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Abstract: The development of smart cities relies on the implementation of cutting-edge technologies.

Unmanned aerial vehicles (UAVs) and deep learning (DL) models are examples of such disruptive

technologies with diverse industrial applications that are gaining traction. When it comes to road

traffic monitoring systems (RTMs), the combination of UAVs and vision-based methods has shown

great potential. Currently, most solutions focus on analyzing traffic footage captured by hovering

UAVs due to the inherent georeferencing challenges in video footage from nonstationary drones.

We propose an innovative method capable of estimating traffic speed using footage from both

stationary and nonstationary UAVs. The process involves matching each pixel of the input frame with

a georeferenced orthomosaic using a feature-matching algorithm. Subsequently, a tracking-enabled

YOLOv8 object detection model is applied to the frame to detect vehicles and their trajectories. The

geographic positions of these moving vehicles over time are logged in JSON format. The accuracy

of this method was validated with reference measurements recorded from a laser speed gun. The

results indicate that the proposed method can estimate vehicle speeds with an absolute error as low

as 0.53 km/h. The study also discusses the associated problems and constraints with nonstationary

drone footage as input and proposes strategies for minimizing noise and inaccuracies. Despite these

challenges, the proposed framework demonstrates considerable potential and signifies another step

towards automated road traffic monitoring systems. This system enables transportation modelers to

realistically capture traffic behavior over a wider area, unlike existing roadside camera systems prone

to blind spots and limited spatial coverage.

Keywords: UAV; drone; traffic monitoring; computer vision; YOLO

1. Introduction

Recently, unmanned aerial vehicles (UAVs) or drones have gained substantial attention
due to the offered level of automation, cost-effectiveness, and mobility [1]. These character-
istics have led to the widespread use of drones in various fields such as agriculture, earth
observation, geology, and climatology [2]. With continuous technological advancements,
UAVs are now being used for applications beyond just reconnaissance and remote sensing.
Modern drones are being utilized for activities such as agrochemical applications, maritime
rescue, and firefighting [3,4]. Recently, drones have also been employed in package delivery,
logistics, and humanitarian aid, often in remote locations where human access is restricted
or posed by severe risk [4]. UAVs have been widely used by the military for land mine
detection and reconnaissance missions [5]. This proves the utility and versatility of UAVs
in military and civil applications alike. There are several types of UAVs offering utility to
different use cases. These types include fixed-wing UAVs, single-rotor drones, multirotor
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(quadcopters, hexacopters, and octocopters), and fixed-wing hybrid VTOL UAV systems [6].
Fixed wing drones offer great utility for package deliveries and remote inspections, while
multirotor drones are greatly considered for search and rescue operations due to their hov-
ering capabilities [7]. For recreational purposes, such as photography and high-resolution
aerial imaging, smaller drones equipped with professional-grade cameras are used [8]. The
applications, pros, and cons of each drone type are discussed in Table 1.

Table 1. Drone types, some of their civil applications (non-exhaustive), advantages, and disadvantages.

Drone Type Advantages Disadvantages Uses

Multirotor UAVs

- Vertical take-off and
landing (VTOL)

- Hovering enabled
- User-friendliness

- Shorter flight durations
- Smaller payload capacity

- Aerial inspection,
thermal reports, and
3D scans.

Fixed-Wing UAVs
- Increased coverage area
- Extended flight time
- Enhanced speed

- No hovering capability
- Difficult for novice pilots
- Higher costs

- Aerial mapping,
precision agriculture,
surveillance, and
construction.

Single-Rotor UAVs

- Hovering enabled
- Greater endurance
- VTOL
- Greater payload

capabilities

- Difficult for novice pilots
- Higher costs

- Aerial LIDAR laser scan
and drone surveying.

Fixed-Wing Hybrid UAVs

- Vertical take-off
and landing

- Long-endurance flight

- Best of both worlds: with a
little trade-off in hovering
and forward flight.

- Deliveries/logistics.

