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Abstract

The identification of good surrogate endpoints is a challenging endeavour. This
may, at least partially, be attributable to the fact that most researchers have focused
on the identification of a single surrogate endpoint. It is thus implicitly assumed that
the treatment effect on the true endpoint (T ) can be accurately predicted based on
the treatment effect on one surrogate endpoint (S) only. Given the complex nature of
many diseases and the different therapeutic pathways in which a treatment can impact
T , this assumption may be too optimistic. For example, in oncology, the effect of a
treatment often depends on both the treatment’s efficacy and its toxicity.

In the present paper, the meta-analytic framework of Buyse et al. (2000) is ex-
tended to the setting where multiple S are considered. To cope with potential model
convergence issues that often arise in a meta-analytic framework, several simplified
model fitting strategies are proposed. Further, simulation studies are conducted to
evaluate the properties of the estimated surrogacy metrics, and the new methodology
is applied on a case study in schizophrenia. An online Appendix that details how the
analyses can be conducted in practice (using the R package Surrogate) is also provided.

Word count: 197.

Keywords: Meta-analytic framework; Multiple surrogate endpoints; two-stage approach;
individual-level surrogacy; trial-level surrogacy
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1 Introduction

The duration, complexity, and cost of a clinical trial are substantially affected by the

endpoints that are used to assess treatment efficacy (Burzykowski et al., 2005). In some

situations, the most credible indicator of therapeutic response, the so-called true endpoint,

may be distant in time (e.g., survival time in early cancer stages), rare (e.g., pregnancy in

severe luteinizing hormone deficiency), ethically challenging (e.g., procedures that involve

a non-negligible health risk), or expensive (e.g., imaging data). An appealing strategy in

these circumstances is to substitute the true endpoint with a “replacement endpoint” that

can be measured earlier, occurs more frequently, is more ethically acceptable, and/or is

cheaper. If such a replacement endpoint allows for the accurate prediction of the treatment

effect on the true endpoint, it is termed a surrogate endpoint (Buyse and Molenberghs,

1998; Buyse et al., 2000; Freedman, Graubard and Schatzkin, 1992; Prentice, 1989).

In spite of important methodological advances in recent years, the identification of

good surrogate endpoints remains challenging (Alonso et al., 2016; Buyse et al., 2000,

2010). This may be attributable in part to the fact that most researchers have focused

on the identification of a single surrogate endpoint. Indeed, it has often implicitly been

assumed that the treatment effect on the true endpoint can be accurately predicted based

on the treatment effect on one surrogate endpoint only. Given the complex nature of many

diseases and the various therapeutic pathways in which a treatment can impact the true

endpoint, this assumption may be overly optimistic. For example, in oncology, the effect

of a treatment often depends on its efficacy and its toxicity (Xu and Zeger, 2001). Having

multiple surrogate endpoints that capture the impact of the treatment on both processes

can be expected to result in a better prediction of the treatment effect on the true endpoint.

Similarly, in neurodegenerative conditions such as Alzheimer’s disease, it may be unrealistic

to assume that the treatment effect on the true endpoint (which is typically a complex

and multifaceted rating scale or cognitive test) can be accurately predicted by a single

surrogate endpoint. For example, tau pathology biomarkers in different areas of the brain

(e.g., the hippocampus, amygdala, and frontal gyri) have been shown to be only moderately

associated with cognition when evaluated individually (with correlations typically below

0.50; Bejanin et al., 2017) – but taken together, the different tau pathology measurements
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may provide a good multiple surrogate.

In view of these considerations, several authors have argued in favour of using multi-

ple surrogate endpoints. For example, Xu and Zeger (2001) proposed a joint model for

a time-to-event true endpoint and multiple surrogate endpoints in the single-trial setting

(i.e., assuming that the data from only one clinical trial are available). Parast et al.

(2021) proposed a procedure to quantify surrogacy in the setting where multiple surro-

gates are available for a time-to-event true endpoint in the single-trial setting based on a

dimension-reduction approach. Van der Elst et al. (2019) proposed an evaluation strategy

for multiple continuous normally distributed surrogates in the single-trial setting based on

causal-inference and information-theoretic ideas. Alonso et al. (2004) developed a proce-

dure to assess surrogacy for a continuous normally distributed endpoint that is repeatedly

measured over time in the meta-analytic setting (i.e., assuming that the data from multiple

clinical trials are available) based on canonical correlations.

In the current paper, the gold-standard meta-analytic surrogate evaluation approach of

Buyse et al. (2000) – that allows for the consideration of one surrogate endpoint only – is

extended to the multiple surrogate setting. The remainder of this paper is organised as

follows. In Sections 2 and 3, the meta-analytic approach for multiple surrogate endpoints

is introduced together with simplified model fitting strategies that can cope with potential

model convergence issues. In Section 4, the newly developed methodology is exemplified in

a case study. In Section 5, a simulation study is conducted to evaluate model convergence

and examine the bias, efficiency and coverage of confidence intervals for the surrogacy

metrics. Finally, a critical appraisal regarding the newly proposed methodology is given in

Section 6.

Applied statisticians and researchers often encounter challenges with the evaluation

of surrogate endpoints due to the lack of user-friendly software. To address this issue,

the multiple surrogate evaluation methodology that is proposed in the current paper has

been incorporated into an R package Surrogate (available for download at CRAN; https:

//CRAN.R-project.org/package=Surrogate). In an online Appendix that accompanies

this paper, it is shown how the package can be used to conduct the surrogacy analyses in

practice.
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2 The meta-analytic approach

Buyse et al. (2000) proposed a meta-analytic surrogate evaluation approach in the single

surrogate setting. In the current section, the methodology of these authors will be extended

to the setting where multiple surrogate endpoints are considered simultaneously.

Let us assume that the data of i = 1, 2, . . . , N clinical trials are available, in the ith

of which j = 1, 2, . . . , ni patients are enrolled. Denote by Tij a normally distributed true

endpoint T for patient j in trial i, by S = (S1ij, S2ij, ..., SKij) the vector of K normally

distributed surrogate endpoints, and by Zij the (binary) indicator variable for the treat-

ment. It is further assumed that only two treatments are under evaluation (Z = 0, 1) in a

parallel study design.

In this setting, surrogacy can be evaluated based on the following linear mixed-effects

model: 

S1ij = µS1 +mS1i
+ (αS1 + aS1i

)Zij + εS1ij
,

S2ij = µS2 +mS2i
+ (αS2 + aS2i

)Zij + εS2ij
,

...

SKij = µSK
+mSKi

+ (αSK
+ aSKi

)Zij + εSKij
,

Tij = µT +mTi
+ (βT + bTi

)Zij + εTij
,

(1)

where µS1 , µS2 , . . . , µSK
and µT are the fixed intercepts for S1, S2, . . . , SK and T ,

mS1i
, mS2i

, . . . , mSKi
, and mTi

are the corresponding random intercepts, αS1 , αS2 , . . . ,

αSK
and βT are the fixed treatment effects for S1, S2, . . . , SK and T , and aS1i

, aS2i
,

. . . , aSKi
and bTi

are the corresponding random treatment effects. The vectors of the

random effects (mS1i
, mS2i

, . . . , mSKi
, mTi

, aS1i
, aS2i

, . . . , aSKi
, bTi

) and the error terms(
εS1ij

, εS2ij
, ..., εSKij

, εTij

)
are assumed to be mean-zero normally distributed with un-
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structured variance-covariance matrices D and Σ, respectively:

D =



dmS1
,mS1

dmS1
,mS2

... dmS1
,mSK

dmS1
,mT

dmS1
,aS1

dmS1
,aS2

... dmS1
,aSK

dmS1
,bT

dmS2
,mS2

... dmS2
,mSK

dmS2
,mT

dmS2
,aS1

dmS2
,aS2

... dmS2
,aSK

dmS2
,bT

. . . ...
...

