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Abstract

In medical research, individual-level patient data provide invaluable information,
but the patients’ right to confidentiality remains of utmost priority. This poses a huge
challenge when estimating statistical models such as a linear mixed model, which is
an extension of linear regression models that can account for potential heterogeneity
whenever data come from different data providers. Federated learning tackles this
hurdle by estimating parameters without retrieving individual-level data. Instead,
iterative communication of parameter estimate updates between the data providers
and analysts is required. In this paper, we propose an alternative framework to
federated learning for fitting linear mixed models. Specifically, our approach only
requires the mean, covariance, and sample size of multiple covariates from different
data providers once. Using the principle of statistical sufficiency within the likelihood
framework as theoretical support, this proposed strategy achieves estimates identical
to those derived from actual individual-level data. We demonstrate this approach
through real data on 15 068 patient records from 70 clinics at the Children’s Hospital
of Pennsylvania (CHOP). Assuming that each clinic only shares summary statistics
once, we model the COVID-19 PCR test cycle threshold as a function of patient
information. Simplicity, communication efficiency, generalisability, and wider scope
of implementation in any statistical software distinguish our approach from existing
strategies in the literature.
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1 Introduction
Understanding and extracting useful information from data are some of the shared goals
between data providers and data analysts. However, both parties must also respect the
right to data privacy of individuals from whom the data were collected. This imposes
restrictions on how much and which kind of data can be disclosed by the data providers
to the data analysts.1 Consequently, this adds to the challenge of estimating statistical
models. For example, in health research involving patient data from different hospitals,
estimating a linear mixed model (LMM) to account for potential heterogeneity across
hospitals requires individual-level patient records. In the interest of data confidentiality,
hospitals might be reluctant to share the full data unless the data analyst goes through a
series of processes and paperwork, which may take considerable time.2

A possible compromise is to employ federated learning algorithms.3 In this setting, only
parameter estimate updates and not the individual-level data are sent by data providers to
a centralized server to build a global model.4 Prevalent models for which a federated learn-
ing algorithm was developed include linear regression,5 generalized linear mixed models,6,7

logistic regression, support vector machine (SVM), K-Means, neural network, Bayesian
network, and random forest.8,9 To implement this strategy, a network of computer connec-
tions that enable iterative communication between the data providers and data analysts
has to be set up. In practice, at least in the healthcare context, it is not easy to set up
such networks that fulfill the requirements conducive to federated learning.10–12

Instead of an iterative communication, data providers may be more willing to share sum-
mary data once. For a linear regression model, if these summary data contain sufficient
statistics, then model estimation is possible even when the individual-level data are un-
available.13 For a linear mixed model involving random effects per data provider, Luo et
al14 expressed the likelihood in terms of aggregate matrices, which in turn are composed
of sufficient statistics. They did this by applying the Woodbury matrix identity and lin-
ear algebra concepts. Since most of the existing functionalities in statistical softwares
require the individual observations as input, model estimation using summaries requires
the development of new functionalities. Luo et al14 developed an R package called pda15

to implement their proposed method, which they referred to as distributed linear mixed
model (DLMM), but its structure is in a distributed model estimation context. Specifi-
cally, in practice, data providers must send their aggregate matrices to a central online
server.

In the meta-analysis setting where the “data providers" are the relevant studies, there are
advantages to using individual participant data (IPD) over aggregate data (AD) when
estimating LMM especially when the number of studies is small.16,17 However, IPD is
seldom available from studies and so constructing a substitute for the unavailable IPD,
called pseudo-IPD, is an alternative. One strategy is to require the specification of the
joint distribution and correlation structure from which several sets of pseudo-IPD will
be sampled to obtain parameter estimates per set.16 These will then be aggregated to
arrive at a single estimate per parameter of interest. Since this method involves sampling
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from an assumed distribution whose parameters are based on the available AD, a point to
consider in practice is how many sets should be produced to achieve the desired accuracy.

Another approach requires only one set of pseudo-IPD to yield estimates exactly equal to
the actual IPD estimates.17 In this approach, pseudo-IPD are constructed by first gener-
ating random numbers from any distribution and then transforming them such that the
mean and standard deviation of the resulting data are exactly equal to those indicated
in the studies. Unlike DLMM which also yields exactly the same estimates as the actual
IPD estimates, this pseudo-IPD approach can be implemented in any statistical software
with existing linear mixed model functionalities. A limitation of the pseudo-IPD methods
though, in the context of meta-analysis, is that the covariance structure of the relevant
variables is rarely available from studies, thus making it difficult to include more covari-
ates in the model. In particular, their scope only includes studies with two treatments
or exposure groups. In the context of federated data, this is not a problem since data
providers like hospitals may be willing to supply the covariance structure of the variables,
aside from the mean vector.

In this paper, we apply the pseudo-IPD meta-analysis framework of Papadimitropoulou et
al17 to the federated data setting to estimate a linear mixed model with random effects per
data provider when only the mean, covariance, and sample size are made available once.
More importantly, we extend it so that multiple covariates can be included, distinguishing
our approach from theirs. This principle of using pseudo-data in the context of federated
data analysis is novel. To summarize the difference of our approach from those that
exist in the literature, we present Table 1. Among the existing methods, DLMM and our
proposed strategy employ the concept of sufficient statistics and are thus expected to yield
theoretically the same results. The major difference lies in how the sufficient statistics are
utilized: DLMM uses them directly in the re-expressed form of the likelihood, while we use
them to generate pseudo-data before feeding these into the classical form of the likelihood.
Hence, our proposed strategy may be considered as an alternative and is not necessarily
superior over DLMM; though it has some advantages in terms of generalisability and
implementation. The following points distinguish our approach from DLMM:

1. Extension to more complex models. The principle of generating pseudo-data
facilitates model building, performing post hoc procedures, and extension to more
complex models such as generalized linear models (GLMs) while keeping the com-
munication exchange with the data providers to just once. Although the idea of
DLMM has already been extended to GLMs, at least one communication exchange
is needed. In addition, in their current framework, only linear models have the
option to include random effects.18 On the contrary, we have found in our current
research work that it is possible to apply a similar principle of pseudo-data gener-
ation from one-time shared summary statistics to the other members of the GLM
family.