Among the popular civil applications of drones, road traffic monitoring (RTM) systems
have witnessed significant development. An RTM system primarily focuses on two tasks:
detecting road accidents and identifying traffic congestion [9]. However, traditional surveil-
lance methods lack the aerial perspective of UAVs, limiting a comprehensive analysis [10].
With the integration of global navigation satellite systems (GNSS), UAVs offer researchers
a geospatial viewpoint, enabling them to conduct meaningful research in the field [11].

In recent times, there have been significant advancements in vehicle detection methods
through the use of computer vision and deep learning techniques [12]. These technologies
have greatly enhanced the capabilities of object detection and tracking methods, which
are vital for tasks such as estimating vehicle trajectories and analyzing traffic flow [13].
Without accurate speed measurement, it is unviable to implement an accurate RTM system.
Despite these advancements in computer vision, there are still technical limitations that
need to be addressed [14]. Much of the existing literature focuses on RTM systems that rely
on fixed camera systems with limited spatial coverage. In contrast, a moving drone can
provide increased mobility, better spatial coverage, and reduced blind spots. Additionally,
the current speed estimation techniques used by law enforcement only capture a single
point speed (using LiDAR-based systems), which may not be sufficient for comprehensive
analysis and could hinder the decisionmaker’s ability to implement appropriate traffic
control measures.

This study aims to enhance the existing systems by providing more accurate speed
measurements and trajectory estimations by utilizing AI and UAVs. This method offers
a practical solution that effectively works with both stationary and nonstationary aerial
footage, demonstrating remarkable flexibility. This method is capable of accurately map-
ping vehicle trajectories in real geographical space. Furthermore, it shows high precision in
measuring velocity, with an error margin as low as 0.53 km/h. Implementing this solution
can provide significant value for intelligent road traffic monitoring systems.
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2. Related Works

Recently, a multitude of research literature has been published tackling a similar
problem but focusing on fixed cameras. Computer vision has wider applicability within
road traffic monitoring systems and road safety. The biggest challenge of using these
solutions is the real-world practical implementation [15]. In their study, the authors of [16]
present a real-time vehicle velocity estimation method using a vehicle-mounted monocular
camera. The authors’ approach involves a computer-vision-based object tracker combined
with a small neural network to estimate the velocity of the vehicles from the tracked
bounding boxes. To calculate the distance traveled by the vehicles, the authors use the
focal length of the monocular camera, a fixed height, and the bottom edge midpoint of
the bounding box. The method yields promising results with a vehicle estimation error
of 1.28 km/h, but the major limitation is the practicality of the experimental setup itself,
which is extremely inflexible, acting as a barrier to real-world implementation. A related
study [17] showcased a system that uses a stereo camera and a high-speed, high-precision
semantic segmentation model. With the proposed system, authors could estimate relative
speeds by measuring changes in distance and time differences between frames. The
proposed approach adds value due to its segmentation methodology, which captures
more information than the one-stage object detectors. In similar research [18], the authors
developed an experimental setup with small vehicles to test the accuracy of a preexisting
model that estimates vehicle speeds. The speed calculations are validated by comparing the
measurements obtained with the reference measurements recorded from an infrared sensor.
The experimental results also provided insights to the frame-skipping threshold to reduce
the processing time of the overall footage—a direction toward real-time implementation.
The authors planned to test this system on real vehicular traffic.

Optical occlusions are a barrier to the real-world implementation of vision-based
systems. Hernández Martínez and Fernandez Llorca [19] tried to address this problem by
creating an experimental setup that utilizes multiple cameras positioned at different angles,
coupled with a complex 3D convolutional neural network (CNN) architecture. The study
yielded promising results, paving the way for view-invariant vehicle speed measurement
systems. You Only Look Once (YOLO) is a single-stage object detection algorithm that
has received widespread attention in various fields and holds tremendous potential for
traffic monitoring tasks. In a study by Peruničić and Djukanović [20], the authors used the
YOLOv5 for vehicle detection and tracking, while employing an RNN for speed estimation.
The proposed system achieved an error rate of 4.08 km/h, significantly lower than the
acoustic, sensor-based measurements. The authors further discussed the prospects of
a multimodal system—combining audio and video data to improve accuracy.