...
...

...
...

...

dmSK
,mSK

dmSK
,mT

dmSK
,aS1

dmSK
,aS2

... dmSK
,aSK

dmSK
,bT

dmT ,mT
dmT ,aS1

dmT ,aS2
... dmT ,aSK

dmT ,bT

daS1
,aS1

daS1
,aS2

... daS1
,aSK

daS1
,bT

daS2
,aS2

... daS2
,aSK

daS2
,bT

. . . ...
...

daSK
,aSK

daSK
,bT

dbT ,bT



, (2)

Σ =



σS1,S1 σS1,S2 ... σS1,SK
σS1,T

σS2,S2 ... σS2,SK
σS2,T

. . . ...
...

σSK ,SK
σSK ,T

σT,T


. (3)

In the meta-analytic framework, surrogacy is quantified by two metrics, i.e., the trial-

and individual-level coefficients of determination. The trial-level coefficient of determina-

tion quantifies the strength of the association between the trial-specific treatment effects

on T and the trial-specific intercepts and treatment effects on S in the N different trials:

R2
trial(f) = R2

bTi |mS1i
, mS2i

, ..., mSKi
, aS1i

, aS2i
, ... aSKi

=
DT

ST D−1SS DST

dbT ,bT

. (4)

All quantities in (4) are based on the D matrix, with DSS corresponding to the variance-

covariance matrix of the random intercepts and treatment effects for S, and DST cor-

responding to the column vector of the covariances between the random intercepts and

treatment effects for S and the random treatment effect for T .

TheR2
trial value is unitless and lies within the unit interval when the D matrix is positive-

definite. An exact 95% confidence interval (CI) around R2
trial can be obtained using the

procedure that was proposed by Lee (1971). Alternatively, a non-parametric bootstrap or

the Delta method can be used to get approximate CIs (Cortiñas et al., 2008). An R2
trial
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that is close to 1 (taking its CI into account) indicates that there is a strong association

between the treatment effects on S and T across the N different trials. A surrogate is

called trial-level valid when this is the case. The term “trial-level” surrogacy refers to the

fact that the treatment effects on S and T are estimated at the level of the clinical trials.

Note that the (f) indicator in the R2
trial(f) subscript is used to indicate that a so-called full

model is used to evaluate surrogacy – as opposed to the situation where a reduced model

is used (see Section 3.2 below).

The individual-level coefficient of determination quantifies the strength of the associa-

tion between S and T at the level of the individual patients (after adjustment for both the

trial- and treatment-effects):

R2
indiv = R2

εTij |εS1ij
, εS2ij

, ..., εSKij
=

ΣT
ST Σ−1SS ΣST

σT,T
. (5)

All quantities in (5) are based on the Σ matrix, with ΣSS corresponding to the variance-

covariance matrix of the errors for S, and ΣST corresponding to the column vector of the

covariances between the errors for S and T .

An exact 95% CI around R2
indiv can again be obtained using the approach of Lee (1971),

or alternatively a non-parametric bootstrap or the Delta method can be used to get ap-

proximate CIs. An R2
indiv that is close to 1 (taking its CI into account) indicates that there

is a strong association between S and T at the level of the individual patients (after ac-

counting for treatment- and trial-effects). A surrogate is called individual-level valid when

this is the case. The term “individual-level” surrogacy refers to the fact that the S and T

are measured at the level of the individual patients. In essence, S is individual-level valid

when it has a good prognostic value for T (Buyse et al., 2022).

3 Simplified modelling strategies

The mixed-effects modelling approach that was detailed in Section 2 poses considerable

computational challenges. Indeed, fitting a linear mixed-effects model is typically done

using Newton-Raphson or quasi-Newton optimisation methods (for details, see Lindstrom

and Bates, 1988; Verbeke and Molenberghs, 2000). Based on some starting values for the

parameters at hand, these procedures iteratively update the parameter estimates until the
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convergence criteria are met. Unfortunately, the optimization methods may not converge

when complex linear mixed-effects models are considered. This means that the iterative

process does not converge at all, or that it converges to values that are close to or outside

the boundary of the parameter space (i.e., variances that are close to zero or even negative).

Simulation studies in the single surrogate setting have shown that such problems mainly

occur (i) when the number of trials is small, (ii) when the size of the between-trial variability

(i.e., the components in the D matrix is small relative to the size of the residual variability

(i.e., the components in the Σ matrix, and (iii) when the number of patients in the different

trials is unbalanced (Buyse et al., 2000; Burzykowski et al., 2005; Renard et al., 2002; Ong

et al., 2022; Van der Elst et al., 2015).

Unfortunately, the conditions that are described in (i)–(iii) are often encountered in real-

life surrogate evaluation settings, and thus convergence problems are prevalent. Such issues

can be expected to be even exacerbated in the current setting where multiple surrogates are

of interest, because the consideration of each additional surrogate increases the complexity

of the model. Buyse et al. (2000) and Tibaldi et al. (2003) have proposed a number of

simplified model fitting strategies that can be used when model convergence problems occur

in the single surrogate setting. In particular, these authors have proposed to simplify model

(1) along four dimensions. Here, these simplified model fitting strategies are generalized to

the multiple surrogate endpoint evaluation setting.

3.1 The trial dimension: fixed- versus random-effects models

To avoid the computational problems that arise in the estimation of the variance com-

ponents of model (1), the mixed-effects model can be replaced by its fixed-effects (i.e.,

two-stage) counterpart (Buyse et al., 2000; Tibaldi et al., 2003). When the fixed-effects

approach is used, either a single multivariate or multiple univariate linear regression models

are fitted to the data of each of the N trials separately. The choice for a multivariate or a

univariate modelling approach is determined by the assumptions that are made regarding

the association structure of the errors (see Section 3.3). Thus, in Stage 1, the following
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(multi- or univariate) fixed-effects models are fitted:

S1ij = µS1i
+ αS1i

Zij + εS1ij
,

S2ij = µS2i
+ αS2i

Zij + εS2ij
,

...

SKij = µSKi
+ αSKi

Zij + εSKij
,

Tij = µT i + βTi
Zij + εTij

,

(6)

where µS1i
, µS2i

, . . . , µSKi
, and µT i are the trial-specific intercepts on S and T , and

αS1i
, αS2i

, . . . , αSKi
and βTi

are the corresponding trial-specific treatment effects. The er-

ror terms εS1ij
, εS2ij

, . . . , εSKij
, and εTij

are assumed to be mean-zero normally distributed

with variance-covariance matrix Σ when a multivariate regression model is fitted, or are

assumed to be independent when multiple univariate models are fitted (see Section 3.3).

