distance to the closest intersection (m) 215.720 149.19 85.00 850.00

The variables were chosen based on their potential relevance and availability. The
variables depicting the state of the infrastructure are “In settlement,” “Speed limit,” “Road-
side state,” and “Width across the roadway.” The variable “Roadside state” was included
to capture the physical condition and characteristics of the roadside environment, poten-
tially influencing driver behavior and safety outcomes. A well-maintained shoulder with
drainage channels, curbs, and sand covering (Shoulder/Maintained) typically enhances
safety. In contrast, roads lacking a shoulder or having poorly maintained edges, such as
grassy areas without barriers or curbs (No shoulder/Not maintained), may increase risk
and uncertainty for drivers. Similarly, an open water canal may represent certain risks and
influence driving behavior.
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Furthermore, “Distance to the closest intersection,” ASDT, and “Overtaking allowed”
are assumed to describe the traffic flow characteristics. More precisely, “Overtaking al-
lowed” (Yes or No) refers to road sections where overtaking is legally permitted and the
center line is dashed. “Day of the week” and “Part of the day” describe the time compo-
nent that could influence the speed selection. “Vehicle group” is a variable that clarifies
the observed vehicles’ technical characteristics, assuming that the vehicles with the most
favorable power/mass ratio (motorcycles) will also be the fastest, i.e., the most likely
to overspeed.

4.2. Descriptive Statistics on Speeding

The vehicles were automatically classified into ten groups based on length; however,
due to the minor vehicle frequency in some groups, in further analysis, the vehicles were
finally sorted into five groups (Table 4). As stated in Table 1, 57.7% (N = 2,667,852) of vehicle
speed records were above the legal speed limit; therefore, speeding was only compared
between vehicles that were above the speed limit. The test of Homogeneity of Variances
confirmed that the variances among the groups are significantly different. Hence, the
significance of differences in the means between presented vehicle groups was tested
using the Welch test, which confirmed statistically significant differences in the amount of
speeding among the groups at the 0.05 level.

Table 4. Descriptives on the amount of speeding by vehicle groups (km/h).

Vehicle Group N Mean Std. Dev. Std. Error

Motorcycles 58,237 24.11 19.41 0.08
Passenger cars with or without trailer 2,289,814 13.22 10.985 0.007

Vans with or without trailer 158,203 13.15 11.16 0.028
Cargo vehicles 142,664 11.39 8.836 0.023

Buses 18,556 10.03 7.616 0.056

Total 2,667,474 13.34 11.252 0.007

Based on the Games–Howell post hoc test results, passenger cars, and vans are the
only groups with insignificant mean differences in speeding. Motorcycles proved to be the
fastest form of travel. The average amount of speeding is more than 10 km/h higher for
motorcycles than other vehicle groups. The results are presented in Table 5.

Table 5. Multiple comparisons on speeding mean difference.

(I) Vehicle Group (J) Vehicle Group Mean Difference (I-J) Std. Error Sig.

Motorcycles Passenger cars with or without trailer 10.884 * 0.081 <0.001
Vans with or without trailer 10.959 * 0.085 <0.001

Cargo vehicles 12.717 * 0.084 <0.001
Buses 14.083 * 0.098 <0.001

Passenger cars with or without
trailer

Vans with or without trailer 0.075 0.029 0.072
Cargo vehicles 1.833 * 0.024 <0.001

Buses 3.199 * 0.056 <0.001

Vans with or without trailer Cargo vehicles 1.757 * 0.037 <0.001
Buses 3.124 * 0.063 <0.001

Cargo vehicles Buses 1.367 * 0.061 <0.001

* The mean difference is significant at the 0.05 level.

4.3. Binary Logit Model

Binary logistic regression with the enter method was employed to examine the rel-
evant variables in predicting the occurrence of speeding. The Nagelkerke R Square of
0.380 suggests that the model explains approximately 38% of the variance in the dependent
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variable (e.g., speeding). At the same time, the Cox and Snell R Square is slightly lower
(0.283), indicating a reasonable but not perfect fit. Table 6 illustrates the classification of
correctly and incorrectly predicted values (with a cut-off value of 0.5). The model performs
very well in predicting “Yes” cases with a high sensitivity of 89.3% (the model’s ability to
identify speeding cases correctly), while that is not the case for negative outcomes with a
specificity of 55.0% (model’s accuracy in identifying non-speeding cases).

Table 6. Classification table (binary logistic regression).

Predicted
Speeding Percent Correct

Observed No Yes

Speeding No 1,075,436 880,942 55.0%
Yes 284,357 2,383,117 89.3%

Overall Percentage 74.8%

The model indicates that all factors significantly influence speeding, with speed limits
being the most impactful factor, while ASDT has no meaningful impact on the likelihood of
speeding (Table 7). The negative coefficients indicate a strong inverse relationship between
the speed limit and the likelihood of speeding, with higher speed limits strongly predicting
the outcome “No.” Further, as expected, greater distances to intersections increase the
odds of speeding (B = 0.003, Exp(B) = 1.003), while locations within settlements have
significantly lower odds of speeding compared with those outside settlements (B = −1.148,
Exp(B) = 0.317). The width of the roadway has a negative association with speeding,
indicating that wider roadways are associated with lower speeding odds (B = −0.295,
Exp(B) = 0.744), while allowed overtaking increases the odds of speeding (B = 0.296,
Exp(B) = 1.345). The odds of speeding vary by day of the week and the time of the
day, with the highest odds observed on Sundays (B = 0.330, Exp(B) = 1.392) and during
dawn (B = 0.937, Exp(B) = 2.552). Motorcyclists are significantly more likely to speed than
other vehicle types, with passenger cars, vans, buses, and cargo vehicles all exhibiting
lower odds.

