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ABSTRACT. Trace fossils preserved with fossil worm-shaped remains suggest the presence of free-living flat-
worms during the Ordovician at the latest and their occurrence in terrestrial environments during the Permian. 
The presence of hooks associated with acanthodian and placoderm fishes indicates the existence of parasitic 
monopisthocotyleans, with a simple life cycle, during the Devonian. The presence of eggs in shark coprolites 
suggests the occurrence of eucestode tapeworms, with complex life cycles, during the Permian, possibly even 
earlier in the Carboniferous. Fossil evidence for trematode flatworms, also with complex life cycles, is more 
recent, including diverse findings associated with bivalves, lizards, and coprolites of archosaurs in terrestrial 
environments between 126 and 76 Ma in the Cretaceous. Convincing evidence for gymnophallid trematodes in 
marine environments appears in the Eocene, with an earlier occurrence in Cretaceous freshwater environments. 
This chronological pattern of first appearance (Turbellarians > Monopisthocotylea > Cestoda > Trematoda) 
is surprisingly concordant with some recent molecular phylogenetic analyses. Further evidence to test these 
hypotheses could be obtained by conducting systematic screenings for resistant remains of platyhelminths 
such as hooks and eggs as well as characteristic traces such as trails or shell concretions preserved with their 
producers. Additional study and scrutiny are particularly needed for trace fossils attributed to free-living flat-
worms that are not associated with their producers. We make recommendations on how different constraints 
on flatworm evolution can be interpreted and used in future studies.
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INTRODUCTION

Flatworms are a diverse group of invertebrate animals 
with over 30000 described extant species (Caira and Little-
wood 2013). Although most described flatworm species 
that exist today are members of the obligately parasitic 
Neodermata, the ancestral flatworm is inferred to have 

been free-living. All current free-living flatworms are con-
tained within the paraphyletic “Turbellaria” (Collins 2017). 
The reported species numbers likely underestimate the 
diversity of both free-living and parasitic flatworms (Poulin 
and Morand 2000, Dobson et al. 2008, Curini-Galletti et al. 
2020). Platyhelminths are of extreme societal and scientific 
importance as model organisms for the study of regenera
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tion (Collins 2017, Vila-Farré et al. 2023), and because of 
their relevance for biomedicine and veterinary sciences as 
well as for conservation and evolutionary biology (Solà et 
al. 2015, Sluys 2019, van Straalen 2021, Mulvey et al. 2022).

The simple body plan of platyhelminths and their 
estimated phylogenetic position nested within Spiralia and 
Lophotrochozoa (Marlétaz et al. 2019) suggest that they are 
an ancient group of organisms. There has been considerable 
interest in what the ancestral flatworm might have looked 
like from both a neontological (Littlewood and Bray 2001, 
Baguñà and Riutort 2004b, Goodheart et al. 2023) and a 
paleontological perspective (De Baets et al. 2015, Budd 
and Jackson 2016, Tang et al. 2021); however, there is little 
doubt that it must have been free-living with a simple life 
cycle rather than a parasitic form with a complex life cycle.

Given their soft-bodied nature, comparatively small 
size and presence in habitats which hamper fossilization, 
it is not surprising that the flatworm fossil record is patchy 
and remains understudied (Kowalewski 1997, De Baets et 
al. 2021b, Littlewood and Donovan 2003). Only planarian 
tricladids, polyclads and neodermatans are among the flat-
worms to exhibit larger (> 1–2 mm) body sizes. All the other 
groups are collectively called “microturbellarians”, reflecting 
their microscopic size and plesiomorphic adaptations to 
interstitial habitats (Laumer et al. 2015). Nevertheless, the 
latest reviews on the fossil record of platyhelminths show 
a better record than commonly assumed for neodermatan 
parasites (De Baets et al. 2015), resistant eggs of free-living 
rhabdocoels (Matsuoka and Ando 2021) or helminths more 
generally (De Baets et al. 2021a). Other sources reviewing 
the fossil record are over twenty years old (Poinar 2003). 
Currently available data suggest that several lineages are 
traceable to the Paleozoic based on trace fossils as well as 
resistant eggs and hooks (De Baets et al. 2015, 2021a).

Flatworms now exclude (xen)acoelomorphs (Ruiz-Tril-
lo et al. 1999, Philippe et al. 2007, 2011). They consist of 
a monophyletic grouping of two clades, Catenulida and 
Rhabditophora, which are well-supported by molecular 
data (Egger et al. 2015, Laumer et al. 2015, Littlewood and 
Waeschenbach 2015). The sister groups Catenulida and 
Rhabditophora are each morphologically well-defined, but 
do not seem to share any known morphological apomor-
phies (Smith et al. 1986, Hooge 2001, Baguñà and Riutort 
2004a, Larsson and Jondelius 2008). Although considerable 
progress has been made in the last decade, the internal 
phylogenetic relationships of Platyhelminthes are not yet 
fully resolved (Hahn et al. 2014, Egger et al. 2015, Laumer 
et al. 2015, Littlewood and Waeschenbach 2015, Kenny et al. 

2019, Brabec et al. 2023, Caña-Bozada et al. 2023). Internal 
relationships are important for understanding constraints 
on the evolution of life history strategies and habitat shifts. 
Multiple flatworm lineages, including several turbellarian 
groups, developed symbiotic relationships (Jennings 1971, 
1997, Rohde, 1997, Hoyal Cuthill et al. 2016, Blair et al. 2023), 
with at least nine inferred independent origins of parasitic 
relationships (Weinstein and Kuris 2016).

The relationships within the monophyletic Neoderma-
ta remain a particularly recalcitrant issue (Littlewood and 
Bray 2001, Littlewood 2006). Recent molecular phylogenetic 
analyses suggest a single origin of a parasitic lifestyle, with 
free-living Bothrioplanida as the closest relatives of the Neo-
dermata (Egger et al. 2015, Laumer et al. 2015, Littlewood and 
Waeschenbach 2015). A previous popular hypothesis was that 
the initial appearance of ectoparasites with a simple life cycle 
was followed by the common origin of complex life cycles of 
trematodes and cestodes (Lockyer et al. 2003, Park et al. 2007, 
Hahn et al. 2014). Newer analyses question this hypothesis 
and find support for a scenario in which neodermatan lin-
eages with a simple life cycle are not monophyletic (Justine 
1998) and in which transitions between ectoparasitism with 
a simple life cycle and endoparasitism with a complex life 
cycle might have happened more than once (Brabec et al. 
2023, Caña-Bozada et al. 2023, Zhang et al. 2024).

Another vexing issue is the scarcity of body fossils that 
can confidently be attributed to free-living turbellarians 
relative to members of Neodermata (De Baets et al. 2015). 
While relationships between some lineages of free-living 
flatworms are still debated, molecular phylogenetic ana
lyses clearly suggest that free-living forms appeared before 
parasitic forms. Molecular phylogenetic analyses have also 
contributed to our understanding of habitat transitions 
between marine, freshwater, and (limno)terrestrial environ-
ments or of dispersal across environments (Van Steenkiste 
et al. 2013, Sluys 2019, van Straalen 2021, Okamura et al. 
2022) in both turbellarians (Álvarez-Presas et al. 2008, Riu-
tort et al. 2012, Benítez-Álvarez et al. 2020, Solà et al. 2022) 
and neodermatans (Badets et al. 2011, Brabec et al. 2015, 
Achatz et al. 2019, Fraija-Fernandez et al. 2021). While it is 
yet to be determined if the fossil record can provide suitable 
constraints on the age of all these transitions, such records 
would be the only direct evidence for the presence of flat-
worms in particular habitats at particular times (De Baets 
and Littlewood 2015). If no direct evidence is available for 
particular groups of platyhelminths, the fossil record of their 
close relatives could at least provide temporal constraints in 
other parts of the platyhelminth tree which might help to 
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constrain the timing of these transitions. The fossil record 
of flatworms is often considered inappropriate for this task 
or deemed to be non-existent, but this is not entirely true – 
particularly when considering characteristic eggs and trace 
fossils associated with the remains of bodies of platyhel-
minths. The fossil record of helminth eggs can be at least as 
good as independently calibrated molecular divergence time 
estimates in eucestode tapeworms (De Baets et al. 2021a).