2. Practical implementation. Our proposed method makes use of the classical
form of the likelihood which feeds on individual observations. This is the basis for
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existing LMM functionalities in various statistical softwares. This means that after
the pseudo-data are generated, we can use any of the existing software programs
available to fit the mixed model. This is advantageous due to the strength of existing
functionalities for linear mixed modelling which can be found not only in R15 but
also in other statistical softwares. This implies that compared to pda,19 current
versions of existing software packages (e.g. lmer in lme420) have been optimized
in terms of numerical stability, computational efficiency, optimization algorithms,
and bugs fixing.20 Furthermore, user support is more available online for possible
problems that a user may encounter when using these existing functionalities. Thus,
utilizing these existing functionalities may be preferred by practitioners, if possible.

In the next section (2), we present the details of our proposed framework. We then
demonstrate it in Section 3 on deidentified publicly available real data consisting of the
results of COVID-19 testing at the Children’s Hospital of Pennsylvania (CHOP) in 2020
which can be found in the R15 package medicaldata.21 Finally, we discuss implications
as well as potential research directions in Section 4, before we close with a conclusion
(Section 5).

2 Methods

2.1 Principles of data reduction

This section briefly revisits the principles of data reduction, which are thoroughly dis-
cussed by Casella and Berger.22 We aim to draw insights about dealing with parameter
estimation given limited information. We begin with the sufficiency principle, which guar-
antees that the entire sample need not be available, as inferences about a parameter θ
can be derived from the sufficient statistic T (X), if it exists. In other words, even if the
only information known is T (x), inference about the parameter of interest θ can still be
made. In connection with our objective, if the data providers supply sufficient statistics
for the model of interest, which in this case is the linear mixed model, then parameter
estimation is still possible even without disclosing the individual-level data.

Once sufficient statistics are identified, if they exist, parameter estimation can then pro-
ceed by directly plugging in the sufficient statistics instead of the individual observations
into the log-likelihood of the model. An alternative strategy is to generate a sample x2

which is different from the original sample x1, but such that T (x1) = T (x2), and use x2

as input to the existing functionalities that estimate a linear mixed model. The sufficiency
principle will still guarantee that the same conclusion can be drawn even though x1 ̸= x2.
Casella and Berger22 explicitly mentioned that the conditional probability distribution
given a sufficient statistic T (x1) can be used to draw a sample x2 and generate equiva-
lent information about θ. However, they did not discuss how to obtain this probability
distribution in practice.
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To supplement the sufficiency principle, we use the likelihood principle (Appendix A.1).
Specifically, if we aim to exactly estimate a parameter through its likelihood based on x1

but only its sufficient statistic T (x1) is available, we can generate a sample x2 such that
T (x1) = T (x2) and use the likelihood based on x2 to estimate the parameter of interest.
To this end, the distribution that generated x2 becomes immaterial. In the succeeding
sections, we implement this idea. Specifically, we first identify the sufficient statistics and
then generate another sample which we refer to as pseudo-data such that the sufficient
statistics of the actual and pseudo-data are equal. We start with sufficient statistics for a
linear regression model and extend the idea to a linear mixed model.

2.2 Sufficient statistics for a linear regression model

The concepts presented in section 2.1 were demonstrated by Lee, Brown, and Ryan13 for
a linear regression model. In particular, given n observations, an intercept, and p − 1
predictors, if X denotes the n× p design matrix and y is the n× 1 vector of continuous
responses, the linear regression coefficients β are estimated as

β̂ = (XTX)−1XTy,

where knowing the aggregate information XTX and XTy instead of the individual-level
data X and y will still yield exactly the same regression coefficient estimates β̂. We
expand on this and explicitly show that the sample mean, sample covariance matrix, and
sample size are sufficient to produce the same parameter estimates as with using the
individual-level data. In addition to the work of Lee, Brown, and Ryan,13 we include
estimation of the variance

σ̂2
MLE =

1

n

n∑
i=1

(yi − xiβ̂)
2, or

σ̂2
OLS =

1

n− p

n∑
i=1

(yi − xiβ̂)
2.

For more specific details regarding the derivations, see Appendix A.2.

We begin by looking at the log-likelihood

l(β, σ2;y,X) = −n

2
ln(2π)− n

2
ln(σ2)− 1

2σ2

n∑
i=1

(yi − xT
i β)

2,

where xi is a vector representing the ith row in the design matrix X. We see here that
information from the sample is required only in the last term. Moreover, the sum of
squares of this term can be expressed as

n∑
i=1

(yi − xT
i β)

2 =
n∑

i=1

y2i − 2
n∑

i=1

yix
T
i β +

n∑
i=1

βTxix
T
i β.

5



From this, we find that knowing n,
∑n

i=1 y
2
i ,
∑n

i=1 yix
T
i , and

∑n
i=1 xix

T
i is sufficient to con-

struct the log-likelihood and estimate the parameters, even in the absence of individual-
level data. In particular,

∑n
i=1 yix

T
i and

∑n
i=1 xix

T
i are sufficient to estimate the co-

efficients β while the variance σ2 also requires
∑n

i=1 y
2
i in addition to the other two.

Furthermore, these values can be obtained from the vector of sample means and sample
covariance matrix of the response variable and the predictors. Specifically, performing
some algebraic manipulations will show that

∑n
i=1 y

2
i can be derived from the sample

variance s2y, the sample mean ȳ, and the sample size n

n∑
i=1

y2i = s2y(n− 1) + nȳ2.

For
∑n

i=1 yix
T
i , we note that it is a 1× p matrix[∑n
i=1 yi

∑n
i=1 yixi1

∑n
i=1 yixi2 ...