Table 7. Regression coefficients, odds ratios, and confidence intervals for variables predicting
speeding likelihood.

Variables in the Equation B S.E. Wald df Sig. Exp(B) 95% C.I. for EXP(B)
Lower Upper

ASDT 0.000 0.000 372.296 1 <0.000 1.000 1.000 1.000

Distance to the closest intersection 0.003 0.000 50,940.542 1 <0.000 1.003 1.003 1.003

Width across the roadway −0.295 0.003 9260.942 1 <0.000 0.744 0.740 0.749

Shoulder/Maintained 42,580.405 2 <0.000
No shoulder/Not maintained 0.853 0.007 15,876.513 1 <0.000 2.347 2.316 2.379

Open drain canal 1.753 0.009 42,173.050 1 <0.000 5.772 5.677 5.870

In settlement (Yes) −1.148 0.004 73,416.343 1 <0.000 0.317 0.315 0.320

Speed limit (50 km/h) 712,758.350 4 <0.000
Speed limit (60 km/h) −0.247 0.006 1636.172 1 <0.000 0.781 0.772 0.791
Speed limit (70 km/h) −2.832 0.009 107,559.285 1 <0.000 0.059 0.058 0.060
Speed limit (80 km/h) −2.556 0.005 219,753.026 1 <0.000 0.078 0.077 0.078
Speed limit (90 km/h) −4.578 0.006 582,896.093 1 <0.000 0.010 0.010 0.010

Overtaking allowed (Yes) 0.296 0.004 5063.941 1 <0.000 1.345 1.334 1.356
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Table 7. Cont.

Variables in the Equation B S.E. Wald df Sig. Exp(B) 95% C.I. for EXP(B)
Lower Upper

Monday 7726.487 6 <0.000
Tuesday 0.070 0.004 315.058 1 <0.000 1.073 1.065 1.081

Wednesday 0.039 0.004 86.571 1 <0.000 1.040 1.032 1.049
Thursday 0.067 0.004 257.313 1 <0.000 1.070 1.061 1.079

Friday 0.042 0.004 106.092 1 <0.000 1.043 1.034 1.051
Saturday 0.067 0.004 290.725 1 <0.000 1.069 1.061 1.077
Sunday 0.330 0.004 6397.624 1 <0.000 1.392 1.380 1.403

Daytime 36,411.946 3 <0.000
Twilight 0.102 0.004 526.301 1 <0.000 1.107 1.098 1.117

Night-time 0.498 0.005 10,173.651 1 <0.000 1.645 1.629 1.661
Dawn 0.937 0.006 28,154.951 1 <0.000 2.552 2.524 2.580

Motorcycles 11,493.604 4 <0.000
Passenger cars with or without trailer −0.644 0.009 5134.531 1 <0.000 0.525 0.516 0.535

Vans with or without trailer −0.683 0.010 4710.769 1 <0.000 0.505 0.495 0.515
Cargo vehicles −1.004 0.010 10,115.399 1 <0.000 0.366 0.359 0.374

Buses −0.670 0.015 1971.906 1 <0.000 0.511 0.497 0.527

Constant 3.909 0.027 21,414.320 1 <0.000 49.848

4.4. Neural Network Model

The initial dataset is divided into a training set (70%) and a test set (30%) to perform
neural network modeling. The input layer comprises 31 units (excluding the bias unit),
while the hidden layer contains 10. The hyperbolic tangent activation function was used for
the hidden layer, while the Sigmoid function was used for the output layer, with the sum
of squares used as the error function. Batch was used as a type of training, with maximum
training epochs computed automatically. The model’s performance is evaluated using
classification metrics on both the training and testing datasets (Table 8).

Table 8. Classification table (neural network).

Predicted
Sample Observed No Yes Percent Correct

Training No 899,402 470,605 65.6%
Yes 279,665 1,587,025 85.0%

Overall Percent 76.8%

Testing No 393,561 192,810 67.1%
Yes 131,495 669,289 83.6%

Overall Percent 76.6%

The model demonstrated an overall accuracy of 76.8% on these training data, indicat-
ing that it effectively learned the patterns in these data. The overall accuracy of these testing
data was 76.6%, slightly lower than the accuracy of these training data. This suggests the
model generalizes well to unseen data and does not suffer from overfitting. Sensitivity,
with 85.0% for the training set and 83.6% for the testing set, reflects the model’s strong
performance in detecting instances of speeding. Specificity was comparatively lower, at
65.6% for the training set and 67.1% for the testing set. A model with two hidden layers
was created for control, but the performance was not better than the initial one-hidden
layer model. The factor that proved to be the most influential is the speed limit, followed
by the distance to the closest intersection, roadway width, ASDT, and vehicle group.

The AUC for the neural network model was 0.840 for both training and testing datasets,
indicating that the model has good discriminative ability (Figure 2). An AUC of 0.840 means
an 84% chance that the model will correctly distinguish between a randomly chosen positive
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instance (speeding) and a randomly chosen negative instance (no speeding). These results
further support the effectiveness of the neural network model in predicting speeding.
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4.5. Chi-Squared Automatic Interaction Detector (CHAID)

The Chi-squared Automatic Interaction Detector (CHAID) model was employed to
analyze factors influencing speeding behavior. The model, validated through a split sample
approach (70% training set, 30% test set), identified six significant predictors of speeding:
distance to the closest intersection, ASDT, vehicle group, time of the day, day of the week,
and width across the roadway. With tree depths of 3 and 160 nodes, including 115 terminal
nodes, the model provides detailed insights into how these factors influence speeding
behaviors across different contexts.