Here we review the fossil record and archeological 
finds of representatives of Platyhelminthes with a partic-
ular reference to constraining the earliest appearance of 
particular clades or the colonization of particular habitats 
or regions. We also evaluate how these fossil constraints on 
their evolution align with current phylogenetic hypotheses 
(Brabec et al. 2023) and make suggestions on the most fruit-
ful directions to expand the application of fossils constraints 
when investigating flatworm evolution.

MATERIAL AND METHODS

We re-evaluated previously published findings includ-
ing those listed in review articles (Poinar 2003, Gonçalves et 
al. 2003, Sianto et al. 2009 De Baets et al. 2015, 2021a, Ledger 
and Mitchell 2022). We also searched for new publications 
using Google Scholar and Web of Science with combinations 
of the keywords “fossil”, “flatworm” or “Platyhelminthes” 
and/or “paleoparasitology”. Only peer-reviewed articles, 
book chapters or review articles and additional references 
included in these sources were considered. To support our 
re-evaluations, we also sought references citing the original 
publications in Google Scholar containing expert opinions 
confirming or disagreeing with particular assignments.

RESULTS

Turbellarians

Multiple isolated body fossils have been attributed to 
tricladid or rhabdocoel turbellarians ranging from the Pre-
cambrian to the Quaternary. The oldest report of putative 
free-living flatworm fossils derives from the Precambrian 
(Allison 1975), although both the age and affinity of this 
specimen (Cloud et al. 1976, Eberlein and Lanphere 1988, 
Tweet et al. 2023) is questionable. We therefore advise against 
using this specimen to confidently constrain the presence of 
free-living flatworms.

Tang et al. (2021) compared the enigmatic ribbon-like 
fossil Rugosusivitta to flatworms, but they could not unequi
vocally assign it to Platyhelminthes. Peculiarly, although 

Tang et al. (2021) highlighted its larger size and obviously 
free-living mode of life, they compared it with derived 
parasitic tapeworms rather than their free-living relatives.

Poinar (2003, 2004) described an inclusion in Eocene 
Baltic amber as Micropalaeosoma balticus (Poinar, 2003) and 
interpreted it to be a rhabdocoel of the now defunct order 
Typhloplanoida and this finding was accepted by multiple 
authors (Knaust 2010, Van Steenkiste et al. 2010, De Baets et 
al. 2015, 2021a, Vila-Farré and Rink 2018, Worsaae et al. 2023). 
However, this amber inclusion has been plausibly re-inter-
preted as a pseudo inclusion by Szadziewski et al. (2018) 
making this taxon invalid. These authors reinterpreted the 
flatworm body with putative eggs as likely air bubbles on the 
surface of a 1.5 mm long ellipsoidal dent. This is in line with 
the lack of a digestive tract and its unnatural transparent 
preservation. As such, we suggest to not use this specimen 
as a calibration point.

The second-oldest report of body fossils from the 
Cenozoic attributed to free-living rhabdocoels and triclads 
are silicified remains from Miocene calcareous petroliferous 
nodules from a former lake environment in the Calico Moun-
tains in California (Pierce 1960). These findings also need 
further scrutiny as the original publication only contains 
interpretative drawings and no photographs of the original 
specimens to corroborate these claims.

The oldest direct records that can be confidently at-
tributed to free-living rhabdocoels are therefore eggs report-
ed from Pleistocene to Holocene lake and sea deposits (Frey 
1964, Harmsworth 1968, Kadota 1973, Van Geel et al. 1980, 
Haas 1996, Cocker et al. 2021, Matsuoka and Ando 2021). 
They are reminiscent of eggs of members of the rhabdocoel 
families Dalyelliidae, Polycystididae and Typhloplanidae 
(Matsuoka and Ando 2021). The oldest rhabdocoel eggs 
described so far derive from the Middle Pleistocene (250000 

yrs BP [years Before Present]) of Lake Biwa in Japan (Kadota 
1973). These eggs are of the Gyratrix-type and thus indicative 
of the presence of members of Polycystididae (Matsuoka 
and Ando 2021). Modern rhabdocoel representatives of the 
endosymbiotic Umagillidae and ectosymbiotic Temnocepha-
lidae (Matsuoka and Ando 2021) as well as representatives 
of Tricladida (Kakui and Tsuyuki 2024) also produce charac-
teristic egg capsules which could in principle be recovered 
from the sediment but are yet to be reported from the fossil 
record. Symbiotic fecampiids produce flash-shaped to long, 
tubular and spiral cocoons which typically contain two egg 
capsules attached to their hosts (mostly crustaceans) or hard 
marine substrates (e.g., rocks, wood, coral, rhizomes), but 
only modern specimens have been recovered so far (Handl 
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and Bouchet 2007). As the exceptionally preserved body 
fossil record cannot be confidently identified before the 
Quaternary, there is a need to investigate the trace fossil 
record attributed to turbellarians (Fig. 1), particularly those 
associated with putative worm-like body fossils.

Knaust and colleagues recently attributed various trails 
to flatworm producers from the Ordovician (Knaust and 
Desrochers 2019) and the Triassic (Knaust 2010, 2021, Knaust 
and Costamagna 2012) which in some cases are still associated 
with a putative, but poorly preserved vermiform body outline. 
The latter are mostly preserved as calcitic casts of moulds 
but sometimes contain limonite mineralization around it, 
interpreted to represent a multilayered and complex body 
wall. In the best-preserved samples, the limonitic putative 
body wall is broken up by interpreted intercellular spaces 
and vacuoles filled by calcite. Some specimens are associated 
with complex calcareous spicules reminiscent of the spicular 
skeletons originating from the basal membrane known from 
modern marine rhabdocoel turbellarians such as Florianella 
and Bertiliella (Rieger and Sterrer 1975, Tyler and Hooge 
2004). Superficially reminiscent spicules or small granular or 
crystalline bodies are known from most other flatworm orders 
as well as from other phyla including Xenacoelomorpha and 
Nemertea, but their composition, morphology, size and/or 
position seem to differ (Rieger and Sterrer 1975).