∑n
i=1 yixij ...

∑n
i=1 yixi(p−1)

]
,

such that the first element can be obtained from the sample mean ȳ while the rest of the
elements needs the sample covariance between y and each of the predictors (syxj

). Lastly,
since

∑n
i=1 xix

T
i is a p× p matrix

n
∑

i xi1 . . .
∑

i xi(p−1)∑
i xi1

∑
i x

2
i1 . . .

∑
i xi1xi(p−1)

...
... . . . ...∑

i xi(p−1)

∑
i xi(p−1)xi1 . . .

∑
i x

2
i(p−1)

 ,

performing similar derivations as above reveals that computing
∑n

i=1 xix
T
i only requires

the sample mean (x̄j), sample variance (s2xj
), and sample covariances among predictors j

and k (sxjxk
).

2.3 Sufficient statistics for a linear mixed model

A more realistic assumption when handling federated data is that the observations from
the same data provider are more similar than observations from different sources, violating
the independence assumption of a linear regression model. To account for this, a linear
mixed model is more appropriate. Assuming that there are m data providers, let yhi
be the continuous response of individual i from data provider h; xhi be a p-dimensional
vector consisting of an intercept and p − 1 predictors; β be the p-dimensional vector of
fixed effects; zhi be the q-dimensional vector corresponding to the q random effects; uh be
the q-dimensional random effects vector, which represents the deviation of data provider
h from the overall pattern; and ϵhi ∼ N(0, σ2) be the random error. For a linear mixed
model with random effects for each data provider, the model structure will be

yhi = xT
hiβ + zThiuh + ϵhi.

For a model with a random intercept and slope, q = 2, zhi = [1, zhi] and uh ∼ N(0,G)
where G is the 2 × 2 random effects covariance matrix. To estimate parameters, the
marginal log-likelihood used is
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l(β, σ2,G;y,X) = −1

2

m∑
h=1

{log|Σh|+(yh −Xhβ)
TΣ−1

h (yh −Xhβ)},

where Xh and yh are the design matrix and response vector, respectively, of data provider
h, |.| is the matrix determinant and Σh = Σh(σ

2,G) = ZhGZT
h + σ2Inh

. Due to the
seemingly entangled data and parameter matrices, it is not straightforward to identify
the aggregate statistics that can be used when the individual-level data are not available.
Luo et al14 showed that by utilizing the Woodbury matrix identity and some linear algebra
concepts, the data can be disentangled from the parameters to reconstruct the profile log-
likelihood. In their approach, only aggregate matrices XT

hXh, XT
hyh, yT

hyh, and nh from
each data provider h are required to produce identical estimates as those produced with
the individual-level data. We have shown in the previous section that these aggregate data
can actually be derived from the sample mean, sample covariance matrix, and sample size
of each data set. Therefore, these summary statistics per data provider (e.g. per hospital)
are also sufficient to estimate a linear mixed model in the absence of individual-level data.

2.4 Proposed method

In this section, we provide details for creating the pseudo-data for a single variable and
then extend it to a set of variables. As mentioned earlier, we opt to use these pseudo-
data as input to the model estimation process rather than directly utilizing the sufficient
statistics so that we can still use the existing linear regression or linear mixed model
functionality in any statistical software such as the lmer function in the R package lme4.20

2.4.1 Single variable

The goal of constructing pseudo-data for linear models is to have exactly the same sample
mean and variance as the original unavailable individual-level data. We do this by per-
forming a linear transformation. For instance, suppose the original univariate sample xd

is unknown, but its sample mean x̄d and sample standard deviation sd are available. We
consider a linear transformation of a randomly generated data set xr into pseudo-data xπ

which has equal mean and standard deviation as xd. To this end, we let

xπi
= a+ bxri ,

where xr can come from any distribution and has sample mean x̄r and sample standard
deviation sr. Examining the relationship between the mean of the randomly generated
data x̄r and that of the transformed data x̄π, we find that

x̄π = a+ bx̄r,

while for the variances:

s2π = b2s2r,
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from which we find that to obtain identical means x̄d = x̄π and standard deviations
sd = sπ between the original unknown data xd and the pseudo-data xπ, we should let

b =
sπ
sr

=
sd
sr
, and

a = x̄π −
sπ
sr
x̄r = x̄d −

sd
sr
x̄r,

so that

xπi
= x̄d + sd

xri − x̄r

sr
.

In summary, the algorithm to generate pseudo-data for a single variable is:

1. Generate n random numbers xr from any distribution.

2. Compute the sample mean x̄r and sample standard deviation sr of xr.

3. Transform xr into the desired pseudo-data xπ using:

xπi
= x̄d + sd

xri − x̄r

sr
,

where x̄d and sd are the sample mean and sample standard deviation, respectively,
of the original unavailable data.

2.4.2 Set of variables

The strategy to construct pseudo-data for more than one variable is analogous to that for
a single variable. Ripley23 presents an approach for multivariate normal distribution, but
for our case, we do not have to impose normality on the pseudo-data nor on the initial set
of random numbers. We just have to ensure that the resulting pseudo-data has exactly
the same sample mean vector and sample covariance matrix as the individual-level data.
Thus, from the algorithm for a single variable, we replace x̄d with the sample mean vector
for all variables (µ̂d). As for sd, we take the Cholesky decomposition of the covariance
matrix of all variables (Σ̂d). Note that for a multiple linear regression or a linear mixed
model, the set of variables comprises both the predictors and the response variable. The
following algorithm provides a summary to generate pseudo-data with sample size n for
p variables consisting of p− 1 predictors and a continuous response variable:

1. Generate random numbers R = [r1, ..., ri, ...rn]
T which is an n × p matrix where

each column is generated independently from any distribution.