The risk estimates for speeding obtained from the CHAID model are 0.231 and 0.232,
with a standard error of 0.000 for both datasets. These estimates reflect the stability and
consistency of the model’s predictions across training and test datasets. In classification
results for speeding, the training dataset shows an overall correct prediction percentage
of 76.9% (Table 9). The sensitivity was high, with values of 85.2% for both the training
and testing sets. This suggests that the model is robust in detecting speeding cases. The
specificity was lower, with 65.5% on the training set and 65.3% on the testing set, indicating
that the model has a moderate error rate in classifying non-speeding instances. These
metrics indicate the model’s effectiveness in classifying instances of speeding based on the
specified variables and the CHAID growing method.

Table 9. Classification table for the CHAID model.

Predicted
Sample Observed No Yes Percent Correct

Training No 896,729 473,294 65.5%
Yes 275,399 1,590,846 85.2%

Overall Percent 76.9%

Testing No 383,166 203,189 65.3%
Yes 118,407 682,822 85.2%

Overall Percent 76.8%

The CHAID model demonstrates predictive solid performance, as evidenced by AUC
values of 0.838 for the training set and 0.839 for the testing set (Figure 3). These AUC
values indicate that the model can discriminate between speeding and non-speeding cases,
performing consistently well on both the training and testing datasets. The close similarity
in AUC values suggests that the model generalizes effectively to new data, maintaining its
accuracy and robustness outside the initial training environment.
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4.6. Random Forest Model

The random forest model trained in this study is capable of predicting speeding
behavior appropriately. Using a dataset of 3,236,697 observations (70% training set,
30% test set), the model comprising 500 trees achieved an out-of-bag (OOB) prediction
error (Brier score) of 0.1597. On the training set, the model achieved an accuracy of
76.8% (95% CI: 76.74–76.83%), with a sensitivity of 84.4% and a specificity of 66.35%. On
the test set, the model maintained a similar accuracy of 76.8% (95% CI: 76.73–76.87%),
with a sensitivity of 84.5% and a specificity of 66.3%. The results are presented in Table 10.
These metrics demonstrate the model’s consistency and robustness across different datasets.
Regarding predictors’ importance, the ones with the highest importance are speed limit,
distance to the closest intersection, ASDT, and roadway width.

Table 10. Classification table for random forest model.

Predicted
Sample Observed No Yes Percent Correct

Training No 908,674 290,506 66.4%
Yes 460,791 1,576,726 84.4%

Overall Percent 76.8%

Testing No 389,311 124,255 66.3%
Yes 197,602 675,987 84.5%

Overall Percent 76.8%

The random forest model demonstrated strong discriminative power, achieving an
AUC of approximately 0.840 and 0.841 for the training and the testing dataset, respectively
(Figure 4). This high AUC indicates excellent performance in distinguishing between
speeding and non-speeding instances.
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5. Discussion
5.1. Average Values of Speeding Concerning Vehicle Groups

The classification of vehicles into five groups, based on length, was a pragmatic
approach to ensure sufficient sample sizes of each group for meaningful analysis. This
consolidation likely enhanced the robustness of subsequent statistical tests by mitigating the
issue of minor vehicle frequency, which could lead to unreliable estimates and conclusions.
Given that the specified groups of vehicles differ significantly in their driving-dynamic
characteristics, the amounts of speeding for them were observed before analyzing the
factors influencing speeding. Furthermore, the groups were compared with the basic
assumption that the highest speeding was recorded among motorcyclists.

With a mean speeding amount of 24.11 km/h, motorcycles are the fastest vehicles,
significantly surpassing other vehicle groups by more than 10 km/h. This result indicates
a higher propensity for speeding among motorcyclists, highlighting them as a critical
category. Further, as expected, passenger cars and vans showed similar speeding be-
havior, with mean speeds of 13.22 km/h and 13.15 km/h, respectively. Finally, cargo
vehicles and buses exhibit the lowest speeding amounts, with means of 11.39 km/h and
10.03 km/h, respectively. This may reflect the professional nature of drivers in these
categories or inherent vehicle characteristics that limit speed.

Earlier studies confirmed that motorcyclists are more likely to exceed the posted
speed limit compared with passenger cars and other motor vehicles [48–51]. Furthermore,
the results of this study are consistent with previous research, stating that motorcyclists
are more likely to speed on rural roads due to motorcycle maneuverability and riders’
enjoying fast riding [52]. Some studies point out that there is also a significant difference in
speed between different types of motorcycles (e.g., sports and enduro), which can be an
implication for future research [50].

5.2. Speeding Prediction Models

This study applied several modeling techniques to examine the factors influenc-
ing speeding behavior and evaluate their predictive performance. The methods com-
pared include binary logistic regression, neural network, CHAID classification tree, and
random forest. Each model has distinct characteristics, strengths, and limitations, as
discussed below.

All models showed a more accurate prediction of “Yes” cases, with a sensitivity
greater than 84%. All approaches showed decent results when observing the models’
accuracy (>74%).

Table 11 compares the performance of four classification models across six key metrics:
sensitivity, specificity, accuracy, precision, F1-Score, and Cohen’s Kappa. The binary logistic
model exhibits the highest sensitivity at 89.30%, demonstrating strong performance in
identifying true positive cases (e.g., identifying “Yes” instances); however, this is paired
with the lowest specificity (55.00%), indicating weaker performance in correctly identifying
true negative cases (e.g., identifying “No” instances). On the other hand, the machine
learning models show a more balanced performance. Sensitivities for the neural network,
CHAID tree, and random forest models hover around 85%, while specificities range from
65.41% to 66.14%. In terms of accuracy, all three machine learning models perform similarly,
with the CHAID tree model achieving the highest accuracy at 76.85%, followed closely by
the neural network (76.82%) and random forest (76.78%).