The fixed-effects parameter estimates for µS1i
, αS1i

, µS2i
, αS2i

, . . . , µSKi
, αSKi

, and βTi
that

are obtained by fitting model (6) are subsequently used in Stage 2 of the analysis, where

the following multiple linear regression model is fitted:

β̂Ti
= λ0 + λ1µ̂S1i

+ λ2α̂S1i
+ λ3µ̂S2i

+ λ4α̂S2i
+ · · ·+ λ2K−1µ̂SKi

+ λ2Kα̂SKi
+ εi. (7)

The classical coefficient of determination that is obtained by fitting model (7) provides

an estimate for R2
trial(f). Similarly to what was the case when the mixed-effects model is

used to estimate trial-level surrogacy (see expression (4)), the (f) indicator in the R2
trial(f)

subscript indicates that a full model is used. Alternatively, trial-level surrogacy can be

estimated based on a reduced mixed- or fixed-effects modelling approach (see the next

section).

3.2 The model dimension: full versus reduced models

Model (1) is referred to as the full mixed-effects model, i.e., the model that contains random

intercepts and random treatment effects for S and T . Similarly, model (6) is referred to

as the full (multi- or univariate) fixed-effects model, i.e., the model that contains both

trial-specific intercepts and treatment effects for S and T .
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The random-effects structure of the full multivariate mixed-effects model (1) can be

simplified by assuming that there is no heterogeneity in the random intercepts for S and T :

S1ij = µS1 + (αS1 + aS1i
)Zij + εS1ij

,

S2ij = µS2 + (αS2 + aS2i
)Zij + εS2ij

,

...

SKij = µSK
+ (αSK

+ aSKi
)Zij + εSKij

,

Tij = µT + (βT + bTi
)Zij + εTij

.

As can be seen, the trial-specific intercepts in model (1) are now replaced by common

intercepts, and the D matrix simplifies accordingly. The DSS and DST components now

correspond to the variance-covariance matrix of the random treatment effects for S, and

the vector of the covariances between the random treatment effects for S and the random

treatment effect for T , respectively. These submatrices are referred to as DSS(r) and DST (r),

respectively. The (r) subscript indicates that a reduced mixed-effects model is fitted (as

opposed to the situation where a full mixed-effect model is used to estimate trial-level sur-

rogacy, see expression (4)). The computation of the trial-level coefficient of determination

now simplifies to:

R2
trial(r) = R2

bTi |aS1i
, aS2i

, ..., aSKi
=

DT
ST (r) D

−1
SS(r) DST (r)

dbT ,bT

.

When the fixed-effects approach is used (see Section 3.1), model (6) can be simplified by

assuming common intercepts for S and T in Stage 1 of the analysis. Thus, the trial-specific

µS1i
, µS2i

, . . . , µSKi
and µT i intercepts in model (6) are replaced by common intercepts (i.e.,

µS1 , µS2 , . . . , µSK
and µT , respectively). Further, the λ1µ̂S1i

, λ3µ̂S2i
, . . . , and λ2K−1µ̂SKi

components are dropped from expression (7) in Stage 2 of the analysis.

3.3 The endpoint dimension: univariate versus multivariate mod-

els

The error terms for S and T can be assumed to be independent rather than dependent

by fitting K + 1 univariate models instead of one multivariate (mixed- or fixed-effects)
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model. This proposal seems odd at first sight, because it is natural to assume that S

and T are correlated in a surrogate endpoint evaluation setting. Nonetheless, making the

simplifying assumption that the error terms are uncorrelated is not necessarily a problem.

The reason for this is that the explicit consideration of the correlated nature of S and

T is mainly of importance to obtain the Σ matrix (which is used to estimate R2
indiv, see

expression (5)), and often the focus of the analysis is on trial-level surrogacy rather than

on individual-level surrogacy. Indeed, it is typically of main interest to examine the extent

to which the treatment effect on T can be predicted based on the treatment effects on S

(this is particularly the case for pharmaceutical companies and regulatory agencies). It

has been shown that the R2
trial values that are obtained by using univariate or multivariate

mixed-effects models are similar in the single surrogate setting (Tibaldi et al., 2003), and

the R2
trial values that are obtained by using univariate or multivariate fixed-effects models

are identical (Johnson and Wichern, 2007). Moreover, when univariate models are fitted

and interest is also in R2
indiv, one can always approximate this quantity by computing the

squared multiple correlation between the residuals of S and T (in the same spirit as the

multivariate adjusted association; for details, see Van der Elst et al., 2019).

3.4 The measurement error dimension: weighted versus un-

weighted models

When the (full or reduced) multivariate mixed-effects modelling approach is not used, one is

confronted with measurement error because the trial-specific treatment effects on S and T

are estimated with error. The magnitude of this error can be assumed to be inversely related

to the number of patients in a particular trial. Therefore, a straightforward approach to

address this issue is to use a weighted regression model with the trial sizes as the weights

in Stage 2 of the analysis (Burzykowski et al., 2005; Tibaldi et al., 2003). Note that the

measurement error dimension is not relevant when a multivariate mixed-effects model is

used, because it is automatically accounted for and therefore no explicit corrections are

needed.

11



4 A case study in schizophrenia

The methodology will be illustrated in a case study in schizophrenia. Schizophrenia is a

psychiatric condition that is hallmarked by hallucinations and delusions (American Psy-

chiatric Association, 2000). The data were collected in five double-blind clinical trials in

which the patients were randomly allocated to two treatment arms (i.e., the experimental

treatment risperidone versus an active control). A total of 1, 941 patients participated in

the five clinical trials, of whom 1, 450 patients received the experimental treatment and 497

patients were given an active control. Details on the different clinical trials can be found

in Blin et al. (1996), Chouinard et al. (1993), Hoyberg et al. (1993), Huttunen et al. (1995)

and Peuskens et al. (1995).

In each of the five trials, the Positive and Negative Syndrome Scale (PANSS; Singh

and Kay, 1975) was administered. The PANSS is a standardized instrument that is used

to rate the symptom severity of people with schizophrenia. It consists of 30 items that

are measured on a 7-point Likert scale. These items can be grouped into five factors, i.e.,

Negative symptoms, Positive symptoms, Cognitive symptoms, Excitement, and Depression

(Lindenmayer et al., 1995). The aim of the analysis is to evaluate whether one or more of

the 5 PANSS subscales provide a good (multiple) surrogate for T = PANSS Total score.

The data of only five clinical trials were available, which is insufficient to apply the

meta-analytic method using trial as the clustering unit (Burzykowski et al., 2005). In

the different trials, information was also available regarding the psychiatrists who treated

the patients. Treating physician was therefore used as the clustering unit instead of trial

in the analyses below. The patients were treated by a total of N = 126 psychiatrists.

Each of the psychiatrists treated between ni = 5 and 52 patients. Notice that the use of

treating physician as the clustering unit can impact the baseline balance of covariates for

T and/or S, because the randomisation was conducted at the level of the clinical trials

(and not at the level of the treating physicians). The estimated treating physician-specific

treatment effects can thus be confounded by such imbalances. Along these lines, simulation

studies have shown that shifting between clustering units can bias the estimated R2
trial – in

particular when the magnitude of the variability of the treatment effects across the different

clustering levels varies substantially (see Cortiñas et al., 2004). In the current case study
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analysis, it is assumed that no such imbalances for the baseline covariates occur by using

treating physician as the clustering unit. For a further discussion on the choice of clustering

units and its impact on the metrics of surrogacy, see Chapter 8 of Burzykowski et al. (2005).

Table 1 shows the Pearson correlations between the PANSS subscales and the PANSS

Total score in the two treatment arms (across the five different clinical trials). As can

be seen, the scores on the different subscales are low to moderately intercorrelated with

each other (range of Pearson correlations: [0.291; 0.678] and [0.336; 0.653] in the active

control and experimental treatment arms, respectively), and more strongly correlated with

the PANSS Total score (range [0.722; 0.805] and [0.693; 0.812] in the active control and

experimental treatment arms, respectively).