2. Compute the mean vector µ̂r and the covariance matrix Σ̂r of R.

3. Generate the ith pseudo-data point as

πi = µ̂d + LΣ̂d
(LΣ̂r

)−1(ri − µ̂r),

where LΣ̂d
and LΣ̂r

are the lower triangular matrices of the Cholesky decomposition
of Σ̂d and Σ̂r. Here, πi is the pseudo-data vector consisting of the response variable
and the predictors; that is, [yπi

, xπi1
, ..., xπij

, ..., xπi(p−1)
]T .
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An issue that arises with using the Cholesky decomposition is the need to have a positive
definite covariance matrix. In practical settings, especially when there are binary variables
involved, this may not be true. An alternative procedure is to perform a singular value
decomposition (SVD) on the centered values of R to obtain the matrix of right singular
vectors denoted as V. SVD can always be performed on any rectangular matrix such as
this n× p matrix R. The product of R and V is then computed and the resulting matrix
elements are then divided by the root mean square

√∑
i x

2
rvij

/(n− 1) of each column j.
Denoting this as RV, the ith pseudo-data point is then generated as

πi = µ̂d +UΛ1/2rvi ,

where U is the matrix of eigenvectors of Σ̂d and Λ1/2 is a diagonal matrix whose elements
are the square root of the eigenvalues of Σ̂d. Eigendecomposition only requires that the
matrix is diagonalized. Since a covariance matrix is always symmetric, it follows that it
is always diagonalized and thus eigenvectors and eigenvalues can always be computed.

This alternative procedure is implemented by the function mvrnorm in the R package
MASS24 where each column of R is generated from a standard normal distribution. The
user may wish to explore using a different distribution such as a uniform distribution to
generate R by slightly altering the code for this function. Note that mvrnorm returns
an error whenever the sample size of the pseudo-data n is smaller than the number of
variables p. The reason behind this is that the function svd used in mvrnorm returns
a reduced matrix V, affecting the dimension of the matrix RV and making the matrix
multiplication incompatible. We modified this setting so that the full SVD is returned.
This R code is available on the Github repository related to this paper.

3 An illustrative example: COVID-19 testing at CHOP
We demonstrate the proposed approach on a real dataset: the COVID-19 testing results
from different clinics at the Children’s Hospital of Pennsylvania (CHOP). It is a publicly
available and deidentified dataset consisting of all patients who got tested at the hospital,
and can be accessed from the R package medicaldata21. This dataset provides informa-
tion about patients at CHOP who got tested for COVID-19 from days four to 107 of the
pandemic in 2020. A total of 88 clinics from this hospital provided 15 524 patient records
which were anonymized, time-shifted, and permuted. The COVID-19 test was performed
via PCR. For a description of the variables, the reader may refer to the documentation of
the medicaldata21 package which is available online. Since we have access to the entire
individual-level data, we will demonstrate how data providers can preprocess their raw
data to achieve the expected summary data for our proposed method. In general, the
data provider must supply the name and a brief description of each variable, the number
of observations and mean per variable, and the sample covariance matrix. For model
selection purposes, they must also provide the summary statistics for the standardized
version, log- and squared transformations of the numeric variables, as well as for the two-
way interactions among the variables. We illustrate these using R software, but these
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results can also be implemented using any other statistical software.

Suppose we are interested in how factors such as gender, age, and whether the specimen
was collected in a drive-thru site affect the cycle at which threshold reached during PCR
(numeric variable from 14 to 45). For this data set, the cycle threshold is the response
variable while gender, age, drive thru indicator, and an interaction term for age and gen-
der are the predictors. The cycle at which threshold reached during PCR is a measure of
how much amplification is necessary to detect the target viral gene, and is inversely pro-
portional to viral load.25 This means that if more cycles are needed to detect a viral gene,
then the presence of the viral gene is less likely. Some studies found a negative correlation
between the cycle threshold and disease severity26 and mortality among patients.27 In
this illustrative example, we will model how the aforementioned regressors influence this
measure to hypothesize about the clinical outcomes among patients at CHOP.

3.1 Preliminary analysis by the data provider

Each data provider should supply the data analyst with a good overview of all the avail-
able variables. The data provider may use the function skim from the R package skimr28

to accomplish this. Since the CHOP data from R is already composed of the pooled
individual-level records from all 88 clinics, applying the aforementioned function covers
all clinics already. Table 2 displays the metadata for all 88 clinics having a total of 15 524
patient records during the COVID-19 pandemic in 2020.

Our proposed method assumes that the summary data per data provider were computed
from complete observations. Additionally, for categorical variables, the data provider must
also indicate the levels. For instance, for binary variables such as gender, the variable
name in the summary data must reflect the non-reference category (e.g. gendermale).
For this dataset, of the 88 clinics, only 70 clinics with a total of 15 068 observations
were included in the analysis after filtering out incomplete observations and invalid values
such as NA. Those clinics with only one observation were removed as well because in a
federated data setting, it is not so common for a data provider (e.g. a clinic) to have
only one patient. Moreover, even if a clinic with only one patient exists, summarizing the
data does not make sense and neither does handing over the single patient record to the
data analyst because it goes against that patient’s right to data confidentiality. Should
the clinic do so after fulfilling some legal requirements to ensure privacy, this observation
itself can be combined with the generated pseudo-data. In the Github repository related
to this paper, we provide an R code for preprocessing this data set. As an example, Table
3 displays the summary statistics for the Inpatient Ward A clinic at CHOP as well as the
covariance matrix for the variables we are including in our model.