Precision and F1-Score further confirm the balanced performance of the machine
learning models, with the random forest model showing the highest precision (77.31%) and
the CHAID tree model achieving the best F1-Score (80.94%). Cohen’s Kappa values, which
measure overall agreement between predicted and observed classifications, are also higher
for the machine learning models, with the neural network model slightly outperforming
the others (0.517), suggesting a better overall predictive quality compared with the binary
logistic model (0.459).
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Table 11. Summary of models’ performance.

Model Sensitivity Specificity Accuracy Precision F1-Score Cohen’s
Kappa The Most Significant Factors

Binary
logistic 89.30% 55.00% 74.80% 73.04% 80.36% 0.459

Speed limit, distance to
intersection, roadway width,

roadside state, etc.

Neural
network 85.02% 65.65% 76.82% 77.13% 80.88% 0.517

Speed limit, distance to
intersection, roadway width,

ASDT, vehicle group

CHAID
tree 85.25% 65.41% 76.85% 77.05% 80.94% 0.516

Distance to intersection, ASDT,
vehicle group, time of the day,

day of the week, roadway width

Random
forest 84.59% 66.14% 76.78% 77.31% 80.78% 0.516

Speed limit, distance to
intersection, ASDT, roadway

width, roadside state

Several aspects can explain the similar performance across the models. First, the data
quality and structure likely offer transparent relationships between variables, making it
easier for simpler models, such as logistic regression, to perform well. Moreover, the com-
plexity of the problem may not demand highly sophisticated models, so machine learning
methods such as neural networks or decision trees do not provide significantly better
results. Furthermore, without extensive hyperparameter tuning, the more complex models
may not fully exploit their potential, resulting in only marginally better performances
than more straightforward approaches. Last, the large sample size and the absence of all
potential causal parameters in the dataset can influence the models’ similar performance.
A large dataset often provides enough information for different models to achieve stable
and consistent predictions, reducing variability in performance. This can lead to even
simpler models capturing essential patterns effectively. Additionally, while the models’
performance is satisfying, there is a potential for including some more causal factors. Above
all, the similarity of results between training and test sets generally indicates a good model
performance and generalizability. The abovementioned explains why the models display
similar sensitivity, specificity, and overall accuracy levels.

The table reveals that while speed limit and distance to the closest intersection are
consistently significant predictors across multiple models, the importance of other factors
such as ASDT, roadway width, and time-related variables varies depending on the model
used. These variations suggest that the choice of model should align with the specific needs
of the analysis, whether prioritizing simplicity or a more comprehensive, multifactorial
approach; therefore, it will be essential for the authorities to evaluate these models against
their specific datasets to determine the most suitable one for implementation.

The association between speeding and several explanatory variables was constructed
with several modeling approaches, which aligns with the previous research. Given that
the performance of all models is similar, binary logistic regression is the basis for further
discussion, showing strong sensitivity (89.30%). By utilizing binary logistic regression, the
findings are interpretable (outputs in the form of odds ratios (Exp(B), previously shown in
Table 7), statistically sound, and actionable, contributing meaningfully to the understanding
of speeding behavior and its underlying determinants.

Higher speed limits are significantly associated with lower odds of speeding. This
implies that as speed limits increase, drivers are less likely to exceed them. This trend may
be attributed to factors such as enforcement practices and adjustments in driver behavior.
In addition, it might imply that drivers feel bored or too slow at lower speeds or even
think that posted speed limits do not comply with the road design. The difference between
the road design and the posted speed limit can also lead to speeding [53]. Roadway
characteristics substantially impact speed selection behavior, leading drivers who usually
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tend to drive fast to increase their speeds more than slower drivers when opportunities to
drive faster are present [54,55]. Another study shows that drivers justify speeding by saying
the speed limits are too low, the road conditions allow higher speed, or it is a habit [56].
Kutela et al. concluded that the analysis of speed limits reveals an increase in the likelihood
of speeding as the speed limits increase; however, the design difference should be taken
into account [24]. Similarly, Cai et al. (2021) confirmed that drivers are more likely to
exceed the speed limit when the speed limit is low [22]. Other studies also confirmed that
speeding is more likely to occur on low-speed limit roads [57], concluding that drivers
choose their operating speed based on the other drivers’ speed [58]; therefore, the speed
distribution should serve as the foundation for determining suggested speed limits, with
the final recommended value considering roadway type, context, safety performance, and
other relevant characteristics [59].

Research shows that a wider shoulder is associated with higher speeds, while narrower
lanes encourage a speed reduction [22]. Contrary to expectations, this study revealed that
a wider roadway is associated with a lower likelihood of speeding; however, this must
be considered cautiously since the difference between road width was relatively small
(St. Dev. = 0.534 m). Interestingly, the roadside without a well-maintained shoulder and
safety barrier is a more significant indicator of speeding than where the shoulder has a
curb and/or a safety barrier. That may indicate that, in addition to the safety function,
protective barriers and curbs impact the drivers’ perception, i.e., drivers are more careful
not to hit the roadside object.

Similar to previous research, increased traffic can be connected to reduced speed [60,61].
The fact that the importance of variables such as distance to the closest intersection and
ASDT has been shown indicates that traffic flow characteristics influence speed selection.
In other words, the influence of other vehicles and increased driver’s caution when ap-
proaching or passing through an intersection is possible. This is consistent with previous
studies showing that the least “smooth driving” is expected in urban areas (i.e., cities) [62].
Since the increased share of speeding vehicles is expected outside urban areas, the selection
of measurement locations in this research is justified when discussing factors potentially
affecting speeding. Further, it can be expected that speeding will occur outside the settle-
ments, even in rural areas, as well as on road sections where overtaking is allowed, which
this study confirmed.