Similar to fixed camera systems, researchers have also explored the prospects of com-
bining UAVs with intelligent systems to estimate vehicle tracks and speeds. In a study by
Chen and Zhao [21], the potential of UAVs in RTM systems was explored. The experiment
was conducted by collecting and analyzing traffic footage taken from varying altitudes
and resolutions and implementing a YOLO architecture for detection and tracking. The
study also discusses the limitations faced by nonstationary camera systems, which includes
camera calibration resulting in inconsistencies in speed estimations. The proposed method
achieved an accuracy of 1.1 km/h, which is remarkable but, like other research works, is
implemented only on a stationary camera or UAV. To develop a practically viable, vision-
based RTM system, scientists have been exploring the right balance between accuracy
and computational efficiency. The available edge computing systems can offer scalability,
but the major challenge is developing a system that is accurate and fast enough to enable
real-time or at least near-real-time processing. This challenge is discussed in detail by
Tran and Pham [15], utilizing 20 single camera views and a lightweight deep learning
architecture coupled with edge computing devices. The authors utilized a fixed camera
setup coupled with different edge devices including Nvidia Jetson TX2, Nvidia Xavier NX,
and Nvidia AGX Xavier. The proposed method is effective despite some limitations, e.g.,
detection accuracy, optical occlusions caused by nearby reflective surfaces, and inherent
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real-world implementation challenges. Similarly, the modularity of UAVs has enabled
scientists to mount edge computing systems on drone systems. One of these experiments
includes a DJI Phantom 3 retrofitted with an NVIDIA Xavier NX system under the moniker
of a “MultEYE” system designed especially for real-time vehicle detection, tracking, and
speed estimation. The system consists of a YOLOv4 detector coupled with a minimum
output sum of squared error (MOSSE) tracker. To estimate the vehicle speed, the onboard
system calculated ground sampling distances by taking the camera’s UAV altitude, pixel
width, and focal length. The mean average error observed is remarkably low, with a figure
of 1.13 km/h.

UAVs have the potential to not only reduce optical occlusions encountered but also
provide an aerial perspective, greater mobility, and freedom for enhanced spatial coverage.
Previous research works exhibit great potential for fixed cameras and hovering UAVs but
lack the practical implementation for moving camera platforms. Our research aims to
devise a solution that works with both stationary and nonstationary aerial footage with
notable accuracy. The developed solution can also log the vehicle trajectories geospatially,
enabling superior analytical capabilities and offering value for intelligent RTM systems.

3. Data and Methods

The proposed methodology enables robust traffic analysis using computer vision
and geospatial data analysis techniques to detect, track, and map objects. It begins with
preparing a video and an orthomosaic reference image. The orthomosaic was developed
using the WebODM (version 2.5.0) application of OpenDroneMap™. The experiment
footage was collected in the daytime with clear sky conditions using a DJI mini 3 pro
(Shenzhen, China) at 4K (3840 × 2160) resolution with a frame rate of 30 FPS. For the
template-matching algorithm to function effectively, conducting the experiment in daylight
is essential. For validation, Pro Laser III speed gun manufactured by Kustom Signals
Inc. (Owensboro, KY, USA) was used. To synchronize the video with the speed gun,
measurements were taken five times (as discussed in Table 3), and parts with speed gun
measurements served as a benchmark for validation. Subsequently, SIFT (scale-invariant
feature transform) is used for feature recognition on the reference image and georeferencing.
The key difference between stationary and moving drone footage lies in the frequency of
the pixel calibration. For stationary drone footage, georeferencing is performed on the
first frame and remains constant throughout the entire video. In contrast, for moving
drone footage, pixel calibration must occur for each frame, because the homography
of the input frames changes with the drone’s movement and variations in altitude. By
replicating the homography of the template image, it is possible to dynamically adjust
the calibration of the cells despite the drone’s movement and shifts in altitude. YOLOv8
model is then applied to detect objects within each video frame. The next crucial step
involves using a transformation matrix to translate pixel-based coordinates into real-world
geographical locations, connecting visual data with physical geography. The method
tracks object movements across frames, logging their geographical positions and other key
parameters, such as ID, class, and frame of appearance, which enables the real-time velocity
measurement. Figure 1 provides a step-by-step illustration of the workflow.