<Insert Table 1 about here>

Results A hierarchical model-building approach with forward selection was used to iden-

tify the best S. To this end, single surrogacy analyses were first conducted for each of the

5 candidate surrogates separately (i.e., the 5 PANSS subscales), and it was subsequently

evaluated whether the consideration of additional surrogates led to an increase in R2
trial

and R2
indiv.

When full multivariate mixed-effects models were fitted to evaluate surrogacy (see Sec-

tion 2), convergence issues emerged for all the models that were considered. As was

mentioned in Section 3, such model fitting issues are expected when the full multivari-

ate mixed-effects modelling approach is used. To avoid these computational issues, the

mixed-effects model was replaced by its fixed-effects counterpart (i.e., the full multivariate

weighted fixed-effects model, see Section 3).

In the single surrogacy analyses, the R2
trial values (and the 95% CIs that were obtained

using the procedure proposed by Lee, 1971) ranged between 0.450 (95% CI [0.308; 0.567]) for

the Depression subscale and 0.658 (95% CI [0.544; 0.742]) for the Cognition subscale. The

R2
indiv values were of similar magnitude and ranged between 0.487 (95% CI [0.454; 0.518])

and 0.652 (95% CI [0.626; 0.676]) for the Depression and Cognition subscales, respectively.

The single S that had the highest R2
trial and R2

indiv values is thus the Cognition subscale.

Table 2 shows the R2
trial and R2

indiv values for all single S, together with the AIC/BIC values
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for the fitted Stage 2 models at hand (that are used to estimate R2
trial). As expected, the

AIC/BIC values for the Cognition subscale were also the lowest of the 5 single S under

consideration.

In the second step, multiple surrogacy analyses were conducted that included the first

identified “best” single S (i.e., the Cognition subscale) together with a second S (i.e., the

Negative, Positive, Excitement or Depression subscales). Likelihood-ratio (LR) tests were

used to compare the fit of the different (nested) Stage 2 models. For example, the best

pair of surrogates S that resulted in the highest R2
trial and R2

indiv values consisted of the

combination of the Cognition and the Depression subscales, yielding R2
trial = 0.866 (95%

CI [0.808; 0.901]) and R2
indiv = 0.831 (95% CI [0.816; 0.844]). The LR-test that compares

the fitted Stage 2 model that only includes the treating physician-specific intercepts and

treatment effects for the Cognition subscale (i.e., the restricted model, with R2
trial = 0.658)

versus the model that includes the treating physician-specific intercepts and treatment

effects for both the Cognition and Depression subscales (i.e., the unrestricted model, with

R2
trial = 0.866) yielded χ2 = 117.8 (DF = 2) with p-value < 0.001. Based on the LR-test,

the multiple S is thus preferred over the single S. Figure 1 visually illustrates the R2
trial

and R2
indiv results for this S graphically (see panels [a] and [b], respectively).

Interestingly, the best pair of multiple surrogates S combines the best and the worse

of the single S (i.e., the Cognition and Depression subscales, respectively). So even

though the Depression subscale alone is a poor surrogate for the PANSS Total score (with

R2
trial = 0.450), the combination of the Depression and the Cognition subscales resulted in

the best pair of multiple surrogates S (with R2
trial almost doubling to 0.868). Recall from

Table 1 that the correlation between the Cognition and Depression subscales was quite

low (i.e., 0.405 and 0.339 in both treatment arms), and thus both scales have a relatively

small overlap. This low correlation may account for this finding, i.e., both scales appear

to capture different aspects of schizophrenia (as opposed to the other PANSS subscales

that are more highly inter-correlated with the Cognition subscale – and thus the addition

of such subscales adds less information in the surrogacy analysis).

<Insert Figure 1 about here>
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The model-building procedure was repeated for 3, 4, and 5 surrogates. As can be

seen in Table 2, the best multiple S (as evaluated based on a series of LR-tests) contains

all 5 PANSS subscales, with R2
trial = 0.989 (95% CI [0.983; 0.992]) and R2

indiv = 0.990 (95%

CI [0.989; 0.991]). Both metrics of surrogacy are thus close to 1, which is not surprising

because the PANSS Total score is actually the sum of the items of the 5 subscales plus 5

additional items that are not part of these subscales (see Discussion). The high levels of

trial- and individual-level surrogacy indicate that the (treatment effects on) the PANSS

Total score can be highly accurately predicted based on the (treatment effects) on the

PANSS subscales. Figure 2 graphically illustrates the main results. Note that the 95%

CIs for R2
indiv are substantially more narrow than those for R2

trial. This is in line with

expectations, because R2
indiv is estimated at the level of the individual patients whereas

R2
trial is estimated at the level of the treating physicians. The number of patients is much

higher than the number of treating physicians (i.e., 1, 941 versus 126), and thus the CIs

are narrower.

Table 2 and Figure 2 only summarize the main results. A comprehensive table that

shows the estimated R2
trial and R2

indiv for all possible combinations of 1, 2, . . . , and 5

surrogates is provided in the online Appendix.

<Insert Table 2 about here>

<Insert Figure 2 about here>

5 Simulation study

A simulation study was conducted which aimed at (i) estimating the convergence rates

of the full multivariate mixed-effects modelling approach, and (ii) evaluating the bias,

efficiency and coverage of the 95% CIs of the estimated R2
trial and R2

indiv when using the

full multivariate mixed- and fixed-effects modelling approaches. The following true data-
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generating mechanism was assumed (based on Ong et al., 2022; Van der Elst et al., 2015):

S1ij = 450 +mS1i
+ (300 + aS1i

)Zij + εS1ij
,

S2ij = 460 +mS2i
+ (350 + aS2i

)Zij + εS2ij
,

S3ij = 470 +mS3i
+ (400 + aS3i

)Zij + εS3ij
,

Tij = 500 +mTi
+ (500 + bTi

)Zij + εTij
,

where (mS1i
,mS2i

,mS3i
,mTi

, aS1i
, aS2i

, aS3i
, bT ) ∼ N(0,D) with:

D =



1000 100 100 100 0 0 0 0

100 1000 100 100 0 0 0 0

100 100 1000 100 0 0 0 0

100 100 100 1000 0 0 0 0

0 0 0 0 1000 250 250 500

0 0 0 0 250 1000 250 500

0 0 0 0 250 250 1000 500

0 0 0 0 500 500 500 1000



,

and (εS1ij
, εS2ij

, εS3ij
, εTij

) ∼ N(0,Σ) with:

Σ =



300 75 75 150

75 300 75 150

75 75 300 150

150 150 150 300


.

The true R2
trial and R2

indiv both equal 0.5. Datasets were generated that included N =

10, 20, 50 trials with ni = n = 20 patients each. Treatment was balanced within a trial.

For each N , 1, 000 datasets were generated (so 3, 000 datasets in total). The full multivari-

ate mixed-effects model (1) and its full multivariate fixed-effects counterpart (see Section

3) were fitted to each of the generated datasets. Observe that the measurement error di-

mension (see Section 3.4) is not relevant here because the number of patients is balanced

across the trials. Thus, the use of a weighted or an unweighted Stage 2 model gives the

same results.
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The simulation study aims to mimic a scenario where an alternative clustering unit is

used to assess trial-level surrogacy (e.g., treating physician instead of clinical trial). Indeed,

in practice there are often insufficient clinical trials available and in such a scenario one

typically obtains many clusters with a relatively small sample size N (as was also the case

in the case study; see Section 4).