Weekends, notably Sundays, show increased odds of speeding, particularly in com-
bination with nighttime and dawn driving, which is associated with a higher likelihood
of speeding. The finding is particularly worrying since crashes, especially single-crashes,
often occur during nighttime, at weekends, and under low traffic volume [63]. On the
other hand, some research shows that it is more likely that speeding will occur during
evening and midday weekend hours [64]. This difference may indicate that it is necessary
to consider the geographical and cultural components when modeling speeding behavior
or discussing transportation in general since the dynamics of people’s lives and habits
can vary.

The analysis within our research indicated significant differences in speeding behavior
across various vehicle groups. The results suggest motorcycle riders are more likely to be
involved in speeding incidents than all other drivers. Specifically, as vehicle type changes
from motorcycles to other groups, the likelihood of speeding decreases significantly. This
expected result underscores the distinct driving behaviors and speed compliance levels
associated with different vehicle types, highlighting motorcycles as a more prominent
risk group for speeding-related incidents. Previous studies confirm motorcycle riders
are more prone to speeding than other drivers [52]. The above is particularly worrying
considering that research shows that excessive speed significantly affects the occurrence of
severe injuries and fatalities among motorcyclists [65,66].

While most of this study’s findings align with previous research, which confirms the
role of factors such as speed limits in influencing speeding behavior, there were also some
notable variations. These diverse indicators suggest that geographical and sociological
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aspects may play a significant role in shaping speeding tendencies. For example, the
analysis revealed that temporal factors, such as the day of the week and time of day,
significantly affect speeding likelihood. This indicates that drivers’ behavior might be
influenced by social or cultural norms tied to specific times, such as weekend driving habits
or night-time driving patterns. This variation could also indicate regional differences in
driving culture, law enforcement practices, or public awareness of road safety, which more
standardized driver behavior models might need to capture fully.

5.3. Limitations and Future Implications

This paper provides valuable insights into the factors influencing speeding behavior
and choosing the appropriate modeling approach; however, several limitations should be
acknowledged. This study did not account for individual driver characteristics such as age,
gender, driving experience, or driving history. This means that only the vehicle and road
characteristics were taken into account; however, this information can be unavailable to
road authorities since they do not know the drivers’ characteristics when posting speed
limits. Still, according to some researchers, driver attitude and other driver features strongly
correlate with obeying speed limits [67,68]. The problem is solved to some extent by using
groups of vehicles since a specific group of drivers is often associated with some typical
behavior in the literature.

Further, the speed measurements were point-based, capturing speed at specific
locations rather than over a continuous stretch of road. This method may not fully
represent the overall driving behavior and could miss variations in speed between
measurement points.

Finally, the dataset in this study represents summer measurements only. Although this
ensures uniform measurement conditions, future research could include data from other
seasons when conditions differ (e.g., snow, fog, etc.). On the other hand, favorable weather
conditions are one of the prerequisites for free traffic flow, which is a vital assumption
when inspecting speeding.

According to the presented results, the focus of future research could be more specific,
for example, more detailed monitoring and data collection on motorcyclists’ movements
(e.g., naturalistic data collection). Furthermore, it could be fruitful to separately observe
weekends as a perilous period from the point of view of driving speed. Another potential
approach is to observe speeding by class, based on the amount of speeding, and to observe
cases inside and outside the settlement separately since the results show a higher possibility
of speeding outside the inhabited settlement; however, the sample size presented in this
study is one of its key advantages, enhancing the reliability and generalizability of the
findings, as it reduces the likelihood of sampling bias and increases the precision of esti-
mates. Furthermore, the sample size allows for detecting subtle relationships between the
predictors and the likelihood of speeding and for a more granular analysis of subgroups,
such as different vehicle types. In this context, the presented research is a base point for
directing further examination, employing a more analytical approach.

Based on everything presented, there is a significant potential for further expansion of
individual models so that they can ultimately be applied. By applying the results of those
models, road authorities and law enforcement offices could precisely predict locations for
the implementation of traffic calming measures or the installation of speed cameras. This
can contribute to lower costs and increased traffic safety.

6. Conclusions

This study aimed to identify the key factors influencing speeding behavior on Croatian
state roads using various statistical and machine-learning methods. By analyzing data
collected from traffic counters on rural roads over two years, the research explored the
impact of vehicle type, road characteristics, time of day, and other variables on speeding
occurrences. Among the models, the random forest demonstrated superior performance,
achieving an accuracy of 76.8% and a robust discriminative power, indicating its effective-
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ness in predicting speeding behavior; however, binary logistic regression could be one of
the most useful models because of its favorable interpretability. The findings consistently
highlighted the speed limit as the most significant predictor of speeding, with lower speed
limits strongly associated with increased speeding likelihood. The distance to the closest
intersection and the width of the roadway also emerged as influential factors. Vehicle
type, time of day, and day of the week further contributed to speeding behavior, with
motorcycles exhibiting the highest average speeding and speeding more likely to occur
during nighttime and weekends.

This study uniquely contributes to road safety research by comprehensively analyzing
speeding factors on rural roads in Croatia, a region underrepresented in previous studies.
Combining traditional and advanced modeling techniques offers a more robust analytical
approach and examines a distinctive set of factors, including some rarely explored in this
context. These insights provide practical recommendations for targeted interventions,
enhancing the understanding of speeding behavior in specific geographical and infrastruc-
tural settings. Overall, this research contributes valuable insights into the multifaceted
factors influencing speeding behavior, thereby supporting the development of targeted
interventions and policies aimed at enhancing road safety. Some general suggestions for
road authorities can be provided:

• Utilize Intelligent Transportation Systems (ITS): Implement advanced traffic man-
agement systems that leverage real-time data and analytics to optimize traffic flow
and enhance enforcement measures, such as strategically placed speed cameras.

• Focus on Eco-Friendly Road Design: Implement road-narrowing techniques at tran-
sition zones, such as residential areas and intersections, to effectively reduce vehicle
speeds. By designing roadways that physically guide drivers to slow down, these
measures enhance safety while also promoting eco-friendly practices through the use
of sustainable materials and designs that minimize environmental impact.