3.2 LMM estimation by the data analyst

After receiving the sufficient statistics from the data providers, the data analyst formu-
lates the linear mixed model. To study the relationship between COVID-19 PCR test
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cycle threshold and patient information namely gender, age, their interaction, and the
drive thru indicator, we fit two linear mixed models: one with only a random intercept
per clinic and another with a random intercept and a random slope for age. This allows
variations in mean cycle threshold and age effects across the clinics. We use the logarithm
of the cycle threshold to ensure nonnegative values for this variable and we standardize
age to avoid numerical problems during the optimization of the log-likelihood. One set
of pseudo-data was generated for each clinic using the proposed method. Using the lmer
function in the R package lme4 on the pseudo-data and on the actual data, we estimate
the parameters of the model. Table 4 displays the results for the model with only a
random intercept while Table 5 presents the estimates for an LMM with an additional
random slope for age. For both models, we find that only the scaled residuals are differ-
ent between the LMM using pseudo-data and using actual data. This is expected since
residuals are computed from individual observations and thus cannot be reproduced from
a different set of values such as the pseudo-data. Additionally, we can reproduce the AIC
and confidence intervals, as shown in the same tables. We select the model with both
random intercept and random slope since it has lower AIC and BIC values.

From the estimates of the selected model, we observe that among the fixed effects, the
interaction of gender and age significantly affect the cycle threshold, whereas drive-thru
testing does not. This significant interaction effect indicate that the overall impact of a
patient’s gender on the log cycle threshold also depends on the age group of the patient,
and vice versa. Moreover, since the effects of age are allowed to vary across clinics, the in-
terpretation also varies per clinic. For instance, for a male patient who belongs to clinic h
and is one standard deviation or around 16 years older, the log cycle threshold changes by
−0.0057 + bageh . If he belongs to the Inpatient Ward A, the log cycle threshold decreases
by 0.008. On the other hand, a female patient belonging to the same clinic is expected
to have 0.003 decrease in log cycle threshold for every one standard deviation increase
in age. This suggests that for this clinic, older patients tend to have more viral load,
although the difference across age groups is slightly more pronounced among males and
among females. Note that this per clinic interpretation is also supported by our proposed
approach since the random effects prediction are exactly equal to those derived from the
actual data. Lastly, the estimated variance components of the random effects suggest that
there is not much variation across the clinics.

4 Discussion
In this paper, we have demonstrated that data privacy in a federated data setting can be
achieved not only through machine learning algorithms but even through age-old statis-
tical concepts such as sufficiency and likelihood. These principles enable data reduction
without losing important information about the parameter of interest. Specifically, since
the sufficient statistics already contain the information required to estimate the param-
eters of a statistical model, data providers do not have to share individual observations
anymore. This approach is very useful and applicable to settings where individual-level
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data are too sensitive to be shared, such as patient data from hospitals. For a linear
regression model and a linear mixed model, this is true since their sufficient statistics
exist. For other more complex models such as generalized linear models with and without
random effects, this may not be as straightforward.

Since our approach produces identical estimates as those obtained from pooling the
individual-level records across multiple data providers, we have confidence that our es-
timates are as good as the estimates that the established estimation techniques claim.
Among the methods proposed in the literature, maximum likelihood (ML) and resid-
ual or restricted maximum likelihood (REML) have become the standard methods for
estimating the parameters of a linear mixed model.29 However, between these two, ML
estimators do not account for the degrees of freedom lost when estimating the fixed effects,
resulting in biased variance parameter estimates towards the null, especially for small sam-
ples.30,31 For this reason, REML estimation of the variance parameters is preferred over
ML. Moreover, REML estimators have shown improved properties whenever the number
of clusters is small,32,33 which suffers from finite sample bias more than models involving
small cluster sizes.34 Despite these desirable properties, REML does not completely solve
the issues related to inflated Type I error rates for fixed effects.35 To address this, the
Kenward-Roger correction has been recommended as best practice in the literature since
it has been shown to maintain nominal Type I error rates.32 Due to the nature of our
proposed strategy, versatility in specifying the estimation procedure (ML or REML) and
applying corrections (e.g. Kenward-Roger) whenever the sample size is small can be easily
implemented with identical results as with the actual observations.

In contrast to the study of Luo et al14 which also yields exactly the same estimates for
LMM, our approach is a simple one and thus can more easily be implemented in prac-
tice. Another advantage of our proposed framework is that we do not need to specify
a distribution from which the pseudo-data come from, unlike the method proposed by
Song et al.16 Additionally, the concept can be applied using any statistical software that
can estimate LMM, thus enabling a wider scope of implementation. Another edge we
have is the computational efficiency of generating only one set of pseudo-data compared
to methodologies that simulate data multiple times and aggregate the estimates to form
a single parameter estimate. As a consequence, we are spared from the question of how
many simulations to run and which aggregation method to best implement. Lastly, in
contrast to federated learning algorithms in the literature, our approach does not require
more than one communication iteration between the data providers and data analyst,
nor do we need to set up a network among the databases. Hence, we are significantly
minimizing, if not totally eliminating, the risk of disclosing sensitive data.

A limitation of our proposed approach is the inability to compute residuals, which re-
quire individual response values from the original data. The pseudo-data we generate,
although similar in some characteristics to the original, cannot be used to compute resid-
uals. Thus, model diagnostics through residual plots cannot be performed. In general,
even when the individual-level data are available, model checking through residual anal-
ysis is a non-trivial task.36,37 This is especially true for visual assessment because of the
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element of subjectivity and the difficulty in discerning patterns when the sample size is
very large, which is important when deciding possible corrective measures.38 Formal tests
on residuals, on the other hand, can become very sensitive to large samples, which may
lead to falsely concluding violations of the assumption. Hence, a good recourse is to be
aware of (1) the consequences of potential violations of the model assumptions and (2)
possible remedies to mitigate these consequences.