Convergence The first aim of the simulation study was to examine the extent to which

the full multivariate mixed-effects models properly converged. In line with Ong et al.

(2022), proper convergence was defined as convergence to a positive-definite D matrix

with a condition number below 100. The proper convergence rates for the analyses with

N = 10, 20, 50 trials equalled 14.2%, 97.5% and 100.0%, respectively. The convergence rate

was thus strongly impacted by the number of available trials, with high convergence rates

when the data of at least N = 20 trials are available (in line with earlier simulations in the

single surrogacy setting, see Buyse et al., 2000; Ong et al., 2022; Van der Elst et al., 2015).

Bias, efficiency and coverage The second aim of the simulation study was to examine

the bias (i.e., the mean difference between the estimated R2
trial / R2

indiv and their true

values), efficiency (i.e., the SD of the estimated values), and coverage (i.e., the probability

that the 95% CIs include the true R2
trial / R2

indiv values; the CIs were estimated using the

approach of Lee, 1971).

Table 3 summarizes the results. Overall, the results were similar for the full multivariate

mixed- and fixed-effects models – except for the bias in R2
trial, which was substantially

smaller in the mixed-effects model when N = 10 (i.e., bias = 0.220 versus 0.315 for the

mixed- and fixed-effects models, respectively). As expected, the bias decreased and the

efficiency improved (i.e., lower SDs of the estimated values) when the number of trials

increased (in line with earlier simulation studies in the single surrogate setting, see Ong

et al., 2022; Van der Elst et al., 2015). The bias remained however non-negligible when

N = 50. Fortunately, the coverage was close to 95% for all N that were considered. So

even though the point estimate is positively biased, the coverage was good even when the

number of trials was as small as 10.

For R2
indiv, the bias was small for all N . As expected, the efficiency improved when N
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increased. Further, coverage was again close to 95% for all N .

<Insert Table 3 about here>

Comparison with case study results Observe that the convergence rates of the full

multivariate mixed-effects models in the simulation study were substantially higher than

those in the case study. For example, in the simulation study there was 97.5% convergence

when N = 20. In contrast, none of the models that were considered in the case study

converged (even though N was as large as 126). This is probably attributable to the fact

that the data-generating mechanism and the analysis model are in perfect agreement in

the simulation setting (unlike in the case study, where the data-generating mechanism

is unknown). Moreover, in the simulation study, the between-cluster variability was large

(relative to the within-cluster variability) and the number of patients was perfectly balanced

across the trials. Previous simulation studies have shown that these conditions ameliorate

model convergence issues (Buyse et al., 2000; Ong et al., 2022; Van der Elst et al., 2015).

6 Discussion

At present, most surrogate endpoint evaluation methods allow for considering only one

S. Given the complex nature of many diseases and the various therapeutic pathways in

which a treatment can impact the clinical outcome, it seems reasonable to assume that

the prediction of the treatment effect on T can be substantially improved when multiple

surrogates (S) are considered rather than only a single one. An example was provided

in the case study, where the best single surrogate was only of moderate magnitude (i.e.,

R2
trial = 0.658 and R2

indiv = 0.652 for the Cognition subscale), whereas the multiple S

that considered all 5 subscales was an almost perfect surrogate at both the trial and the

individual levels (i.e., R2
trial = 0.989 and R2

indiv = 0.990).

The main aim of this paper was to generalize the gold-standard meta-analytic approach

to the setting where multiple surrogate endpoints are considered. As expected, model

fitting issues were prevalent when the full multivariate mixed-effects approach was used.

To overcome these issues, the simplified model fitting strategies that were proposed by

Tibaldi et al. (2003) in the single surrogate setting were generalized to the multiple surro-
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gate setting. The simulation study that was detailed in Section 5 indicated that the full

multivariate fixed- and mixed-effects modelling approaches yielded similar results – except

for the bias in R2
trial, which was substantially larger in the fixed-effects modelling approach

when N was small.

Some critical comments and suggestions for future research can be given. First, careful

reflection is needed on the candidate surrogate endpoints that are considered in the analyses.

Indeed, only endpoints for which there is substantial evidence of a causal relationship

with the treatment effects on T (in terms of the temporal, biological, and/or pathological

association) should be considered as candidate-surrogates the analysis (Buyse et al., 2022;

Ciani et al., 2017). The use of a more exploratory approach where a large number of

candidate surrogate endpoints (that have no clear causal association with T ) are ‘tried

out’ should be avoided – because such an approach could result in an over-fitted model

(due to false positives/Type I errors). Note also that the number of available clinical trials

(or alternative clustering units such as treating physician) sets limits to the number of

surrogate endpoints that can be jointly considered. For example, when N = 5 and a full

fixed-effects modelling approach is used, at most 2 surrogates can be considered in the

Stage 2 analysis.

On a related note, the R2
trial and R2

indiv estimates cannot decrease when additional

surrogates are added to the existing ones (as these metrics of surrogacy are essentially

coefficients of determination). The question may rise how large the increase in R2
trial and

R2
indiv should be to retain the additional candidate surrogate endpoint(s). This decision can

be based on formal statistical tests or informal information criteria (such as the LR-tests

and the AIC/BIC that were used in the case study), but more qualitative arguments can

also be taken into consideration. For example, adding additional surrogates may increase

the burden to the patients and/or the research nurses, the financial cost of conducting the

clinical trials, and the probability of having missing values. Experts in the field should

carefully balance the costs of considering additional surrogates against their benefits in

terms of increased prediction accuracy (i.e., the increase in the R2
trial and R2

indiv metrics).

Assam et al. (2010) formalized such an approach in a longitudinal meta-analytic surrogate

evaluation context. In particular, these authors specified an objective function that con-
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tained (i) a prediction accuracy component and (ii) a cost component (i.e., the financial

cost per additional repeated measurement of the surrogate). The objective function was

subsequently maximized to determine the optimal number of measurements, where the

importance of the prediction accuracy and the cost components can be gauged through

the use of weights. Similar ideas could be used in the multiple surrogacy setting that is

considered in the current paper, but this goes beyond the scope of the present work.

Second, the question may arise as to how high R2
trial and R2

indiv should be to conclude

that S is “valid”. It is however difficult to justify the use of a one-size-fits-all general cut-

off. Indeed, the appropriateness and usefulness of S does not only depend on its R2
trial

and R2
indiv values, but also on less formal considerations such as the time that is gained by

using S instead of T , the reduction in the burden/pain to the patient when considering S

instead of T , and so on. For example, Buyse et al. (2000) showed that Progression Free

Survival (PFS) is an excellent surrogate for Overall Survival (OS) in ovarian cancer (for

the treatments cyclophosphamide and cisplatin versus cyclophosphamide, adriamycin, and

cisplatin), with R2
trial = 0.940 and R2

indiv = 0.951. These authors nonetheless concluded

that the real-life usefulness of PFS as a surrogate for OS in ovarian cancer is quite limited

because both events occur in close temporal proximity to each other. On the other hand,

a surrogate with a more moderate R2
trial and R2

indiv can be very useful in practice when

it can be measured substantially earlier than the true endpoint. For example, consider a

clinical trial in early Alzheimer’s disease where T = change in cognition 5 years after the

start of treatment and S = tau pathology in different brain areas 1 year after the start of

treatment. Even if the R2
trial and R2

indiv metrics would be of a moderate magnitude (say,

around 0.60), S could still be useful in practice because it would substantially reduce the

time that is needed to conduct future clinical trials. So, instead of specifying a general

threshold value for R2
trial and R2

indiv that should always be exceeded to conclude that a

(multiple) surrogate endpoint is “valid”, it seems to make more sense that such threshold

values are determined on a case-by-case basis where medical experts, regulatory agencies,

and statistical experts provide input.