• Enhance Road Visibility and Safety: Improve the visibility and frequency of speed
limit signs by incorporating digital displays that adapt to real-time conditions, ensur-
ing drivers are consistently informed of speed regulations. Additionally, perceptual
road markings should be utilized to create a visual narrowing effect, which can psy-
chologically encourage drivers to reduce their speed. This combination of advanced
signage and perceptual techniques not only enhances visibility but also significantly
improves safety by promoting more cautious driving behavior in critical areas.

• Data-Driven Speed Limit Adjustments: Regularly review and establish realistic
speed limits based on comprehensive analyses of road types, traffic volumes, and
crash histories, ensuring that limits are both safe and enforceable.

• Tech-Enhanced Educational Campaigns: Initiate campaigns that leverage digital
platforms to inform drivers about the significance of adhering to speed limits and the
dangers linked to speeding, thereby promoting a culture of safety on the roads.

Further, based on the results presented in this study, some more specific and applicable
suggestions for road authorities, policymakers, and law enforcement can be proposed:

• Speed Limit Review: Conduct a thorough revision of posted speed limits by ana-
lyzing operational speeds at critical locations, assessing the current condition of the
infrastructure, and considering additional contextual factors such as land use, pedes-
trian activity, and road geometry. This approach helps ensure that speed limits are
appropriate for the environment and encourages safer driving behavior.

• Road Safety Equipment Installation: Strategically install appropriate road safety
equipment, such as crash barriers and guardrails, in high-risk areas to reduce the
severity of crashes. These physical measures not only protect drivers but also act as
visual cues, encouraging speed reduction and caution in known crash-prone zones.

• Increased Police Presence: Implement more frequent and targeted police patrols,
especially during high-risk periods such as weekends and holidays when speeding
and dangerous driving behaviors are more prevalent. A visible law enforcement
presence is a deterrent to speeding and reckless driving.
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• Improved Intersection Marking: Ensure consistent and timely installation of highly
visible and uniformed road markings at intersections to warn drivers clearly. This can
significantly enhance driver awareness and reduce the likelihood of speeding in these
complex traffic zones, minimizing potential collisions.

• Motorcycle Safety Focus: Pay special attention to areas with high motorcycle traffic
by identifying potential hazards and launching targeted safety campaigns. Educate
motorcyclists and other road users about safe practices and implement infrastructure
improvements to enhance motorcycle safety.

• Traffic Surveillance Enhancement: Install traffic monitoring cameras at locations
where errant drivers, particularly motorcyclists, are frequently observed. These cam-
eras help enforce traffic laws in cases where it is challenging for police to apprehend
offenders, such as motorcyclists fleeing from officers or concealing license plates.

• Crash and Speeding Monitoring: Continuously track and analyze data related to
traffic crashes caused by speeding, including the severity of injuries and fatalities.
This ongoing evaluation can inform future road safety measures and adjustments
to enforcement strategies, helping to reduce the incidence of speed-related crashes
over time.

Implementing measures that address the identified factors, such as integrating ad-
vanced road design improvements and stricter enforcement of speed limits, can signifi-
cantly reduce speeding incidents and associated risks. Through a comprehensive approach
that combines enforcement, innovative design, and technology, we can create safer road
environments that minimize the dangers of speeding.
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Babić); visualization, M.F.; supervision, A.P.; project administration, M.F.; funding acquisition, M.F.
All authors have read and agreed to the published version of the manuscript.

Funding: This study was supported by the Special Research Fund (BOF) of Hasselt University with
the BOF number “BOF21BL03”.

Data Availability Statement: Data used to support the findings of this study are available from the
corresponding author upon request.

Conflicts of Interest: Marija Ferko is employed by Smart View Ltd. The authors declare that they
have no known competing financial interests or personal relationships that could have appeared to
influence the work reported in this paper.

References
1. Aarts, L.; van Schagen, I. Driving speed and the risk of road crashes: A review. Accid. Anal. Prev. 2006, 38, 215–224. [CrossRef]

[PubMed]
2. Van den Berghe, W. Road Safety Thematic Report—Speeding; European Commission: Brussels, Belgium, 2021; Available on-

line: https://road-safety.transport.ec.europa.eu/system/files/2021-07/road_safety_thematic_report_speeding.pdf (accessed on
14 June 2024).

3. Adminaité-Fodor, D.; Jost, G. Reducing Speeding in Europe; European Transport Safety Council: Brussels, Belgium, 2019; Available
online: https://www.etsc.eu/pin (accessed on 14 June 2024).

4. Islam, M.; Mannering, F. The role of gender and temporal instability in driver-injury severities in crashes caused by speeds too
fast for conditions. Accid. Anal. Prev. 2021, 153, 106039. [CrossRef] [PubMed]

5. Alnawmasi, N.; Mannering, F. The impact of higher speed limits on the frequency and severity of freeway crashes: Accounting
for temporal shifts and unobserved heterogeneity. Anal. Methods Accid. Res. 2022, 34, 100205. [CrossRef]

6. Nassiri, H.; Mohammadpour, S.I. Investigating speed-safety association: Considering the unobserved heterogeneity and human
factors mediation effects. PLoS ONE 2023, 18, e0281951. [CrossRef] [PubMed]

7. The Safe System Approach in Action; International Transport Forum: Paris, France, 2022; Available online: https://www.itf-oecd.
org/sites/default/files/docs/safe-system-in-action.pdf (accessed on 14 June 2024).