Various types of traces have been attributed to free-liv-
ing flatworms (Knaust 2021), but only two types of traces 
(Fig. 1A, C) have clear modern analogues (Alessandrello et 
al. 1988, Knaust 2010). Horizontal creeping trails produced 
by minute vermiform organisms moving mucociliarily on 
or just beneath the seafloor were investigated by Collins et 
al. (2000). It might be difficult to unequivocally assign the 
mucociliary trails to particular lineages, but the size and mor-
phology of associated worm-like body casts have been used 
to justify their assignment to platyhelminth orders or at least 
the phylum Platyhelminthes as opposed to other phyla or 
groups (Nemertea, sipunculid Annelida, Xenacoelomorpha). 
Such mucociliary trails from the Triassic were attributed to 
polyclads (Knaust 2010) based on their similarity to traces 
(Fig. 1A) produced by modern polyclad flatworms (Collins et 
al. 2000) as well the presence of spicules and vacuoles in the 
inferred body wall in associated putative body fossils. The 
size and appearance of the casts were used to assign similar 
traces from the Ordovician to free-living flatworms (Knaust 
and Desrochers 2019). Other traces at the Ordovician site 
have been attributed to members of Nemertea and Acoelo-
morpha based on their association with putative vermiform 
body fossils with different morphologies. The putative fossil 

nemerteans are more robust and elongate than turbellarians 
and display a pointed to rounded anterior end with structures 
consistent with the rhynchocoel, a fluid-filled coelomic cavity 
containing the proboscis, as well as a pointed anus indicative 
of a complete digestive system. The putative acoelomorph 
fossils have a flatter and rounder (discoidal) shape, which 
is consistent with the lack of a body cavity. A putative dark 
spot can be interpreted as a statocyst. Although they are no 
longer considered to belong to Platyhelminthes (Ruiz-Trillo 
et al. 1999, Baguñà and Riutort 2004), acoelomorphs share 
some characteristics with members of Nemertea and Platy-
helminthes, including a ciliated epidermis, the presence of a 
statocyst, and a meiofaunal mode of life.

Age: The oldest marine trails associated with body 
fossils attributed to turbellarians derive from the Vauréal For-
mation of Anticosti Island, Canada (Knaust and Desrochers 
2019). The studied units are assigned to the Katian allowing to 
assign an age at least as old as 445.2 ± 0.9 Ma (Mega-annum, 
i.e. unit of time equal to one million [106] years) according to 
GTS 2020 (Goldman et al. 2020).

Terricolichnus permicus Alessandrello, Pinna & Terruzi, 
1988 trails from Permian and Terricolichnus sp. from the Trias-
sic (Knaust 2010) have been attributed to planarian tricladids. 
They consist of a linear sequence of irregularly curved minute 
trails with impressions 0.5–1.0 mm long, 0.1 mm wide and 
in intervals of about 0.5–1.0 mm (Alessandrello et al. 1988, 
Knaust 2010). They are a few millimeters in length, straight to 
irregularly curved and often characterized by abrupt changes 
in directions consistent with the locomotion of peristaltic 
waves produced by myopodia going backward (Fig. 1B) to 
the direction of movement (Alessandrello et al. 1988) known 
from modern planarians (Pantin 1950, Froehlich 1955, Jones 
1978, Minelli 1981). These traces from the Triassic (Knaust 
2010) are sometimes associated with tiny sulphide aggregates 
interpreted as their producer’s imprint, but the nature of these 
remains reveal no further anatomical details. The assignment 
of these traces to Tricladida seems reasonable based on our 
current state of knowledge, although experimental taphon-
omy might be needed for a more precise assignment and for 
better understanding the preservation mode of those traces. If 
the assignment is correct, it constrains terrestrial planarians as 
present by the Early Permian. The assignment of these traces 
to land planarians has been criticized by Ogren et al. (1999) 
who argued that (i) mucus trails cannot be preserved in the 
fossil record (although the opposite has been demonstrated; 
compare Collins et al. 2000) and that (ii) tracks resemble 
pressed tracks left by other animals with a higher body weight 
than land planarians. The more general argument that the 

K. De Baets et al.

ZOOLOGIA 41: e24002 | https://doi.org/10.1590/S1984-4689.v41.e24002 | November 29, 20244 / 27



Figure 1. Examples of characteristic traces or structures attributed to representatives of Platyhelminthes which can be 
preserved in the fossil record. (A) Modern marine polyclad producing a mucociliary trail (drawing based on Collins et al. 
2000); (B) Modern planarian producing a mucociliary trail (drawing based on Pantin 1950); (C) Circlet of hooks attributed 
to monopisthocotylean neodermatans associated with Devonian gnathostome fish (drawing based on Upeniece 2001); 
(D–F) Igloo-shaped concretions attributed to gymnophallid trematodes in a fossil bivalve (drawing based on Rogers et al. 
2018) and a  modern bivalve (drawing based on Ituarte et al. 2005); (G, H) eggs attributed to eucestode neodermatans in a 
Permian coprolite (drawings based on Dentzien-Dias et al. 2013). Scale bars: A = 5.0 mm, D = 0.5 mm, G = 1.0 mm, H = 50 μm.
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tracks were produced by other mucus-ciliary movements 
is harder to dismiss (Collins et al. 2000, Ogren et al. 1999). 
Similar traces have occasionally also been attributed to or 
compared with arthropod tracks (Buatois et al. 2017, Ronchi 
and Santi 2003). The Permian and Triassic trails assigned to 
T. permicus are remarkably similar to observations (Fig. 1B) 
of modern planarian triclads of Rhynchodemus (Pantin 1950) 
and Microplana (Minelli 1981). Given the peculiarities of their 
movement, a triclad nature of these trails seems most likely.

Age: The oldest trails of T. permicus were found on a 
grey-green siltstone slab from the Lower Permian of Pre-Alps 
in Lombardy and interpreted to be produced by land planari-
ans (Alessandrello et al. 1988). The siltstone slab was initially 
attributed to the Collio Formation which is now bounded 
by radiometric ages yielding a minimum age of 279.8 ± 1.1 
Ma for these traces (Marchetti et al. 2015a, Schaltegger and 
Brack 2007). However, the holotype of T. permicus derives 
from the former Orobic Collio Formation in the Scioc valley 
(Ronchi and Santi 2003) and these units are now assigned 
to the Pizzo del Diavolo Formation considered to be of 
Kungurian age (Marchetti et al. 2015b). As the precise po-
sition within the Pizzo del Diavolo Formation is unknown, 
we suggest using the conservative minimum age of the top 
of the Kungurian, which is 274.4 ± 0.4 Ma according to GTS 
2020 (Henderson et al. 2020).

Older trace fossils, such as Curvolithus from the Pre-
cambrian and Cambrian (Webby 1970, Buatois et al. 1998, 
Seilacher et al. 2003, 2005), have been suggested to be 
produced by larger free-living flatworms. However, they 
lack association with putative body fossils, have no obvious 
modern analogue, and are also not consistent with the sup-
posedly small size of early branching lineages of modern 
free-living flatworms (Laumer and Giribet 2014, Laumer et 
al. 2015). Such traces could have been produced by a variety 
of infaunal carnivores including gastropod molluscs and ne-
merteans in addition to free-living flatworms (Buatois et al. 
1998, Baucon et al. 2015). Additional constraints are needed 
to confidently attribute these Precambrian to Cambrian 
trails and other ichnofossils, particularly those not found 
in association with body fossils, to a flatworm producer and 
they should therefore not be used to constrain the flatworm 
molecular clock divergence time estimates.

Neodermata

Counterintuitively, the fossil record of derived para-
sitic neodermatans is more diverse and older (De Baets et 
al. 2015, 2021a) than those of their turbellarian relatives 
(compare Table 1, Figs 1, 2), which relates to their record of 

resistant eggs, hooks and pathologies preserved with their 
skeletonized hosts.

Upeniece and colleagues described over 69 circlets of 
hooks, at least 29 still associated with placoderms and ac-
anthodian fishes (Upeniece 2001, 2011, De Baets et al. 2015, 
2021a, Leung 2017, 2021), which were considered the earliest 
record of ectoparasitic neodermatans with a simple life cycle. 
No formal phylogenetic analyses were performed, but their 
circular arrangement of the bilateral symmetric hooks (Fig. 
1C), traces of cuticular discs, their position as well as the 
maximum number of associations of up to 16 hooks speak 
for their assignment to Monopisthocotylea. So far, no addi-
tional reports of hooks attributable to Monopisthocotylea 
have been published, which could relate to the exceptional 
preservation, preparation biases and/or a lack of interest. 
Cuticular hooks attributable to cestodes – their potential 
sister lineage (Brabec et al. 2023) – have been interpreted as 
present in a tapeworm egg containing a putative developing 
larva in a proglottid (Dentzien-Dias et al. 2013, De Baets et 
al. 2015, 2021a).