Third, an important difference between the single and multiple surrogate endpoint

evaluation frameworks is that model-building considerations become more prominent in
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the latter approach. Indeed, in the single surrogate setting only one S is considered and

thus no model-building is required (i.e., it is essentially assumed that the (treatment effects

on) S and T are linearly related – even though non-linear relations can be considered as

well in the single surrogate setting, see e.g., Assam et al., 2007). In the multiple surrogate

endpoint evaluation framework, several model-building strategies can be considered. A

forward selection approach was used in the case study analysis, but alternatively e.g., a

backward selection procedure or least absolute shrinkage and selection operator (LASSO)

regression could have been considered to conduct the model-building exercise. The use of

the latter method is illustrated in the online Appendix for the case study analysis.

On a related note, in the fixed-effects modelling approach the R2
trial value is obtained

by fitting model (7). It is thus assumed that the trial-specific treatment effects on T can be

predicted based on a linear combination of the main effects of the trial-specific intercepts

and treatment effects on S (the same assumption is essentially made in the mixed-effects

modelling approach where R2
trial is estimated based on the D matrix). Depending on the

setting at hand, more complex models might be considered. For example, in oncology the

effect of a treatment often depends on the treatment’s efficacy and its toxicity. In such

a setting, it might be sensible to include an interaction term between the trial-specific

treatment effects on the efficacy and toxicity surrogate endpoints in the Stage 2 model. An

example is provided in the online Appendix.

Fourth, the case study is somewhat unusual in the sense that S and T are based on the

same PANSS items (i.e., the PANSS Total score is the sum of the items of the 5 subscales

plus 5 additional items that are not part of these subscales), and are measured at the same

time. In most surrogacy settings, S and T are different endpoints (e.g., S = tau pathology

and T = cognition) and S is measured before T . The PANSS case study is thus a bit

atypical, but it was nonetheless used to illustrate the methodology in the current paper

because (i) the data are in the open domain, and (ii) this case study has already been

analysed in previous publications using different surrogate endpoint evaluation methods.

This has the advantages (i) that the results can be easily shared/published, and (ii) that

the current results can be compared with the results of previous analyses. For example,

Flórez et al. (2022) also used the PANSS case study to study multiple surrogacy using
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causal-inference methodology in the single-trial setting (one of the 5 clinical trials was used

in their analysis). These authors used the so-called Individual Causal Association (ICA)

to quantify the strength of the association between the individual causal treatment effects

on S and T (Van der Elst et al., 2019). The results of Flórez et al. (2022) are fully in line

with the current results. To illustrate this, Table 4 shows the medians of the distributions

of the ICA for different combinations of the PANSS subscales that were reported in Flórez

et al. (2022). Note that distributions of ICA are obtained (rather than point estimates),

because these authors used a sensitivity analysis to deal with the non-identifiability issues

that are encountered in the causal-inference framework. The table also shows the R2
trial

and R2
indiv estimates that were obtained using the full multivariate weighted fixed-effects

modelling approach. As can be seen, the median ICA values that were reported in Flórez et

al. (2022) are close to the R2
trial and R2

indiv estimates. Both analyses thus lead to the same

conclusions with respect to the appropriateness of S, despite the fundamentally different

statistical frameworks that are used in both approaches and their different assumptions

(sensitivity analysis).

<Insert Table 4 about here>

Fifth, different versions of the PANSS have been described in the literature (for an

overview, see Lindenmayer, 2017). The clinical trials that were considered in the case

study all used the same version of the PANSS (i.e., the original 30 item version that was

proposed by Lindenmayer et al., 1995). In a situation where different PANSS versions are

used, potential version effects should be taken into account in the analyses (as otherwise e.g.,

the trial-specific estimated treatment effects would no longer be comparable across clinical

trials). For example, conversion equations can be used to transform the PANSS (subscale)

scores across different versions (Grot et al., 2021). For psychometric scales for which such

conversion equations are not available in the literature, Item Response Theory-based test

equating methods can be used to make the different test versions more comparable. Indeed,

a key property of Item Response Theory is that the latent patient traits (here: symptom

severity levels of schizophrenia) are item – and thus test version – independent (for details,

see Embretson and Reise, 2000; Van der Elst et al., 2013).

Notice that issues with the lack of comparability of different measurement systems are
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not restricted to psychometric scales such as the PANSS, but can also be encountered in

various other settings. For example, the assays and laboratory protocols that are used to

measure COVID-19 antibodies or tau pathology are poorly standardized (Goldblatt et al.,

2022; Maass et al., 2017). For such endpoints, differences in the measurement systems also

have to be taken into account (by e.g., using conversion equations).

Finally, the methodology that was proposed in the present paper only deals with the

setting in which all endpoints are continuous normally distributed variables. The general-

isation of the methodology to other types of endpoints – i.e., any mix of binary, ordinal,

continuous normally distributed and time-to-event endpoints – is not straightforward. In

general, trial-level surrogacy can still be estimated with some small modifications of the

methodology. For example, suppose that all endpoints are binary. In such a scenario, the

univariate fixed-effects approach (see Section 3) can be adapted by fitting logistic regression

models for all endpoints (in Stage 1), after which the obtained trial-specific treatment ef-

fects on T are regressed on the trial-specific treatment effects on S (in Stage 2) to estimate

R2
trial. The estimation of individual-level surrogacy however becomes more challenging in

non-normal settings. Indeed, for continuous normally distributed endpoints, it is natural to

quantify R2
indiv based on the association between the residuals. Such a metric is however no

longer meaningful for non-normal endpoints. Depending on the particular combination of

the endpoints at hand, several approaches can be used to quantify R2
indiv. For example, in

the single surrogate setting where both S and T are binary, R2
indiv has been defined as the

squared correlation between two latent normally distributed variables that are assumed to

underlie the binary outcomes, or alternatively as the global odds ratio between the binary

endpoints as estimated using a bivariate Plackett-Dale model (Renard et al., 2002).

Different types of endpoints thus require different definitions of surrogacy in the meta-

analytic framework (in particular for the individual-level metrics), which do not necessarily

have the same interpretation or even lead to the same conclusion with respect to the appro-

priateness of S (Alonso et al., 2016). Fortunately, Alonso and Molenberghs (2007) proposed

an information-theoretic approach that allows for estimating individual-level surrogacy (as

well as trial-level surrogacy) for different types of endpoints in a unified way. This method

is highly flexible, and it can e.g., also be used in a setting where S and/or T are longitudinal
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measurements (Alonso et al., 2003). The information-theoretic approach can also be useful

in the setting where multiple non-normally distributed endpoints are considered, but this

is beyond the scope of the current paper.
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Supplementary Materials

The methodology that is proposed in this manuscript is implemented in the R package Sur-

rogate (available for download at https://CRAN.R-project.org/package=Surrogate).

An online Appendix that details the analysis of the case study using the R package Surro-

gate is also available.

Conflict of interest

Wim Van der Elst, Helena Geys and Lewin Eisele are employees of and hold shares in

Johnson & Johnson.