To begin with, the normality assumption on the residuals has the least impact on tests and
inference derived from linear regression39–41 and linear mixed models42 as long as outliers
are handled properly. Specifically for linear mixed models, inference on the fixed effects
remain valid even when the random effects do not follow a normal distribution.43 Gel-
man and Hill41 do not recommend checking the residuals for normality while Galecki and
Burzykowski43 note that normality is not important for ordinary least squares although it
is for maximum likelihood estimation. On the contrary, heteroscedasticity affects the stan-
dard errors of the parameter estimates of a classical linear regression model even though
the point estimates remain unbiased.44 This affects confidence interval construction as
well as inference about the covariate effects. One way to address this without altering
the interpretation of effects through variable transformation45,46 is by using robust stan-
dard errors.47 We can show that with additional summary statistics namely the third
and fourth joint sample moments, our approach can also achieve identical robust variance
estimates as the ones derived from actual data (Appendix A.3; sample code also available
in Github). Analogously, a robust or empirical variance estimator has been proposed for
linear mixed models and has been shown to be consistent under misspecification of the
correlation structure as long as the mean is correctly specified.48

Validity, additivity and linearity, and independence of errors are the top most important
assumptions when utilizing linear regression models.41 Although these cannot be evalu-
ated in our proposed framework, model selection procedures may help mitigate the impact
of violations to these assumptions, if they exist. Harrell38 proposed fitting a flexible para-
metric model that allows for most departures from the assumptions as an alternative to
residual analysis. In light of our proposed strategy, selecting from candidate models that
consider potential violations is recommended in practice (e.g. considering different com-
bination of regressors, polynomial terms). The independence assumption may be relaxed
by considering a random effects model instead of the classical linear regression model.

Another consequence of our approach is the inability to perform training and testing since
partitioning the original data is not possible. As a result, model validation would not be
an option, and predictive accuracy of the resulting model might be difficult to assess. A
potential remedy is to generate pseudo-data which embodies the statistical properties of
the original data more closely than just having identical summary statistics such as the
mean vector and covariance matrix. Several studies present different strategies to gen-
erate and analyze synthetic data from a statistical disclosure control perspective as well
as from a machine learning perspective,49–52 but these would of course not be as simple
anymore and would require more data processing from the data providers’ end.
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An interesting point to consider is the impact of rounding off sufficient statistics. In the
current implementation of the proposed framework, we assume that the mean vector and
covariance matrix from each data provider contain the exact values and not the rounded
off values. In practice, these sufficient statistics may be rounded off to a few decimal
places. To examine this, we implemented the proposed approach on sufficient statistics
that were rounded off to two decimal places. We observed that there were only slight
differences in the model estimates when compared to using the exact values of the suffi-
cient statistics (e.g. the difference starts from the third decimal place). The direction of
effect and the overall inference also remained the same. This suggests that the method
is robust to rounded values of the sufficient statistics in this setting, although a more
thorough sensitivity analysis is encouraged to draw more conclusive findings.

A field related to federated learning is meta-analysis. Like federated learning, meta-
analysis aims to build a global model that synthesizes information from multiple studies.
Since meta-analysis dates back to as early as 197653 while federated learning is fairly
recent,54 it is worthwhile to explore meta-analysis techniques in addressing the chal-
lenges of a federated data setting. Traditionally, meta-analysis directly utilizes the aggre-
gated information from studies. These techniques are called aggregate data meta-analysis
(ADMA). However, individual participant data meta-analysis (IPDMA) is now regarded
as the “gold standard", but accessing individual-level data remains an obstacle.55 The
work of Papadimitropoulou et al17 involving pseudo-IPD thus provides a good solution
to performing IPDMA even when studies only include aggregate information. Because
of its similarity to a meta-analysis setting, the federated data setting also benefits from
this framework. In contrast to a meta-analysis setting though, multiple variables can be
included in a federated data setting because data providers may be more willing to share
the covariance structure of the variables.

Some future research avenues include dealing with missing data and generating suffi-
cient statistics for interaction terms and transformed variables e.g. log- and quadratic-
transformed variables, from the sufficient statistics of the main variables. Presently, our
approach assumes that the data providers hand over summary data for complete observa-
tions. They must also supply the sufficient statistics for the transformed variables and for
possible interaction terms on top of those for the main variables. Currently, the authors
are working on generalized linear models with and without random effects wherein we find
the potential of extending the idea of pseudo-data generation that matches the summary
statistics of the actual data.

5 Conclusion
In this paper, we have demonstrated that parameter estimation of a linear mixed model
can be performed on federated data by generating pseudo-data from the sample size,
mean vector, and covariance matrix supplied by each data provider. The principles of
statistical sufficiency and likelihood provide a good theoretical support to the validity of
the proposed framework. Estimates achieved from this approach are identical to those
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obtained from the actual individual-level data, which are difficult to access due to privacy
reasons. Simplicity, computational and communication efficiency, and potentially wider
scope of implementation through any statistical software distinguish our approach from
the existing strategies in the literature. Extending this approach to generalized linear
mixed models is a current work in progress.
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8 Tables

Table 1: Difference of proposed strategy from existing methods

Aspect Our Federated DLMM pseudo-IPD
approach learning in meta-analysis

Input one set of parameter estimate aggregate at least one set
pseudo-data updates until data of pseudo-data
with identical convergence matrices with similar
sufficient statistics sufficient statistics
as actual data as actual data

Number of multiple multiple multiple one/limited
covariates

Estimation use pseudo-data global model is likelihood is rewritten same as our
strategy as substitute to estimated iteratively in terms of aggregate approach but

actual unavailable from local parameter matrices instead of repeated multiple
data estimates of individual observations times; estimates

data providers aggregated
into one

Theoretical estimates identical to close to identical to close to
produced estimates from estimates from estimates from estimates from

actual data actual data actual data actual data

Communication rounds once more than once once once
between data providers
and data analyst

Infrastructure none central server must be online server where none
requirements connected to data data providers send

providers’ databases aggregate matrices

Software any statistical TensorFlow Federated, R package pda15 any statistical
implementation software with OpenFL, PySyft software with

LMM functionality LMM functionality
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Table 2: Metadata of all clinics at CHOP