Age: The circlets of hooks attributable to Monopist-
hocotylea derive from the Lode Formation which was tra-
ditionally assigned to the early Frasnian (Upeniece 2001). 
However, the Lode Formation is currently assigned to the 
Upper Givetian. This corresponds to 378.9 ± 1.2 Ma which is 
the minimum age assigned to the Givetian-Frasnian bound-
ary according to GTS 2020 (Becker et al. 2020).

Tapeworm eggs have few defining characters and could 
potentially be confused with those of other helminths (Zan-
gerl and Case 1976). In the Permian, the assignment of eggs 
associated with tapeworms in a spiral coprolite is supported 
by a putative developing embryo in one of the eggs (Fig. 1G) 
as well as assortment of eggs (Fig. 1H) in proglottids (De 
Baets et al. 2015, Dentzien-Dias et al. 2013). The latter speaks 
for their assignment to eucestode tapeworms.

Age: The coprolite containing the eggs interpreted to 
be associated with proglottids derives from the upper mem-
ber of the Rio do Rasto Formation (Paraná Basin, southern 
Brazil). The vertebrate fauna suggests a Guadalupian (Late 
Wordian – Capitanian) age (Dentzien-Dias et al. 2013) which 
yields a minimum age of 259.5 ± 0.4 Ma defined by the 
Guadalupian-Lopingian boundary in GTS 2020 (Henderson 
et al. 2020).

Older eggs in a cololite associated with the shark genus 
Cobelodus have a surface structure and size consistent with 
modern tapeworm eggs (Zangerl and Case 1976), but their 
more precise assignment needs further investigation (De 
Baets et al. 2015, 2021a).
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Age: The older eggs assigned to cestodes derive from 
excrements still lodged within the intestine of its producer 
the shark Cobelodus aculeatus (Cope, 1894). The fossil asso-
ciation derives from the Stark Shale member of the Dennis 
Formation near Forth Calhoun, Nebraska (Zangerl and 
Case 1976). It is assigned to the Missourian North Amer-

ican regional substage which largely corresponds to the 
Kasimovian (Falcon-Lang et al. 2011, Rosscoe and Barrick 
2013). Conodont microfossils from this unit derive from the 
Idiognathus confragus zone (Heckel et al. 2011, Heckel 2013, 
Barrick et al. 2022) which would have a minimum age of 
304.8 Ma according to GTS 2020 (Aretz et al. 2020).

Table 1. Fossil finds attributed to particular groups of Platyhelminthes. More details can be found in text. 

Node Min. Age
(Ma)

Stratigraphy, Stage, Country Coll. Environment Support Reference

Platyhelminthes 
(free-living turbellarians)

444.0 Vauréal Fm., Katian, Canada MfN Marine Characteristic trails Knaust and Desrochers (2019)

Tricladida 274.4 Pizzo del Diavolo Fm., Kungurian, Italy MNHN Freshwater Characteristic trails Alessandrello et al. (1988)

Monopisthocotylea 377.7 Lode Fm., Givetian, Latvia LDM Marginal marine Circlets with up to 16 hooks Upeniece (2001)

Cestoda 304.8 Stark Shale Mb., Kasimovian, USA PF Marine Egg with similar surface 
ornamentation and size

Zangerl and Case (1976)

Eucestoda 259.1 Rio do Rasto Fm., Wordian-Capitanian, 
Brazil

UFRGS Freshwater Egg arranged in proglottids Dentzien-Dias et al. (2013)

Trematoda 120.2 La Huérguina Fm., Barremian, Spain MUPA Freshwater Egg with operculum Barrios-de Pedro et al. (2020)

Gymnophallidae 75.22 Judith River Fm., Campanian, USA UC Freshwater Characteristic igloo-shaped 
concretion

Rogers et al. (2018)

Gymnophallidae 52.93 London Clay Fm., Ypresian, England NHM Marine Characteristic pit with raised rime Todd and Harper (2011)

Figure 2. Stratigraphic occurrence of fossil evidence for particular orders of Platyhelminthes. Phylogeny follows Littlewood 
and Waeschenbach (2015) with the exception of Neodermata which follows Brabec et al. (2023). See Table 1 and text for 
further details of each find.
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An additional fossil egg was attributed to cestodes in 
a Cretaceous archosaur (?theropod) coprolite of Bernissart 
(Belgium) where it was associated with a putative trematode 
egg and amoeboid cyst (Poinar and Boucot 2006).

Age: See age discussed for the trematode egg found 
within the same coprolite.

Recently, a difficult to place isolated structure in Myan-
mar amber was interpreted as a cestode tentacle (rostellum). 
It has some characteristics which at first glance seem most 
consistent with its assignment to trypanorhynch tapeworms 
(Palm et al. 2009) that parasitize marine elasmobranchs 
(mainly sharks and rays). However, the tentacle is longer, 
and the hooks are different and inconsistently shaped from 
those that can be confidently assigned to any modern lineage 
of Trypanorhyncha. The structure also has similarities to 
extinct armored worm-like paleoscolecid ecdysozoans not 
recovered from the Post-Silurian fossil record (Harvey et 
al. 2010, Wills et al. 2012), but this was also the time their 
main preservational windows closed (Wendruff et al. 2020, 
Whitaker et al. 2020). The taphonomic scenario to explain 
how to detach such structures which are firmly embedded 
within a scolex (Beveridge et al. 2014) is highly speculative 
and unlikely. More complete material, preferably still associ-
ated with its host remains, is necessary to confirm its precise 
assignment, mode of life as well as its host affinities. Irres
pective of their assignment and host affinity, they further 
underline that structures similar to a cestode scolex and its 
hooks could be more widely preserved in the fossil record 
than currently known.

Age: See age discussed for the swelling in an agamid 
lizard attributed to trematodes

Trematodes

Various fossils indicate that trematodes were present 
in terrestrial environments in the Cretaceous (Okamura et 
al. 2022). However, the oldest is an egg from a bump-head 
lace morphotype of a fish coprolite derived from Las Hoyas 
Lagerstätte (Cuenca, Spain) which was compared with the 
eggs of members of the modern family Opisthorchiidae and 
attributed to Digenea (Barrios-de Pedro et al. 2020).

Age: The oldest egg (MUPA-LH-SnG11-Tr) attributed to 
the digenetic trematodes derives from the Las Hoyas locality, 
which is interpreted to be deposited in a freshwater wetland 
environment. Las Hoyas located within La Huérguina For-
mation is attributed to the latest Barremian based on the 
combination of charophyte and ostracod content (Schudack 
and Schudack 2009, Vicente and Martín-Closas 2013, Fre-
genal-Martínez et al. 2017). A conservative minimum age 

for the egg is therefore the Barremian-Aptian boundary 
coinciding with the start of magnetochron M0r which was 
placed at 121.4 ± 0.6 Ma according to GTS 2020 (Gale et al. 
2020). However, the start of magnetochron M0r has now 
been redated to 120.29 ± 0.09 Ma (Li et al. 2023).

A second egg attributable to trematodes was reported 
from a slightly younger archosaur coprolite (Poinar and 
Boucot 2006) but could not be assigned further.