Acknowledgements

Fenny Ong gratefully acknowledges the support from the Special Research Fund (BOF)

of Hasselt University (BOF-number: BOF2OCPO3) and GlaxoSmithKline Biologicals for

this study. Florian Stijven gratefully acknowledges the support from Baekeland Mandaat

(HBC.2022.0145) and Johnson & Johnson Innovative Medicine.

25



References

Alonso, A., Geys, H., Molenberghs, G., and Kenward, M. G. (2003), "Validation of surro-

gate markers in multiple randomized clinical trials with repeated measures," Biometrical

Journal, 45, 931-945.

Alonso, A., Geys, H., Molenberghs, G., Kenward, M. G., and Vangeneugden, T. (2004),

"Validation of surrogate markers in multiple randomized clinical trials with repeated

measurements: canonical correlation approach," Biometrics, 60, 845-53.

Alonso, A. and Molenberghs, G. (2007), "Surrogate marker evaluation from an information

theoretic perspective," Biometrics, 63, 180-186.

Alonso, A. A., Van der Elst, W., Molenberghs, G., Buyse, M., and Burzykowski, T. (2015),

"On the relationship between the causal-inference and meta-analytic paradigms for the

validation of surrogate endpoints," Biometrics, 71, 15–24.

Alonso, A. A., Bigirumurame, T., Burzykowski, T., Buyse, M., Molenberghs, G., Muchene,

L., Perualila, N. J., Shkedy, Z., and Van der Elst, W. (2016), Applied surrogate endpoint

evaluation methods with SAS and R, New York: CRC Press.

American Psychiatric Association (2000), Diagnostic and Statistical Manual of Mental Dis-

eases, Washington, DC: American Psychiatric Association.

Assam, N. P., Tilahun, E. A., Alonso, A. A., and Molenberghs, G. (2007), "Information-

theory based surrogate marker evaluation from several randomized clinical trials with

continuous true and binary surrogate endpoints," Clinical trials, 4, 587–597.

Assam, N. P., Tilahun, E. A., Alonso, A. A., and Molenberghs, G. (2010), "Using earlier

measures in a longitudinal sequence as a potential surrogate for a later one," Computa-

tional Statistics & Data Analysis, 54, 1342–1354.

Bejanin, A., Schonhaut, D. R., La Joie, R., Kramer, J. H., Baker, S. L., Sosa, N., Ayakta,

N., Cantwell, A., Janabi, M., Lauriola, M., O’Neil, J. P., Gorno-Tempini, M. L., Miller,

Z. A., Rosen, H. J., Miller, B. L., Jagust, W. J., and Rabinovici, G. D. (2017), "Tau

26



pathology and neurodegeneration contribute to cognitive impairment in Alzheimer’s dis-

ease," Brain, 140, 3286–3300.

Blin, O., Azorin, J. M., and Bouhours, P. (1996), "Antipsychotic and anxiolytic properties

of risperidone, haloperidol and methotrimeprazine in schizophrenic patients," Journal of

Clinical Psychopharmacology, 16, 38–44.

Burzykowski, T., Molenberghs, G., and Buyse, M. (2005), The Evaluation of Surrogate

Endpoints, New York: Springer-Verlag.

Buyse, M., and Molenberghs, G. (1998), "The validation of surrogate endpoints in random-

ized experiments," Biometrics, 54, 1014–1029.

Buyse, M., Molenberghs, G., Burzykowski, T., Renard, D., and Geys, H. (2000), "The vali-

dation of surrogate endpoints in meta-analyses of randomized experiments," Biostatistics,

1, 49–67.

Buyse, M., Sargent, D. J., Grothey, A., Matheson, A., and de Gramont, A. (2010),

"Biomarkers and surrogate end points–the challenge of statistical validation. Nat. Rev.

Clin. Oncol.," 7, 309–317.

Buyse, M., Saad, E. D., Burzykowski, T., Regan, M. M., and Sweeney, C. S. (2022),

"Surrogacy beyond prognosis: the importance of ‘trial-level’ surrogacy," The Oncologist,

27, 266–271.

Ciani, O., Buyse, M., Drummond, M., Rasi, G., Saad, E. D., and Taylor, R. S. (2017),

"Time to review the role of surrogate end points in health policy: state of the art and

the way forward", Value in Health, 20, 487–495.

Chouinard, G., Jones, B., and Remington, G. (1993), "A Canadian multicenter placebo-

controlled study of fixed doses of risperidone and haloperidol in the treatment of chronic

schizophrenic patients, " Journal of Clinical Psychopharmacology, 13, 25–40.

Cortiñas Abrahantes, J., Molenberghs, G., Burzykowski, T., Shkedy, Z., and Renard D.

(2004). Choice of units of analysis and modeling strategies in multilevel hierarchical

models. Computational Statistics and Data Analysis, 47, 537–563.

27



Cortiñas, A. J., Shkedy, Z., and Molenberghs, G. (2008), "Alternative methods to evaluate

trial level surrogacy," Clinical trials, 5, 194–208.

Embretson, S. E., and Reise, S. P. (2000), Item response theory for psychologists, Mahwah,

NJ: Lawrence Erlbaum.

Flórez, A. J., Molenberghs, G., Van der Elst, W., Alonso, A. A. (2022), "An efficient

algorithm to assess multivariate surrogate endpoints in a causal inference framework,"

Computational Statistics & Data Analysis, 172, 1–12.

Freedman L. S., Graubard, B. I., and Schatzkin, A. (1992), "Statistical validation of inter-

mediate endpoints for chronic diseases," Statistics in Medicine, 11, 167–178.

Goldblatt, D., Fiore-Gartland, A., Johnson, M., Hunt, A., Bengt, C., Zavadska, D., Snipe,

H. D., Brown, J. S., Workman, L., Zar, H. J., Montefiori, D., Shen, X., Dull, P., Plotkin,

S., Siber, G., and Ambrosino, D. (2022), "Towards a population-based threshold of

protection for COVID-19 vaccines," Vaccine, 40, 306–315.

Grot S., Giguére C., Smine S., Mongeau-Pérusse V., Diem Nguyen D., Preda A., Potvin

S., van Erp T. G. M., Orban P. (2021), "Converting scores between the PANSS and

SAPS/SANS beyond the positive/negative dichotomy," Psychiatry Research, 305.

Hoyberg, O. J., Fensbo, C., Remvig, J., Lingjaerde, O. K., Slotei-Nielsen, M., and Salvesen,

I. (1993), "Risperidone versus perphenazine in the treatment of chronic schizophrenic

patients with acute exacerbations," Acta Psychiatrica Scandinavica, 13, 395–402.

Huttunen, M. O., Piepponen, T., Rantanen, H., Larmo, I., Nyholm, R., and Raitasuo,

V. (1995), "Risperidone versus zuclopenthixol in the treatment of acute schizophrenic

episodes: a double-blind parallel-group trial," Acta Psychiatrica Scandinavica, 91, 271–

277.

Johnson, R. A., and Wichern, D. W. (2007), Applied Multivariate Statistical Analysis, New

Jersey: Pearson Prentice-Hall.

Lee, Y. S. (1971), Tables of the upper percentage points of the multiple correlation.

Biometrika, 59, 175–189.

28



Lindenmayer, J. P., Bernstein-Hyman, R., Grochowski, S., and Bark, N. (1995), "Psy-

chopathology of schizophrenia: initial validation of a 5-factor model," Psychopathology,

28, 22–31.