Variable Type Number of Complete Number of Number of
name missing observations rate empty cells unique values
Fake first name char 0 1.00 0 832
Fake last name char 0 1.00 0 27
Gender char 0 1.00 0 2
Test ID char 0 1.00 0 2
Clinic name char 0 1.00 0 88
Result char 0 1.00 0 3
Demographic group char 0 1.00 0 5
Payor group char 7087 0.54 0 7
Patient class char 7077 0.54 0 9
Subject ID num 0 1.00 - -
Day of
pandemic num 0 1.00 - -
Age num 0 1.00 - -
Drive thru
indicator num 0 1.00 - -
Cycle threshold
result num 209 0.99 - -
Orderset num 0 1.00 - -
Collection to
receive time num 0 1.00 - -
Receive to
verification time num 0 1.00 - -

Table 3: Summary statistics for the Inpatient Ward A clinic at CHOP

Variable n Mean Variance-Covariance
name log of Cycle Gendermale Age Drive thru Gendermale ×

threshold Age
log of Cycle threshold 208 3.803 0.001 0.001 0.001 0.000 -0.001
Gendermale 208 0.529 0.001 0.250 0.053 0.002 0.369
Age 208 1.373 0.001 0.053 10.506 0.003 6.621
Drive thru 208 0.005 0.000 0.002 0.003 0.005 0.006
Gendermale × Age 208 0.779 -0.001 0.369 6.621 0.006 7.085
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Table 4: Comparison of LMMs with random intercept only based on pseudo-data and
based on actual CHOP data.

pseudo-data actual data
Est(std. err.) 95% CI Est(std. err.) 95% CI

(Intercept) 3.7871 (0.0039)*** ( 3.7793, 3.7949 ) 3.7871 (0.0039)*** ( 3.7793, 3.7949 )
Gendermale 0.0021 (0.0020)*** (-0.0018, 0.0060 ) 0.0021 (0.0020)*** (-0.0018, 0.0060 )
Std. Age -0.0046 (0.0015)*** (-0.0076, -0.0015) -0.0046 (0.0015)*** (-0.0076, -0.0015)
Drive thru -0.0043 (0.0058)*** (-0.0156, 0.0071 ) -0.0043 (0.0058)*** (-0.0156, 0.0071 )
Gendermale × Std. Age -0.0061 (0.0020)*** (-0.0100, -0.0022) -0.0061 (0.0020)*** (-0.0100, -0.0022)
σInt 0.0216*** ( 0.0160, 0.0282 ) 0.0216*** ( 0.0160, 0.0282 )
σ 0.1222*** ( 0.1208, 0.1235 ) 0.1222*** ( 0.1208, 0.1235 )
REML criterion at convergence -20473 -20473
Scaled residuals:

Min -4.5919 -9.3287
Q1 -0.5773 0.1482
Median 0.0249 0.2174
Q3 0.5760 0.2538
Max 3.7464 1.1855

AIC -20459.04 -20459.04
BIC -20405.70 -20405.70
n 15068 15068
number of clinics 70 70
∗∗∗p < 0.001; ∗∗p < 0.01; ∗p < 0.05

Table 5: Comparison of LMMs with random intercept and random slope for age based on
pseudo-data and based on actual CHOP data.

pseudo-data actual data
Est(std. err.) 95% CI Est(std. err.) 95% CI

(Intercept) 3.7851 (0.0045)*** ( 3.7762, 3.7942 ) 3.7851 (0.0045)*** ( 3.7762, 3.7942 )
Gendermale 0.0021 (0.0020)*** (-0.0018, 0.0060 ) 0.0021 (0.0020)*** (-0.0018, 0.0060 )
Std. Age -0.0005 (0.0037)*** (-0.0081, 0.0074 ) -0.0005 (0.0037)*** (-0.0081, 0.0074 )
Drive thru -0.0038 (0.0059)*** (-0.0152, 0.0077 ) -0.0038 (0.0059)*** (-0.0152, 0.0077 )
Gendermale × Std. Age -0.0052 (0.0020)*** (-0.0092, -0.0013) -0.0052 (0.0020)*** (-0.0092, -0.0013)
σInt 0.0249*** ( 0.0185, 0.0323 ) 0.0249*** ( 0.0185, 0.0323 )
σAge 0.0128*** ( 0.0080, 0.0190 ) 0.0128*** ( 0.0080, 0.0190 )
ρuInt,uAge -0.1000*** (-0.5797, 0.3917 ) -0.1000*** (-0.5797, 0.3917 )
σ 0.1219*** ( 0.1205, 0.1233 ) 0.1219*** ( 0.1205, 0.1233 )
REML criterion at convergence -20513.2 -20513.2
Scaled residuals:

Min -4.7364 -9.3604
Q1 -0.5789 0.1229
Median 0.0241 0.2030
Q3 0.5777 0.2560
Max 3.7682 1.8698

AIC -20495.15 -20495.15
BIC -20426.57 -20426.57
n 15068 15068
number of clinics 70 70
∗∗∗p < 0.001; ∗∗p < 0.01; ∗p < 0.05
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A Appendix

A.1 Likelihood principle

Another principle of data reduction discussed by22 is the likelihood principle. Stated more
formally,

“If x1 and x2 are two samples such that the likelihood L(θ|x1) is proportional
to L(θ|x2), that is, there exists a constant C(x1,x2) such that

L(θ|x1) = C(x1,x2)L(θ|x2)

then the conclusions drawn from x1 and x2 should be identical.”

They demonstrated this principle for the case of a normal distribution and showed that
the likelihood of a parameter µ given a sample x1 (L(µ|x1)) can be exactly equal to the
likelihood of the same parameter given another sample x2 (L(µ|x2)) if their sample means
are equal (x̄1 = x̄2).

A.2 Showing the sufficient statistics for a linear regression model

Given n observations, an intercept, and p − 1 predictors, if X denotes the n × p design
matrix and y is the n× 1 vector of continuous responses, the linear regression coefficients
β and the variance σ2 can be estimated through the log-likelihood

l(β, σ2;y,X) = −n

2
ln(2π)− n

2
ln(σ2)− 1

2σ2

n∑
i=1

(yi − xT
i β)

2

where xi is a vector containing the ith row in the design matrix. We see here that
information from the sample is required only in the last term. Moreover, the sum of
squares of this term can be expressed as

n∑
i=1

(yi − xT
i β)

2 =
n∑

i=1

(y2i − 2yix
T
i β + (xT

i β)(x
T
i β)

T ).