Age: The fossil-bearing Wealden-facies of the Sainte
Barbe Clays Formation in the Bernissart pit can now be more 
precisely dated as Late Barremian to Early Aptian in age 
(MCT4) based on the combination of palynology and che-
mostratigraphy (Yans et al. 2006, 2012, Schnyder et al. 2009), 
corresponding with the upper part of magnetochron M1n, 
M0r and the basal part of M0n. This yielded an approximate 
minimum age for these strata of 120.6 Ma, the age assigned 
to the base of the Leupoldina cabri biozone which is correlat-
ed to postdate the upper part of MCT4 corresponding with 
M0n (Schnyder et al. 2009) in GTS 2020 (Gale et al. 2020). 
However, a recent redating of magnetochron M0r resulted 
in an age of 119.40 ± 0.12 Ma assigned to the base of L. cabri 
Zone (Li et al. 2023).

So far, no additional eggs from the Mesozoic could 
be confidently assigned to trematodes, but Matsuoka and 
Ando (2021) suggested that some taxa of organic-walled 
acritarch microfossils could potentially represent trematode 
egg capsules.

A swelling in an agamid lizard preserved in Myanmar 
amber was also compared and interpreted as an encysted 
trematode metacercaria using computed tomography 
(Poinar et al. 2017).

Age: Myanmar amber is at least 98.79 ± 0.62 Ma old 
(Shi et al. 2012).

Gymnophallid lineages of trematodes produce charac
teristic pit and igloo-structures (Figs 1D–F, 3) which have 
been confidently traced back to the Eocene (Todd and Harper 
2011, Huntley and De Baets 2015) and Cretaceous (Rogers et 
al. 2018, Huntley et al. 2021), respectively. The oldest igloo-
structures from the Maastrichtian of the USA reminiscent 
of structures produced by modern gymnophallids complete 
the Cretaceous record of trematodes (Rogers et al. 2018).

Age: Distinctive igloo-shaped traces attributable to 
a trematode have been found on the freshwater bivalve 
belonging to Sphaerium in the fluvial and lacustrine facies 
of the Coal Ridge Member of the Judith River Formation of 
Montana. The coal ridge member is well constrained through 
radiometric ages between 76.32 and 75.22 Ma (Rogers et al. 
2016, Ramezani et al. 2022).
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The Cretaceous igloo-like structures might therefore 
indicate the presence of representatives of Gymnophallidae 
by 75 Ma in freshwater environments at the latest (Rogers 
et al. 2018) and pre-date the appearance and fossil record of 
their modern shorebird hosts (Ruiz and Lindberg 1989, Černý 
and Natale 2022). The latest molecular divergence time esti-
mate places the origin of shorebirds in the Paleocene (Černý 
and Natale 2022). Interestingly, the London Clay Formation 
which yielded the oldest known pits confidently assignable 
to trematodes also yielded fossils of shorebirds (Mayr and 
Kitchener 2023). Both of these traces have modern analogues 
(Huntley and De Baets 2015, Huntley et al. 2021) and have 
been comparatively well-studied in Gymnophallidae (Ituarte 
et al. 2001 2005, Cremonte and Ituarte 2003, Huntley 2007).

The absence of reports of pits from older deposits 
might relate to the lack of systematic screening of suitable 
materials (e.g., well-preserved sediment-free inner valves) 
but internal moulds or rare silicified shells might provide 
suitable conditions for discovery of both shell concretions 

and pearl-like structures as far back as the Paleozoic (Lilje
dahl 1985, De Baets et al. 2011).

Age: The oldest precisely dated shells – Venericor 
clarendonensis (Wood, 1871) – with trematode pits derive 
from subdivision B2 of the London Clay Formation (Todd 
and Harper 2011). This part of the London Clay Formation 
(Berggren and Aubry 1996) was dated to the upper calcare-
ous nannofossil zone NP 11 (Ypresian, Early Eocene), which 
corresponds to a minimum age of 52.930 Ma assigned to its 
top in GTS 2020 correlated with the base of magnetochron 
C24n.1n (Speijer et al. 2020).

Archeological finds

Eggs of neodermatans have been repeatedly reported 
from the Quaternary (see Table 2, Fig. 4). Dicrocoeliidae 
can be dated back to at least 550000 yrs BP in a coprolite 
attributed to a carnivorous mammal (Jouy-Avantin et al. 
1999), Anoplocephalidae to 16985 yrs BP in rodent coprolites 
(Beltrame et al. 2012) and Hymenolepididae and Taeniidae 

Figure 3. Summary of the stratigraphic occurrence of characteristic igloo-shaped and pit-shaped structures attributed to 
gymnophallid trematodes. Question mark refers to a superficially similar igloo structure discussed in text which is su-
perficially similar but lacks diagnostic characters to make it clearly assignable to trematodes. See text for further details.

Fossil vs phylogenetic constraints on platyhelminth evolution
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Table 2. Earliest archaeological finds of parasitic Platyhelminthes families from Pleistocene (c. 2.58 Ma–11.7 Ka) and Ho-
locene (< 11.7 Ka), in chronological order. Taxonomy follows the National Center for Biotechnology Information (NCBI) 
database. All Holocene finds except for Euphrates Cave (ID:7) are associated with human habitation. If an age range given, 
earliest age provided; site ID corresponds to Fig. 4; where applicable, review articles given in square brackets; yrs BP, years 
Before Present; NS, not specified.

Age (yrs BP) Site Site ID 
(Map) Family Taxonomic unit identified Source Type of find Putative host Reference

Pleistocene

550 000 Caune de l’Arago 
Cave, France

a Dicrocoeliidae Dicrocoeliidae Coprolites Parasite eggs Carnivorous mammal Jouy-Avantin et al. (1999)

16 9851 Cueva Huenul 1, 
Argentina

b Anoplocephalidae Viscachataenia quadrata Coprolites Parasite eggs Rodent Beltrame et al. (2012)

12 6802 Cueva del Milodón, 
Chile

c Hymenolepididae Hymenolepididae Coprolites Parasite eggs Mylodon darwini 
(Darwin’s ground sloth)

Oyarzún‑Ruiz et al. (2021)

Taeniidae Taeniidae

Holocene

10 4213 Cerro Casa de Piedra 
7, Argentina

1 Anoplocephalidae Anoplocephalidae Coprolites Parasite eggs Human Fugassa et al. (2010)

Hymenolepididae Rodentolepis sp.

10 049 East Chia Sabz, Iran 2 Taeniidae Taeniidae Sediment from 
skeletal remains

Parasite eggs Canid Paknezhad et al. (2017)

10 0004 Coast, Peru 3 Diphyllobothriidae Adenocephalus pacificus Mummified remains NS Human Reinhard and Barnum 
(1991) in: Reinhard (1992)

9 5495 Shillourokambos, 
Cyprus

4 Fasciolidae Fasciola hepatica Sediment from 
skeletal remains

Parasite eggs Human Harter-Lailheugue et al. 
(2005)

8 949 Zamostye 1,2, Russia 5 Diplostomidae Alaria alata Coprolites Parasite eggs Canid Engovatova and Khrustalev 
(1996) in: Slepchenko and 

Reinhard (2018)

Opisthorchiidae Opisthorchis felineus

7 849 Atacama, Chile 6 Troglotrematidae Paragonimus sp. Coprolites Parasite eggs Human Hall (1976) in: Horne (1985)

7 3156 Euphrates Cave, New 
Zealand

7 Notocotylidae Notocotylidae Coprolites DNA trace Moa Boast et al. (2018)

7 2697 La Draga, Spain 8 Dicrocoeliidae Dicrocoelium dendriticum Sediment from 
occupational layers

DNA trace Ruminant Maicher et al. (2017)