Lindenmayer, J.P. (2017), "Are Shorter Versions of the Positive and Negative Syndrome

Scale (PANSS) Doable? A Critical Review," Innov Clin Neurosci, 14, 11–12.

Lindstrom, M. J., and Bates, D. M. (1988), "Newton-Raphson and EM algorithms for linear

mixed-effects models for repeated-measures data," Journal of the American Statistical

Association, 83, 1014–1022.

Maass, A., Landau, S., Baker, S. L., Horng, A., Lockhart, S. N., La Joie, R., Rabinovici,

G. D., Jagust, W. J. (2017), "Comparison of multiple tau-PET measures as biomarkers

in aging and Alzheimer’s disease", NeuroImage, 157, 448–463.

Ong, F., Wang, J., Van der Elst, W., Verbeke, G., Molenberghs, G., and Alonso, A.

A. (2022), "Implementing the meta-analytic approach for the evaluation of surrogate

endpoints in SAS and R: a word of caution," Journal of Biopharmaceutical Statistics,

32, 705–716.

Parast, L., Cai, T., and Tian, L. (2021), "Evaluating multiple surrogate markers with

censored data," Biometrics, 77, 1315–1327.

Peuskens, J. and the Risperidone Study Group (1995), "Risperidone in the treatment of

patients with chronic schizophrenia: a multi-national multi-centre, double blind, parallel

groups study versus haloperidol," British Journal of Psychiatry, 166, 712–726.

Prentice, R. L. (1989), "Surrogate endpoints in clinical trials: definitions and operational

criteria," Statistics in Medicine, 8, 431–440.

Renard, D., Geys, H., Molenberghs, G., Burzykowski, T., and Buyse, M. (2002), "Valida-

tion of surrogate endpoints in multiple randomized clinical trials with discrete outcomes,"

Biometrical Journal, 44, 921–935.

29



Singh, M., and Kay, S. (1975), "A comparative study of haloperidol and chlorpromazine in

terms of clinical effects and therapeutic reversal with benztropine in schizophrenia. Theo-

retical implications for potency differences amongst neuroleptics," Psychopharmacologia,

43, 103–113.

Tibaldi, F. S., Cortiñas Abrahantes, J., Molenberghs, G., Renard, D., Burzykowski, T.,

Buyse, M., Parmar, M., Stijnen, T., and Wolfinger, R. (2003), "Simplified hierarchical

linear models for the evaluation of surrogate endpoints," Journal of Statistical Compu-

tation and Simulation, 73, 643–658.

Van der Elst, W., Ouwehand, C., van Rijn, P., Lee, N., Van Boxtel, M. P. J., and Jolles, J.

(2013), "The shortened Raven Standard Progressive Matrices: Item Response Theory-

based psychometric analyses and normative data. Assessment," Assessment, 20, 48–59.

Van der Elst, W., Hermans, L., Verbeke, G., Kenward, M. G., Nassiri, V., and Molenberghs,

G. (2016), "Unbalanced cluster sizes and rates of convergence in mixed-effects models

for clustered data," Journal of Statistical Computation and Simulation, 86, 2123–2139.

Van der Elst, W., Alonso, A. A., Geys, H., Meyvisch, P., Bijnens, L., Sengupta, R.,

and Molenberghs, G. (2019), "Univariate versus multivariate surrogate endpoints in the

single-trial setting," Statistics in Biopharmaceutical Research, 3, 301–310.

Verbeke, G., and Molenberghs, G. (2000), Linear Mixed Models for Longitudinal Data, New

York: Springer-Verlag.

Xu, J., and Zeger, L. Z. (2001), "The evaluation of multiple surrogate endpoints," Biomet-

rics, 57, 81–87.

30



Tables

Table 1: Case study. Pearson correlations between the PANSS subscale scores and the

PANSS Total score in the active control (see panel [a]) and experimental treatment (see

panel [b]) arms.

[a] Active control

Neg Exc Cog Pos Dep Total

Neg 1.000 0.291 0.569 0.301 0.379 0.722

Exc 0.291 1.000 0.509 0.678 0.561 0.758

Cog 0.569 0.509 1.000 0.502 0.405 0.805

Pos 0.301 0.678 0.502 1.000 0.584 0.772

Dep 0.379 0.561 0.405 0.584 1.000 0.723

Total 0.722 0.758 0.805 0.772 0.723 1.000

[b] Experimental treatment

Neg Exc Cog Pos Dep Total

Neg 1.000 0.338 0.639 0.336 0.376 0.764

Exc 0.338 1.000 0.501 0.653 0.609 0.754

Cog 0.639 0.501 1.000 0.542 0.339 0.812

Pos 0.336 0.653 0.542 1.000 0.552 0.775

Dep 0.376 0.609 0.339 0.552 1.000 0.693

Total 0.764 0.754 0.812 0.775 0.693 1.000

Note. Neg = Negative symptoms, Pos = Positive symptoms, Cog = Cognitive symptoms,

Exc = Excitement, Dep = Depression, and Total = PANSS Total score.
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Table 3: Results of the simulation study. Bias, efficiency, and coverage for R2
trial and R2

indiv

in the full multivariate mixed- and fixed-effects modelling approaches.
Model fitted R2

trial R2
indiv

N Bias Efficiency Coverage Bias Efficiency Coverage

Full multivariate mixed-effects model 10 0.220 0.151 92.3% 0.008 0.055 92.3%

20 0.139 0.140 93.9% 0.004 0.036 94.8%

50 0.053 0.094 94.9% < 0.001 0.022 95.4%

Full multivariate fixed-effects model 10 0.315 0.143 93.9% 0.008 0.051 93.7%

20 0.135 0.137 94.1% 0.003 0.036 94.9%

50 0.052 0.092 95.3% < 0.001 0.022 95.3%

Table 4: Comparison of the results of the surrogacy analyses of Flórez et al. (2022) and

the current analyses.

Surrogates Results Flórez et al. (2022) Results current paper

considered ICA R2
trial R2

indiv

Pos 0.641 0.644 0.599

Pos, Cog 0.821 0.815 0.825

Neg, Pos, Cog 0.919 0.932 0.925

Neg, Pos, Cog, Dep 0.960 0.975 0.969

Neg, Pos, Exc, Cog, Dep 0.992 0.989 0.990
Note. Neg = Negative symptoms, Pos = Positive symptoms, Cog = Cognitive symptoms,

Exc = Excitement and Dep = Depression.
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Figure 1: Visual illustration of the R2
trial and R2

indiv results for the analysis with a multiple

surrogate S that consists of the Cognition and the Depression subscales. Panel [a] shows the

physician-specific treatment effects on the Cognition subscale, the Depression subscale, and

the PANSS Total score (see the black circles; the circumference of the circles is proportional

to the number of patients that are treated by a physician), supplemented with a fitted

regression plane that corresponds to a reduced weighted Stage 2 model (as the full model

cannot be shown in 3 dimensions; see the grey dashed lines). Panel [b] shows the residuals of

the Cognition subscale, the Depression subscale, and the PANSS Total score, supplemented

by a fitted regression plane (see the black circles and grey dashed lines, respectively).
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Figure 2: Results of the case study analysis. Estimated R2
trial (panel [a]) and R2

indiv (panel

[b]) for the best combinations of 1, 2, . . . , and 5 surrogates. The black crosses and grey

lines correspond to the point estimates and their 95% CIs, respectively.

Note. Neg = Negative symptoms, Pos = Positive symptoms, Cog = Cognitive symptoms,

and Dep = Depression.
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