3.1. Automated Georeferencing and Pixel Coordinate Conversion

Reducing the manual intervention of pixel recalibration is important to develop
an automated system. Since the experiment allows for the free movement of UAVs, it
is vital to utilize tools that can enable an automated workflow. This was achieved by creat-
ing an automated georeferencing system based on the scale-invariant feature transform
(SIFT) algorithm developed by Lowe [22]. SIFT works by detecting the most consistent
features between two images that are resilient to rotation, scaling, and lighting variations.
After identifying the most stable key points, a dominant orientation is assigned. Then, it
creates a 128-dimensional descriptor for each key point, capturing detailed information
about local image gradient magnitudes and orientations. A descriptor is formed by divid-
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ing the region around the key point into smaller subregions and creating histograms of
gradient orientations. Using these descriptors, SIFT can identify key points across various
images, facilitating functionalities, such as object detection, merging images, and creating
3D models. In contrast to the other feature-matching algorithms, like SURF and ORB, SIFT
is slower but has superior resilience to variation in pixel intensities, making it ideal for
applications with temporal variations, like georeferencing [23].

 

Figure 1. Showcases the methodological framework of the study.

An orthomosaic template image was created to project geographical space onto the
input footage using a DJI mini 3 pro drone flying at 90 m, equipped with a 48-megapixel
camera set at an angle of 90 degrees. A visual line of sight was maintained throughout
the flight, and several images were taken to generate orthomosaics over a larger area.
The image was then georeferenced using the WebODM application of OpenDroneMap,
and an orthomosaic was constructed with a UTM projection system. This georeferenced
image acted as a template to automatically transfer geographical coordinates onto each
frame. The process involved identifying the matching features between a template image
and the input frame and then georeferencing the input image based on the matching
key points (as illustrated in Figure 2). For the quality assurance of descriptors, Lowe’s
ratio test was employed, and only the matches passing the criteria were used for the
homography calculation [24]. The root mean square error (RMSE) threshold was also
enforced as an additional check, and frames with a higher RMSE were discarded [25].

tt

 
 

 
 
 
 
 
 
 
 
 

 
 

Figure 2. Feature-matching algorithm SIFT applied to input and template image. The highlighted

markers depict the key points matched between the two images.
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3.2. Vehicle Detection and Tracking

The YOLO algorithm is a significant advancement in real-time object detection, in-
troducing the concept of single-stage detection. It works by dividing the input image
into a grid and predicting both bounding boxes and class probabilities from each cell.
This unique grid-based approach enables YOLO to perform predictions swiftly, making
it an ideal choice for real-time applications, especially on UAV platforms with limited re-
sources [26]. Over time, YOLO has undergone several improvements (discussed in Table 2),
resulting in various versions, with each iteration delivering noteworthy improvements in
both accuracy and speed. The 8th generation YOLO architecture has gained widespread
attention due to its improved identification capabilities and has been widely tested in sev-
eral scenarios by academia and industry. The decision to use YOLOv8 over its subsequent
iterations, like the 10th generation YOLO architecture, was also motivated by the superior
performance it exhibited in previous research works in detecting larger vehicle classes, such
as cars, vans, and trucks. This contrasts with the 10th generation YOLO, which exhibits
improved detection capabilities for smaller objects [27].

YOLOv8, by default, utilizes Bot-SORT for object tracking, which possesses the ability
to reidentify objects even if they temporarily disappear, ensuring continuous and accurate
object tracking, which is crucial for applications requiring uninterrupted tracking of objects
over time [28,29]. The multiobject tracking algorithm enables the proposed workflow to
record the speeds of multiple vehicles simultaneously.