Paramphistomidae Paramphistomum

6 5008 Tell Zeidan, Syria 9 Schistosomatidae Schistosoma sp. Sediment from 
skeletal remains

Parasite eggs Human Anastasiou et al. (2014)

5 125 Zürich-Parkhaus-
Opéra, Switzerland

10 Echinostomatidae Echinostoma Sediment from 
occupational layers

Parasite eggs Mammal or bird Maicher et al. (2019)

3 059 Tarapacá-40, Chile 11 Dipylidiidae Dipylidium caninum Mummified remains Parasite eggs Human Ramirez et al. (2021)

1 7269 Chehrabad Salt Mine, 
Iran

12 Davaineidae Fuhrmannetta malakartis Coprolites DNA trace Bird Askari et al. (2022)

1 60010 St Lawrence Island, 
USA

13 Heterophyidae Cryptocotyle lingua Mummified remains Parasite Eggs Human5 Zimmerman and Smith 
(1975)

449 Sapgyo, South Korea 14 Gymnophallidae Gymnophalloides seoi Mummified remains Parasite Eggs Human Shin et al. (2012)
1Based on calibrated radiocarbon age estimates for stratigraphic unit VII of Cueva Huenul 1 in Tietze et al. (2019): 13 844 ± 75 yrs BP (16 390 – 16 985 cal yrs BP).
2Earliest radiocarbon age estimate for Cueva del Milodón from Borrero et al. (1999): 12 552 ± 128 yrs BP.
3Based on calibrated radiocarbon age estimates for archaeological layer XVI of CCP7 in Velázquez et al. (2014): 8 920 ± 200 yrs BP (9 495 – 10 421 cal yrs BP).
4Due to the lack of further details associated with this finding, the next earliest finding of Diphyllobothriidae was from Shillourokambos sediment sample 

(see the next row), reported in Le Bailly and Bouchet (2013).
5The PhD thesis by the first author (Harter 2003) provides an earlier date for the burial containing remains of Taeniidae and Fasciolidae (10 449 BP or 8 500 BC).
6Based on the earliest calibrated radiocarbon age estimates for Euphrates Cave in Wood et al. (2012): 6 368 ± 31 yrs BP; 7 315 – 7 165 cal yrs BP. Wood et al. 

2013 also found a DNA trace of a sister family to Notocotylidae in coprolites of similar age deposited by extinct New Zealand moa.
7Another find of dicrocoeliid eggs close in age was obtained from sediment from a domestic context, Leipzig-Zwenkau, Germany, 7 208 yrs BP (5 259 yrs 

BC) reported in Le Bailly and Bouchet (2010).
8Schmidt et al. 1992 reported ‘schistosome-like’ eggs – but without the characteristic operculum – in dung balls of Nothrotheriops shastensis (Shasta ground 

sloth) from Rampart Cave, Arizona, USA, radiocarbon dated at 10 500 ± 180 yrs BP.
9The earliest date corresponds to the establishment of Sassanid Empire (224–651 AD), Askari et al. (2018).
10Considered to be a case of ‘false parasitism’: an incidental finding of a parasite in a species that is not normally part of its lifecycle. In this case, the 

human was thought to have consumed fish infected by Cryptocotyle lingua.
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to 12680 yrs BP in ground sloth coprolites (Oyarzún-Ruiz 
et al. 2021). Findings of these families also represent some 
of the oldest eggs reported from archeological sites with 
eggs of Anoplocephalidae and Hymenolepididae reported 
from human remains dated at 10421 yrs BP (Fugassa et al. 
2010) and eggs of Taeniidae associated with dog remains 
at 10049 yrs BP (Paknezhad et al. 2017). The oldest mem-
bers of Dicrocoeliidae attributable to a modern genus and 
species are based on DNA traces associated with sediments 
from occupational layers dated at 7269 yrs BP (Maicher et 
al. 2017). Various other families are found in the Holocene 
record ranging from Diphyllobothridae (Reinhard and Bar-
num 1991, Reinhard 1992), Fasciolidae (Harter-Lailheugue 
et al. 2005), Diplostomatidae and Opisthorchiidae (Engova-
tova and Khrustalev 1996, Slepchenko and Reinhard 2018), 
Troglotrematidae (Hall 1976, Horne 1985), Notocotylidae 
(Boast et al. 2018, Wood et al. 2013 also found a DNA trace 

of a sister family to Notocotylidae of similar age), Param-
phistomatidae (Maicher et al. 2017), Schistosomatidae 
(Anastasiou et al. 2014), Echinostomatidae (Maicher et 
al. 2019), Dipylidiidae (Ramirez et al. 2021), Davaneidae 
(Askari et al. 2022), Heterophyidae (Zimmerman and Smith 
1975), to Gymnophallidae (Shin et al. 2012). The oldest find 
of a modern genus and species is Viscachataenia quadrata 
reported from rodent coprolites from the Cueva Huenel 1 
in Argentina dated to 16985 yrs BP (Beltrame et al. 2012). 
Although the characteristic igloo-like structures attributable 
to members of Gymnophallidae (Leung 2021) can be traced 
from the Cretaceous (Rogers et al. 2018) to the Quaternary 
(Huntley and De Baets 2015, Ituarte et al. 2005), finds of 
their eggs in the archaeological record attributable to a 
modern genus and species Gymnophalloides seoi Lee, Chai 
& Hong, 1993, can only be traced back to 449 yrs BP so far 
(Shin et al. 2012).

Figure 4. Earliest direct archaeological finds of families of parasitic platyhelminths from Pleistocene (c. 2.58 Ma – 11.7 Ka, 
yellow labels) and Holocene (< 11.7 Ka, white labels). Sites numbered in chronological order; age in years Before Present 
(yrs BP); age scale bar pertains to Holocene finds. See Table 2 for further details of each find.
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DISCUSSION

Given what we currently know about the appearance 
of metazoan phyla in the fossil record (Slater and Bohlin 
2022) and the nested position of Platyhelminthes within 
Spiralia or Lophotrochozoa (Marlétaz et al. 2019, Drábková 
et al. 2022, Liao et al. 2023), a late Precambrian to Cambrian 
appearance seems likely. Deep Precambrian (pre-Ediacaran) 
estimates of metazoans based on molecular clock analyses 
(Cunningham et al. 2017, Anderson et al. 2023) are hard to 
bridge with the diverse fossil evidence (Slater and Bohlin 
2022) and could be explained by various biases in such molec-
ular divergence approaches rather than by large-scale tapho-
nomic biases (Budd and Mann 2020, 2023). The oldest trace 
fossil evidence associated with putative body fossils places 
free-living flatworms in the marine environment in the late 
Ordovician at the latest (Knaust and Desrochers 2019, Knaust 
2021). As they leave no resistant mouth parts and do not 
have a resistant cuticle, it is perhaps not so surprising. Also, 
early branching flatworms are considered to be quite small 
(Laumer et al. 2015). Recent molecular analyses suggest a 
single transition from marine to freshwater environments 
in Tricladida, which might be one of the oldest among soil 
invertebrates; however, a calibrated time-tree is missing 
(Sluys 2019, van Straalen 2021). Subsequently, freshwater 
forms colonized the land although some forms re-invaded 
freshwater environments. Trace fossil evidence suggests 
planarians to be present in freshwater environments at the 
latest in the early Permian (Alessandrello et al. 1988, Knaust 
2010). These trace fossils suggest that Tricladida was present 
in Eurasia when the supercontinent Pangea was assembled 
and before the break-up of Gondwana.