8. Vertlberg, J.L.; Švajda, M.; Jakovljević, M.; Ševrović, M. Operating Vehicles’ Speed Prediction Models. Promet-Traffic Traffico. 2024,
36, 383–398. [CrossRef]

https://doi.org/10.1016/j.aap.2005.07.004
https://www.ncbi.nlm.nih.gov/pubmed/16256932
https://road-safety.transport.ec.europa.eu/system/files/2021-07/road_safety_thematic_report_speeding.pdf
https://www.etsc.eu/pin
https://doi.org/10.1016/j.aap.2021.106039
https://www.ncbi.nlm.nih.gov/pubmed/33611081
https://doi.org/10.1016/j.amar.2021.100205
https://doi.org/10.1371/journal.pone.0281951
https://www.ncbi.nlm.nih.gov/pubmed/36809530
https://www.itf-oecd.org/sites/default/files/docs/safe-system-in-action.pdf
https://www.itf-oecd.org/sites/default/files/docs/safe-system-in-action.pdf
https://doi.org/10.7307/ptt.v36i3.543


Infrastructures 2024, 9, 222 20 of 22

9. Constantinescu, Z.; Marinoiu, C.; Vladoiu, M. Driving Style Analysis Using Data Mining Techniques. Int. J. Comput. Commun.
2010, 5, 654. [CrossRef]

10. Eboli, L.; Guido, G.; Mazzulla, G.; Pungillo, G.; Pungillo, R. Investigating Car Users’ Driving Behaviour through Speed Analysis.
Promet-Traffic Traffico. 2017, 29, 193–202. [CrossRef]

11. Ju, U.; Wallraven, C. Dynamic measurements of speed and risk perception during driving: Evidence of speed misestimation from
continuous ratings and video analysis. PLoS ONE 2023, 18, e0291043. [CrossRef]

12. Familar, R.; Greaves, S.; Ellison, A. Analysis of Speeding Behavior. Transp. Res. Rec. 2011, 2237, 67–77. [CrossRef]
13. Atombo, C.; Wu, C.; Zhong, M.; Zhang, H. Investigating the motivational factors influencing drivers intentions to unsafe driving

behaviours: Speeding and overtaking violations. Transp. Res. Part F Traffic Psychol. Behav. 2016, 43, 104–121. [CrossRef]
14. Zhang, W.; Hu, Z.; Feng, Z.; Ma, C.; Wang, K.; Zhang, X. Investigating factors influencing drivers’ speed selection behavior under

reduced visibility conditions. Traffic Inj. Prev. 2018, 19, 488–494. [CrossRef] [PubMed]
15. Alizadeh, M.; Davoodi, S.R.; Shaaban, K. Drivers’ Speeding Behavior in Residential Streets: A Structural Equation Modeling

Approach. Infrastructures 2023, 8, 11. [CrossRef]
16. Truelove, V.; Watson-Brown, N.; Mills, L.; Freeman, J.; Davey, J. It’s not a hard and fast rule: A qualitative investigation into

factors influencing speeding among young drivers. J. Saf. Res. 2022, 81, 36–44. [CrossRef] [PubMed]
17. Shandhana Rashmi, B.; Marisamynathan, S. Investigating the contributory factors influencing speeding behavior among long-haul

truck drivers traveling across India: Insights from binary logit and machine learning techniques. Int. J. Transp. Sci. Technol. 2024;
in press. [CrossRef]

18. Yu, B.; Chen, Y.; Bao, S. Quantifying visual road environment to establish a speeding prediction model: An examination using
naturalistic driving data. Accid. Anal. Prev. 2019, 129, 289–298. [CrossRef]

19. Tselentis, D.I.; Gonidi, C.; Yannis, G. Driving speed model development using driving data obtained from smartphone sensors.
Transp. Res. Proc. 2020, 48, 673–686. [CrossRef]

20. Kontaxi, A.; Tzoutzoulis, D.-M.; Ziakopoulos, A.; Yannis, G. Exploring speeding behavior using naturalistic car driving data from
smartphones. J. Transp. Eng. 2023, 10, 1162–1173. [CrossRef]

21. Semeida, A.M. Application of artificial neural networks for operating speed prediction at horizontal curves: A case study in
Egypt. JMT 2014, 22, 20–29. [CrossRef]

22. Cai, Q.; Abdel-Aty, M.; Mahmoud, N.; Ugan, J.; Al-Omari, M.M.A. Developing a grouped random parameter beta model to
analyze drivers’ speeding behavior on urban and suburban arterials with probe speed data. Accid. Anal. Prev. 2021, 161, 106386.
[CrossRef]

23. Khaddar, S.; Pathivada, B.K.; Perumal, V. Modeling over speeding behavior of vehicles using a random parameter negative
binomial approach: A case study of Mumbai, India. Transp. Res. Interdiscip. Perspect. 2023, 18, 100790. [CrossRef]

24. Kutela, B.; Ngeni, F.; Ruseruka, C.; Chengula, T.J.; Novat, N.; Shita, H.; Kinero, A. The influence of roadway characteristics and
built environment on the extent of over-speeding: An exploration using mobile automated traffic camera data. Int. J. Transp. Sci.
Technol. 2024; in press. [CrossRef]

25. Zhao, G.; Wu, C.; Qiao, C. A Mathematical Model for the Prediction of Speeding with its Validation. IEEE Trans. Intell. Transp.
Syst. 2013, 14, 828–836. [CrossRef]

26. Yadav, A.K.; Velaga, N.R. Investigating the effects of driving environment and driver characteristics on drivers’ compliance with
speed limits. Traffic Inj. Prev. 2021, 22, 201–206. [CrossRef] [PubMed]

27. Montella, A.; Calvi, A.; D’Amico, F.; Ferrante, C.; Galante, F.; Mauriello, F.; Rella Riccardi, M.; Scarano, A. A methodology for
setting credible speed limits based on numerical analyses and driving simulator experiments. Transp. Res. Part F Traffic Psychol.
Behav. 2024, 100, 289–307. [CrossRef]

28. Brzine Vozila na Hrvatskim Cestama u 2018. Godini; Prometis: Zagreb, Croatia, 2019.
29. Malaghan, V.; Pawar, D.S.; Dia, H. Exploring Maximum and Minimum Operating Speed Positions on Road Geometric Elements

Using Continuous Speed Data. J. Transp. Eng. A Syst. 2021, 147, 04021039. [CrossRef]
30. Figueroa Medina, A.M.; Tarko, A.P. Speed Changes in the Vicinity of Horizontal Curves on Two-Lane Rural Roads. J. Transp. Eng.