Table 2. The evolution of the You Only Look Once (YOLO) algorithm over the years [30,31].

Version Year of Release Strengths and New Features

YOLOv1 2015
- Real-time object detection.
- Regression-based approach for bounding box and class

probability prediction.

YOLOv2 2016 - Batch normalization and anchor boxes.

YOLOv3 2018
- More efficient backbone network and spatial

pyramid pooling.

YOLOv4 2020
- Enhanced with mosaic data augmentation and

other upgrades.

YOLOv5 2020
- Hyperparameter optimization and

improved performance.

YOLOv6 2022 - Popular for Meituan’s delivery robots.

YOLOv7 2022 - Introduced pose estimation capabilities.

YOLOv8 2023
- Quick feature fusion.
- Improved object identification

YOLOv9 2024
- Introduces innovative methods like programmable

gradient information and generalized efficient layer
aggregation network (GLEAN).

YOLOv10 2024
- IOU-free inference.
- Enhanced inference speed.

In the proposed study, the YOLOv8 model was trained on the VisDrone2019-DET
dataset with average precision AP@0.5 of 64% for the class of interest; cars, which is suffi-
cient for the experiment as the vehicle used for speed measurement remained consistently
detected and tracked throughout the input footage. The VisDrone dataset is specifically
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designed for object detection in aerial images [21]. The standard Bot-SORT tracker was
utilized for object tracking. To prevent overestimations of bounding boxes and the double
detection of vehicles close to each other, the intersection over union (IoU) threshold was
set to 0.3. This threshold was determined to be sufficient, considering the controlled traf-
fic in the experimental footage. Detection and tracking accuracy are crucial for accurate
trajectory extraction. Tracking inaccuracies can introduce noise into vehicle trajectories
and consequently impact the speed measurements. However, this noise can be filtered
out by implementing a low-pass filter, such as the exponential moving average (EMA)
(further discussed in the Section 4). For geospatial trajectory mapping, the vehicle tracks
were identified, and the pixel coordinates were converted into corresponding geographical
coordinates using a transformation matrix obtained by implementing the automatic georef-
erencing workflow using SIFT. The geographical coordinates of tracks across each frame
were stored along with other relevant information, including the frame number, distance
traveled, track ID, and class ID, in JSON format. The vehicle velocities were calculated and
compared with observations taken from a speed gun using the logged information from
the object tracking.

4. Results and Discussion

The experimental results were evaluated based on the speed and positional accuracy
of the vehicle tracks by drawing comparisons against the LiDAR-based speed gun measure-
ments and manually drawn vector maps. Speed measurements were conducted under three
conditions: a stationary drone, a drone moving at 5 m/s while following the vehicle track,
and a drone moving at 10 m/s. The findings indicated that vehicle velocities estimated
from the stationary drone had the highest accuracy, exhibiting a minimal absolute error
of 0.53 m/s (as discussed in Table 3). However, this error increased as the drone’s speed
increased. Notably, at higher drone speeds, some discrepancies within the footage were
observed. These discrepancies can be attributed to factors such as the increased drone
speed, varying wind conditions, and the inherent limitations of gimbal stabilization sys-
tems. To address these challenges and improve data quality, we propose adjustments, such
as modifying the drone’s altitude to cover a broader area and optimizing the UAV’s speed.
These adjustments are expected to enhance the accuracy of vehicle speed estimations under
varying operational conditions.

Table 3. The velocity measurements obtained from this workflow with measurements taken from

speed guns at various UAV altitudes and speeds.