The oldest fossils assignable to flatworms are trace 
fossils attributed to turbellarians in the Ordovician and 
are followed by the first evidence of ectoparasitic neoder-
matans assignable to Monopisthocotylea associated with 
acanthodian and placoderm hosts in the Devonian. Fossils 
attributable to endoparasitic neodermatans with complex 
life cycles appear later in the Carboniferous and Permian 
in the form of tapeworm eggs associated with shark body 
fossils or coprolites. Evidence for endoparasitic trematodes 
in vertebrates appears considerably later in the Cretaceous 
fossil record. Trematodes and cestodes have been reported 
to co-occur in Cretaceous archosaur coprolites but older 
coprolites only yielded tapeworms, which seems to suggest 
that the lack of trematodes might be a genuine pattern 
rather than an artefact. At the moment there is no compre-
hensive study on the relationship between structure and 

preservation potential of egg capsules for trematodes and 
cestodes. Lineages in both groups have eggs that can survive 
aggressive palynomorph preparations. It has also been 
suggested that quinone tanning (sclerotization) of eggs in 
their ancestors may have been a pre-adaptation to colonize 
the gut and survive acids and digestive enzymes (Llewel-
lyn 1965, Zamparo 2001) which could contribute to their 
preservation in the fossil record. The transmission strategy 
in parasites might also play a role in the degree of tanning 
(and therefore preservation potential) as demonstrated by 
up to six independent losses in trematodes and one loss of 
quinone tanning within Cestoda. However, the structure and 
preservation potential needs further study in an up-to-date 
and more comprehensive phylogenetic framework. Acetol-
ysis experiments have shown the complete destruction of 
eggs of the nematode Ascaris lumbricoides Linnaeus, 1758 
and the trematode Schistosoma japonicum Katsurada, 1904, 
many destroyed eggs of the cestode Taenia pisiformis Bloch, 
1780, but a relative increase in egg number of the trematode 
Clonorchis sinensis Cobbold, 1875 (Reinhard et al. 1986).

So, there is no straightforward difference in the range 
of possible structures and preservations of egg capsules be-
tween cestodes and trematodes which could further relate 
to their reproductive strategies (Smyth and Clegg 1959, 
Shinn 1993, Wharton 1983). Understanding the difference 
in preservation potential is also complicated by the pack-
aging of eggs in proglottids in eucestodes which would be 
the functional equivalent of changing a quinone-tanned 
eggshell for a keratinized eggshell (Zamparo 2001) and 
could further improve their preservation potential. The 
earlier appearance of cestodes in the fossil record needs to 
be further corroborated by recovery of additional positive 
identification of (isolated) tapeworm eggs in comprehensive 
sampling of pre-Cretaceous coprolites which are negative 
for trematode eggs.

This relative order of appearance is most consistent 
with the hypotheses resulting from some new molecular 
phylogenetic analyses placing the divergence of Monopist-
hocotylea from the rest of Neodermata before the divergence 
of Cestoda from a clade of Trematoda and Polyopisthocoty-
lea (Fig. 5). Using the fossil record to confirm this hypothesis 
needs further support by extending the fossil record of 
resistant hooks of Monopisthocotylea beyond the single 
Devonian site and by additional sampling of Pre-Cretaceous 
coprolites for helminth eggs as the discovery of older trema-
tode eggs could potentially turn this pattern around. Eggs of 
members of Monopisthocotylea or Polyopisthocotylea have 
so far not been reported in the fossil record even though 
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many of them are also be expected to be tanned/sclerotized 
and resistant with some rare exceptions (Llewellyn 1965, 
Fried and Stromberg 1971, Ramalingam 1973b, Guraya and 
Parshad 1988, Cable et al. 1997, Kearn et al. 1999, Zamparo 
2001, Kearn 2005). So far, no fossil findings can be attributed 
to Polyopisthocotylea. In the case of clamps, this may relate 
to differences in composition as these are stabilized by di-
tyrosine as opposed to keratin in hook sclerites and hamuli 
(Lyons 1966, Ramalingam 1973a). However, differences in 
stabilization need to be further investigated in a phylo-
genetic context and the presence of polyopisthocotyleans 
in coelacanths (Latimeria) and lungfishes has been used 
to argue for their latest origin at the split of Actinoptery-
gia-Sarcopterygia (De Baets et al. 2015, Verneau et al. 2009). 
However, so far there is no direct evidence for the latter claim 
and latest analyses suggest both host switching and parasite 
extinction might have played a larger role in the evolution 
of Polyopisthocotylea than commonly assumed (Mulvey et 
al. 2022, Verneau et al. 2023).

Other new analyses inferring a sister-group relationship 
between a clade of Monopisthocotylea and Cestoda on the 
one hand and a clade of Polyopisthocotylea and Trematoda on 
the other hand would indicate a large gap in the stratigraphic 
record lacking fossils – also called ghost lineage – of the latter 
clade (Fig. 5). The latter merits discussing – in addition to 
the preservation potential of their eggs – an older igloo-like 
structure in a Silurian bivalve (Liljedahl 1985) and potentially 
relating it to a trematode producer (Huntley and De Baets 

2015). However, the difference in morphology and the large 
temporal gap with the igloo-type structures confidently as-
signable to gymnophallid trematodes as well as the absence 
of their final tetrapod hosts speak for their assignment to a 
trace-maker with a similar behaviour but different phyloge-
netic assignment (Huntley and De Baets 2015).

It seems unlikely that fossil species and genera des
cribed from the Paleozoic and Mesozoic represent modern 
species or genera. Also, modern families could not be confi-
dently traced back beyond the Quaternary with the exception 
of Gymnophallidae (De Baets et al. 2015, 2021a, Leung 2017). 
This begs the question of how far back we can trace modern 
species, genera, or other families in the Quaternary (Fig. 4). 
Many families can be traced back within the Holocene and 
some as far back as the Pleistocene with the oldest egg cap-
sules of dicrocoeliid trematodes and polycystidid turbellarians 
dated to at least 550,000 and 250,000 yrs BP, respectively.

Future perspectives

Currently, the oldest most reliable age for parasitic 
flatworms is provided by circlets of resistant hooks and eggs. 
More resistant remains need further systematic screening 
to potentially fill the gaps (compare Fig. 6). In the case of 
free-living flatworms, the oldest evidence comprises trace 
fossils indicative of mucociliary motion associated with 
putative body fossils.

Trace fossils attributed to free-living flatworms and 
other mucociliary motion might need further scrutiny, par-
ticularly those not associated with body fossils. Meiofaunal 
sites where trace fossils are occasionally associated with 
resistant body parts or outlines might help in this endeavor 
(Knaust 2007, 2010, Knaust and Desrochers 2019). Even if the 
internal structure is mostly destroyed due to early-diagenetic 
processes, their morphology and size can still be used to 
recognize higher-order taxa and as fingerprints to link a 
trace maker to a distinct meiobenthic trace fossil (Knaust 
2007). Simple traces could potentially be produced by ver-
miform organisms belonging to a range of animal phyla. 
However, new mathematical approaches enable to identify 
previously unrecognized signatures left by trace makers 
(e.g., deviation angle series of self-crossing traces) allowing 
to more confidently assign them to their known modern (or 
fossil) producers (Wang and Rahman 2023). In addition, the 
association of trace fossils with characteristic spicules and 
a more comprehensive understanding of the distribution 
of such behavior or spicules in an up-to-date phylogenetic 
context (Rieger and Sterrer 1975, Knaust 2010) would also 
be helpful to more robustly assign them to modern lineages.