2007, 133, 215–222. [CrossRef]
31. Dumitrascu, D.-I. Influence of Road Infrastructure Design over the Traffic Accidents: A Simulated Case Study. Infrastructures

2024, 9, 154. [CrossRef]
32. Faizi, N.; Alvi, Y. Regression and multivariable analysis. In Biostatistics Manual for Health Research; Elsevier: Amsterdam, The

Netherlands, 2023; pp. 213–247. [CrossRef]
33. Mostoufi, N.; Constantinides, A. Linear and nonlinear regression analysis. In Applied Numerical Methods for Chemical Engineers, 1st

ed.; Elsevier: Amsterdam, The Netherlands, 2023; pp. 403–476. [CrossRef]
34. Fritz, M.; Berger, P.D. Will anybody buy? Logistic regression. In Improving the User Experience Through Practical Data Analytics;

Elsevier: Amsterdam, The Netherlands, 2015; pp. 271–304. [CrossRef]
35. Sarker, I.H. Deep Learning: A Comprehensive Overview on Techniques, Taxonomy, Applications and Research Directions. SN

Comput. Sci. 2021, 2, 420. [CrossRef]
36. Maceiras, C.; Cao-Feijóo, G.; Pérez-Canosa, J.M.; Orosa, J.A. Application of Machine Learning in the Identification and Prediction

of Maritime Accident Factors. Appl. Sci. 2024, 14, 7239. [CrossRef]

https://doi.org/10.15837/ijccc.2010.5.2221
https://doi.org/10.7307/ptt.v29i2.2117
https://doi.org/10.1371/journal.pone.0291043
https://doi.org/10.3141/2237-08
https://doi.org/10.1016/j.trf.2016.09.029
https://doi.org/10.1080/15389588.2018.1453134
https://www.ncbi.nlm.nih.gov/pubmed/29630395
https://doi.org/10.3390/infrastructures8010011
https://doi.org/10.1016/j.jsr.2022.01.004
https://www.ncbi.nlm.nih.gov/pubmed/35589304
https://doi.org/10.1016/j.ijtst.2024.01.008
https://doi.org/10.1016/j.aap.2019.05.011
https://doi.org/10.1016/j.trpro.2020.08.068
https://doi.org/10.1016/j.jtte.2023.07.007
https://doi.org/10.1007/s40534-014-0033-3
https://doi.org/10.1016/j.aap.2021.106386
https://doi.org/10.1016/j.trip.2023.100790
https://doi.org/10.1016/j.ijtst.2024.03.003
https://doi.org/10.1109/TITS.2013.2257757
https://doi.org/10.1080/15389588.2021.1893699
https://www.ncbi.nlm.nih.gov/pubmed/33688753
https://doi.org/10.1016/j.trf.2023.12.008
https://doi.org/10.1061/JTEPBS.0000539
https://doi.org/10.1061/(ASCE)0733-947X(2007)133:4(215)
https://doi.org/10.3390/infrastructures9090154
https://doi.org/10.1016/B978-0-443-18550-2.00011-6
https://doi.org/10.1016/B978-0-12-822961-3.00008-X
https://doi.org/10.1016/B978-0-12-800635-1.00011-2
https://doi.org/10.1007/s42979-021-00815-1
https://doi.org/10.3390/app14167239


Infrastructures 2024, 9, 222 21 of 22

37. Van Efferen, L.; Ali-Eldin, A.M.T. A multi-layer perceptron approach for flow-based anomaly detection. In Proceedings of the
2017 International Symposium on Networks, Computers and Communications (ISNCC), Marrakech, Morocco, 16–18 May 2017;
IEEE: New York, NY, USA, 2017; pp. 1–6. [CrossRef]

38. Udurume, M.; Shakhov, V.; Koo, I. Comparative Analysis of Deep Convolutional Neural Network—Bidirectional Long Short-Term
Memory and Machine Learning Methods in Intrusion Detection Systems. Appl. Sci. 2024, 14, 6967. [CrossRef]

39. Breiman, L. Random Forests. Mach. Learn. 2001, 45, 5–32. [CrossRef]
40. Sarker, I.H.; Salah, K. AppsPred: Predicting context-aware smartphone apps using random forest learning. Internet Things J. 2019,

8, 100106. [CrossRef]
41. Liu, C.-Y.; Ku, C.-Y.; Wu, T.-Y.; Ku, Y.-C. An Advanced Soil Classification Method Employing the Random Forest Technique in

Machine Learning. Appl. Sci. 2024, 14, 7202. [CrossRef]
42. Dutta, P.; Paul, S.; Kumar, A. Comparative analysis of various supervised machine learning techniques for diagnosis of COVID-19.

In Electronic Devices, Circuits, and Systems for Biomedical Applications; Elsevier: Amsterdam, The Netherlands, 2021; pp. 521–540.
[CrossRef]

43. Melo, F. Area under the ROC Curve. In Encyclopedia of Systems Biology; Springer: New York, NY, USA, 2013; pp. 38–39. [CrossRef]
44. Song, Y.-Y.; Lu, Y. Decision tree methods: Applications for classification and prediction. Shanghai Arch. Psychiatry 2015, 27, 130–135.

[CrossRef]
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