#
Speed Gun

(km/h)
Proposed Method

(km/h)
Absolute

Error
UAV

Altitude (m)
UAV Speed

(m/s)

1 26 25.47 0.53 65 -
2 26 25.18 0.82 65 5
3 30 29.44 0.55 65 5
4 34 33.33 0.67 65 5
5 35 37.5 2.5 50 10

The second challenge of this proposed method is the presence of jumpy vehicle tracks,
mainly due to changing inference confidence and the proximity of the detected vehicles. In
the case of stationary drone footage, a low-pass filter using exponential moving averages
(EMA) was implemented on the centroidal coordinates of the vehicle tracks to stabilize the
recorded velocities. EMA stabilizes the abrupt changes in the initial positions reducing
fluctuations in velocity estimates. EMA is applied to vehicle positions to ensure the vehicle
tracks are smooth and representative of the real-world situation. The smoothing factor α
was set to 0.1, significantly dampening fluctuations within the vehicle tracks. A higher α
becomes more sensitive to fluctuation and increases variability, as shown in Figure 3.
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α
α

 

ff

α

α

Figure 3. Comparison of noisy and EMA-filtered trajectories with different alpha values.

After applying the exponential moving average (EMA), the positioning of the vehicle
tracks aligns consistently with the actual vehicle movements, resulting in more stabilized
velocity measurements. Initial velocity measurements are closer to zero, because the filter
is applied directly to the positions instead of velocity measurements; therefore, it requires
the first few positions to identify movement. This delay can be reduced by increasing the α

but could lead to increased variability in the velocity measurements. Figure 4 shows the
original tracks in yellow and the corrected tracks in red after EMA application with α = 0.1.
Resultingly, the vehicle velocity measurements were also stabilized (illustrated in Figure 5).

α
α

ff

α

α

Figure 4. The mapped vehicle trajectories before and after EMA application.

Correcting the vehicle tracks in the stationary drone footage is straightforward. How-
ever, tracking vehicles in moving drone footage presents greater challenges, as the drone’s
movement introduces additional motion, affecting both stationary and moving objects (as
shown in Figure 6). In these instances, a more rigorous approach is necessary for effectively
removing noise from vehicle tracks.
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α

ff
ff

Ref Measurement: 26 km/h Ref Measurement: 26 km/h 

Figure 5. The fluctuations in velocity (in km/h) over time (in seconds) and the removal of errors

using an EMA-based low-pass filter (α = 0.1). The single-point reference speed measured by the

speed gun was 26 km/h.

α

ff
ff

 

Ref Measurement: 26 km/h Ref Measurement: 26 km/h 

Figure 6. The pseudo tracks generated by the object tracking algorithm due to UAV movement.

The added movements, along with georeferencing errors, can notably influence the
precision of the vehicle tracks, potentially leading to exaggerated velocity measurements
(see Figure 7). This problem is not resolved with a low-pass filter. Instead, a distance-
based movement threshold was implemented to decrease positional inaccuracies and,
consequently, refine the velocity measurements. While this approach does introduce
a certain level of discretization in the output, it is a solution aimed at enhancing the overall
accuracy of vehicle tracking in nonstationary UAV footage. This limitation, however, also
opens up a valuable opportunity for further research. It highlights the need for innovative
solutions that can improve the positional accuracies in nonstationary UAV footage without
the discretization of valuable information.

In the absence of a reference vehicle position, the buffer overlay method can be used
to measure the accuracy of mapped vehicle trajectories. A vector path of the actual vehicle
path was drawn manually, considering the target vehicle’s position with respect to time,
and a buffer of 1 m was constructed (illustrated in Figure 8). Then, the tracks generated by
the proposed method were compared with the ground-truthing buffer, calculating the total
length inside the buffer.
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ff

ff
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ff

Ref Measurement: 26 km/h Ref Measurement: 26 km/h 

Figure 7. Extreme velocity (km/h) over time (s) with fluctuation resulting from pseudo tracks and

their removal from the distance-based movement threshold (after introducing the distance threshold,

the first measurement starts at 4.3 s). The single-point reference speed measured by the speed gun

was 26 km/h.

ff

ff
ff

ff

(a) 

(b) 

Ref Measurement: 26 km/h Ref Measurement: 26 km/h 

Figure 8. The method used for determining the positional accuracies of vehicle tracks on (a) tracks

from stationary drone footage and (b) tracks from moving drone footage.