Figure 5. Alternative topologies obtained for Neodermata 
in analyses of Brabec et al. (2023). Circles indicate the oldest 
fossil record for particular groups (differently coloured cir-
cles reflect those for early to later branching groups in Fig. 
2). Light gray tree branches reflect lacking fossil record, black 
bars reflect present fossil record. Circle within circle refers 
to origin of endoparasitism and smaller circle attached to 
larger circle refers to origin of ectoparasitism based on fossil 
record. See Table 1 and discussion in text for further details 
of the oldest finds. Note the different stratigraphic range and 
distribution of ghost lineages depending on the topology.
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The preservation potential of the smallest flatworm 
representatives, namely the microturbellarians, is poorly 
known. Many groups of microturbellarians, including 
macrostomorphs, gnosonesimids, rhabdocoels, and prose-
riates, have sclerotized parts in their atrial organs or feed-
ing structures that can be beautifully preserved for SEM 
(Damborenea et al. 2007) or as permanent whole mounts 
(Schockaert 1996), while dissolving the weak tissues with 
harsh chemicals. Indeed, these sclerotized parts in micro-
turbellarians range from hooks/spines/girdles/stylets or 
cirri armed with tiny spines in the male copulatory organ 
(Artois and Schockaert 2003, Smith III et al. 2020), to hooks 
or denticles in the kalyptorhynch proboscis (Uyeno and 
Kier 2010). Some rhabdocoel groups have sclerotized bursal 
appendages, thickened basal membranes, bursal spines or 
sclerotized channels guarding the female system (Artois 
and Schockaert 2005, Van Steenkiste and Leander 2018). 
However, whether these structures can be recovered in 
fossil samples and would be recognized as such needs to be 
further explored. The preservation potential of catenulids, 
the earliest diverging major lineage of flatworms (Laumer 
et al. 2015), is likely limited due to the combination of their 
small size and a simple anatomy lacking hard parts (Van 
Steenkiste et al. 2023).

More resistant platyhelminth eggs in coprolites, paly-
nomorph preparations or sediment samples remain a largely 
untapped resource with great potential. To our knowledge 
no comprehensive comparative studies on the preservation 
potential of eggs across different lineages of flatworms have 
been performed. Various lineages produce sclerotized/tanned 
egg capsules which increases their preservation potential 
(Guraya and Parshad 1988, Shinn 1993, Zamparo 2001) in-
cluding Tricladida (Huggins and Waite 1993), Polycladida 
(Ishida and Teshirogi 1986), Rhabdocoela (Breckenridge and 
Nathanael 1988) and Neodermata (Smyth and Clegg 1959, 
Kearn et al. 1999, Ramalingam 1973b). Eggs capsules of at least 
some lineages of rhabdocoel microturbellarians including 
Dalyelliidae, Polycystididae (Gyratrix) and Typhloplanidae 
(Haas 1996, Warner 1989, Matsuoka and Ando 2021) as well 
as parasitic cestodes such as Diphyllobothrium and trematodes 
such as Dicroelium or Clonorchis are well-known to be more 
resistant to palynological preparations (Reinhard et al. 1986, 
Shumilovskikh and van Geel 2020) and have been recovered 
from fossil samples older than 250000 yrs BP.

Eggs of parasitic flatworms are often considered less 
resistant than those of nematodes (Brinkkemper and van 
Haaster 2012, Dufour and Le Bailly 2013) which might 
explain why nematodes have been recovered more often 

Figure 6. Table highlighting the possible (hollow circles) and realized (filled circles) preservation potential of structures in 
the fossil record modified and mainly expanded from these references (Rieger and Sterrer 1975, Littlewood and Donovan 
2003, Knaust 2010, De Baets et al. 2021a, 2021b). In-depth discussion of these points and associated references can be 
found in the main text. Question marks relate to a structure likely having increased preservation potential but further 
documentation is needed. Asterisks refers to packaging of eggs may further increase resistance of egg capsules.
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from Mesozoic coprolites (Hugot et al. 2014, Cardia et al. 
2019, Nonsrirach et al. 2023) and sedimentary samples in 
the archeological record (Morrow et al. 2016). However, the 
oldest and the only helminth eggs recovered from Paleozoic 
coprolites can be attributed to tapeworms (Zangerl and 
Case 1976, Dentzien-Dias et al. 2013, Chin 2021). Isolated 
eggs of cestodes and trematodes co-occur in at least some 
Cretaceous coprolite samples (Poinar and Boucot 2006), but 
confidently identified trematode eggs have so far not been 
recovered from coprolites positive for nematode or cestode 
helminths before the Cretaceous. Sampling effort as well as 
preservation factors could play a role in this pattern. If the 
archeological record is an indicator, eggs of nematodes are 
more common than those of cestodes and trematodes, but 
whether this relates to their different preservation potential 
or other factors remains unresolved. Isolated trematode or 
cestode eggs in sediment samples could potentially also be 
confused with turbellarian eggs (Matsuoka and Ando 2021). 
The better body fossil record of nematodes is not so surpris-
ing due to their resistant cuticle (Littlewood and Donovan 
2003, Poinar 2011, Maas 2012, De Baets et al. 2021b, 2023, Luo 
et al. 2023). Also, nematode eggs seem to be more resistant 
compared to those of trematodes when subjected to hard 
acids and bases (Brinkkemper and van Haaster 2012, Dufour 
and Le Bailly 2013, but see Reinhard et al. 1986).

Despite their patchiness, fossil remains of flatworms 
(particularly when combined with fossil evidence from 
outgroups) can remain valuable for calibrating molecular 
divergence estimates. At least the age of some fossil con-
straints (e.g., eucestode tapeworms) are as good as those of 
independently calibrated molecular divergence estimates as 
their ages fall within or even pre-date confidence limits of 
previous divergence time estimates (De Baets et al. 2021a). 
Based on poor fossil records in some groups, biogeographic 
calibrations have been suggested as an alternative to fossil 
constraints (Zietara and Lumme 2002, Scarpa et al. 2015, 
Sluys 2019). However, the consistency of such hypotheses with 
modern distributions should be independently and robustly 
tested before using them as potential calibrations (Upchurch 
2008, Kodandaramaiah 2011). When inherent assumptions 
and attendant errors are properly considered, calibrations 
derived from geological events are not necessarily more 
precise or easier to codify than those of the fossil record and 
should be seen as complementary rather than competing 
approaches (De Baets et al. 2016). The same can be said for 
host calibrations in the case of symbiotic lineages (Olson et 
al. 2010, Badets et al. 2011, Hoyal Cuthill et al. 2016), which 
should likely only be used if there is a strong independent 

support for a high degree of co-divergence and host specificity, 
but a low degree of host switching or extinction in this part 
of the trees (Warnock and Engelstädter 2021, Mulvey et al. 
2022). (Co-)evolutionary history is likely more complex as 
revealed by traditional models with host switching as well as 
extinction playing a larger role and codivergence a smaller 
role than traditionally thought (e.g., Araujo et al. 2015, Brooks 
and Boeger 2019). Various new methods have been developed 
to help with reconstructing and testing this complex history 
(Braga et al. 2020, Warnock and Engelstädter 2021, Dismukes 
et al. 2022, Mulvey et al. 2022).

Whatever the calibrations used, constraints on their 
assumptions should be explicitly discussed and rigidly 
tested independently in a non-circular way. For instance, 
biogeographic or host calibration should not be used to 
test related biogeographic or host hypotheses, respectively; 
trace fossils should not be used to reconstruct the evolution 
of locomotion behavior but rather in sensitivity analyses. A 
better understanding of the flatworm fossil record as well 
as the modern phylogenetic placement of preservable struc-
tures (hooks, eggs, spicules) therefore remains crucial for 
constraining the timing of the origin and evolution of Plat-
yhelminthes as well as their co-phylogeny with their hosts.
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