In the comparative analysis, it was observed that positional accuracies depend on the
speeds of the UAVs. The tracks extracted from nonstationary drone footage were notably
accurate and consistent. However, tracks obtained from nonstationary footage displayed
minor positional inaccuracies, which tended to increase with the optical destabilization
caused by higher UAV speeds. For example, track 09 was 81% inside the 1 m buffer, and
track 13 was 61% inside the buffer, as detailed in Table 4.
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Table 4. Comparative analysis of the positional accuracy of the vehicle tracks in three different

drone settings.

Track Setting
UAV Speed

(m/s)
Track Length

(m)
Track Length (m)
(Inside Buffer) *

02 Stationary - 52 52
09 Nonstationary 05 93 76
13 Nonstationary 10 128 78

* Ground truthing buffer has a width of 1 m. Higher buffer widths are attributed to relaxation in the
evaluation criterion.

The computational expense of processing nonstationary drone footage is a significant
limitation. On a system with an Intel® Core™ i9-9900 CPU @ 3.60 GHz and 64 GB RAM,
the average processing time for nonstationary drone footage was 63 s per frame, compared
with just 0.42 s for stationary drone footage. The longer processing time for nonstationary
footage is due to the computationally expensive SIFT application for each frame. However,
this can be reduced by 8% through the use of precalculated key points and descriptors.
Georeferencing also causes errors, resulting in jumpy locations across frames, requiring
aggressive noise removal methods, such as movement threshold. Nonetheless, the proposed
system can accurately estimate vehicle speed and position. Future research will be focused
on computational optimization techniques and innovative data-denoising methods for
improving output quality in nonstationary drone footage.

5. Conclusions

This study demonstrates the potential of combining artificial intelligence (AI) and
unmanned aerial vehicles (UAVs) to improve road traffic monitoring systems, specifically in
estimating vehicle speed and trajectory—a novel method using advanced feature matching
and deep learning techniques alongside UAV technology. The experimental findings
confirm that UAV-based systems equipped with AI can overcome many limitations of
existing RTM systems and provide more accurate speed measurements compared with
point-based estimations. The proposed system offers near-real-time speed when applied to
stationary drone footage; although, there is a trade-off in processing speed with dynamic
drone footage. Improving the processing speed could make the system more scalable in all
cases. Drones’ ability to provide a mobile aerial perspective adds a valuable dimension to
traffic analysis, offering more comprehensive coverage and detail. Moreover, the use of
AI for automating vehicle detection and tracking has been shown to reduce the need for
manual intervention, making the process more efficient and accurate. This advancement
is crucial for practically feasible RTM systems, where swift and accurate data analysis
and insights are essential. Despite the promising results, the study acknowledges the
inherent challenges of developing a system that is both efficient and fully adaptable to
real-world conditions. UAV-based operations are only feasible during clear daylight hours
and cannot be conducted at night or in extreme weather situations. Additionally, the
range limitations of drones and battery life restrict perpetual flight, meaning this system
should be viewed as a supplementary solution to ground-based, fixed camera systems.
The aerial perspective provided by drones offers significant advantages, such as covering
larger areas and enhanced maneuverability. Integrating a UAV-based RTM system can
yield substantial benefits. Given the accuracy of the measurements that the system can
provide, it adds considerable value. This method is particularly useful for short-term traffic
monitoring in potential conflict zones and helping to understand road user behavior. By
analyzing this behavior from an aerial perspective, life-saving safety interventions can
be implemented; however, environmental factors, such as bird migration routes, must be
considered during aerial surveillance. Future research will focus on refining this system by
incorporating multisource data, including ground and aerial surveillance footage, for more
comprehensive analysis. Furthermore, efforts will be made to enhance processing speeds
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and to implement methods that prevent data loss caused by the current error removal
techniques used in nonstationary drone experiments.

In conclusion, this work demonstrates the significant advantages of using UAVs and
AI in road traffic monitoring, representing a step forward in the pursuit of safe and efficient
transportation systems. As technology advances, integrating these smart systems holds
the promise of revolutionizing how we understand and manage road traffic, ultimately
contributing to better, more responsive urban environments.
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