Since xT
i β is just the dot product of two vectors xi and β, commutativity applies such

that the equation above can also be written as
n∑

i=1

(yi − xT
i β)

2 =
n∑

i=1

(y2i − 2yix
T
i β + (βTxi)(β

Txi)
T )

which when simplified further yields
n∑

i=1

(yi − xT
i β)

2 =
n∑

i=1

(y2i − 2yix
T
i β + βTxix

T
i β)

=
n∑

i=1

y2i − 2
n∑

i=1

yix
T
i β +

n∑
i=1

βTxix
T
i β
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From this, we find that knowing n,
∑n

i=1 y
2
i ,
∑n

i=1 yix
T
i , and

∑n
i=1 xix

T
i is sufficient to con-

struct the log-likelihood and estimate the parameters, even in the absence of individual-
level data. In particular,

∑n
i=1 yix

T
i and

∑n
i=1 xix

T
i are sufficient to estimate the co-

efficients β while the variance σ2 also requires
∑n

i=1 y
2
i in addition to the other two.

Furthermore, these values can be obtained from the vector of sample means and sam-
ple covariance matrix of the response variable and the predictors. Specifically, since the
sample variance s2y is computed as

s2y =
1

n− 1

n∑
i=1

(yi − ȳ)2

=
1

n− 1

n∑
i=1

(y2i − 2yiȳ + ȳ2)

=
1

n− 1

(
n∑

i=1

y2i − 2ȳ
n∑

i=1

yi + nȳ2

)

=
1

n− 1

(
n∑

i=1

y2i − nȳ2

)
,

performing some algebraic manipulations will show that
∑n

i=1 y
2
i can be derived from the

sample variance s2y, the sample mean ȳ, and the sample size n

n∑
i=1

y2i = s2y(n− 1) + nȳ2.

For
∑n

i=1 yix
T
i , we note that yix

T
i is a 1× p matrix[

yi yixi1 yixi2 ... yixij ... yixi(p−1)

]
where the first element of xi is 1 corresponding to the intercept. Thus,

∑n
i=1 yix

T
i is a

1× p matrix[∑n
i=1 yi

∑n
i=1 yixi1

∑n
i=1 yixi2 ...

∑n
i=1 yixij ...

∑n
i=1 yixi(p−1)

]
.

The first element can be obtained from the sample mean ȳ while the rest of the elements
needs the sample covariance between y and each of the predictors:

syxj
=

1

n− 1

n∑
i=1

(yi − ȳ)(xij − x̄j)

=
1

n− 1

n∑
i=1

(yixij − ȳxij − yix̄j + ȳx̄j)

=
1

n− 1

(
n∑

i=1

yixij − ȳ
n∑

i=1

xij − x̄j

n∑
i=1

yi + nȳx̄j

)

=
1

n− 1

(
n∑

i=1

yixij − ȳ
n∑

i=1

xij

)
,
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and thus,

n∑
i=1

yixij = syxj
(n− 1) + ȳ

n∑
i=1

xij.

Lastly, for
∑n

i=1 xix
T
i , each summand xix

T
i yields a p× p matrix

1 xi1 . . . xi(p−1)

xi1 x2
i1 . . . xi1xi(p−1)

...
... . . . ...

xi(p−1) xi(p−1)xi1 . . . x2
i(p−1)


which when summated over n observations yields

n
∑

i xi1 . . .
∑

i xi(p−1)∑
i xi1

∑
i x

2
i1 . . .

∑
i xi1xi(p−1)

...
... . . . ...∑

i xi(p−1)

∑
i xi(p−1)xi1 . . .

∑
i x

2
i(p−1)

 .

Performing similar derivations as above reveals that computing
∑n

i=1 xix
T
i only requires

the sample mean (x̄j), variance (s2xj
), and covariances among predictors j and k (sxjxk

),
namely

n∑
i=1

x2
ij = s2xj

(n− 1) + nx̄2
j ,

n∑
i=1

xijxik = sxjxk
(n− 1) + x̄j

n∑
i=1

xik.

A.3 Robust variance estimation from summary statistics

When estimating the robust variance of linear regression coefficients, the following esti-
mator is used when the individual observations are available:

V̂ (β̂) = (XTX)−1(XTWX)(XTX)−1

where X is the design matrix and W is an n× n diagonal matrix whose elements consist
of the squared residuals ê2i = (yi − xT

i β)
2. XTX is a p × p matrix that is equivalent

to
∑n

i=1 xix
T
i , which we have shown (Appendix A.2) can be computed from the mean

vector and covariance matrix of the variables. Recall that xi, i = 1, .., n denotes the
vector representing the ith row of X. On the other hand, (XTWX)−1 can be shown to
be composed of summary statistics involving the third and fourth joint sample moments.
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Specifically,

(XTWX)−1 =
n∑

i=1

ê2ixix
T
i

=
n∑

i=1

(yi − xT
i β)

2xix
T
i

=
n∑

i=1

(y2i xix
T
i − 2(yix

T
i β)xix

T
i + (βTxix

T
i β)xix

T
i )

The first term y2i xix
T
i is just a product of a scalar y2i and the matrix xix

T
i , which results

in the matrix 
y2i y2i xi1 . . . y2i xi(p−1)

y2i xi1 y2i x
2
i1 . . . y2i xi1xi(p−1)

...
... . . . ...

y2i xi(p−1) y2i xi(p−1)xi1 . . . y2i x
2
i(p−1)


whose summation over all observations i becomes

∑
i y

2
i

∑
i y

2
i xi1 . . .

∑
i y

2
i xi(p−1)∑

i y
2
i xi1

∑
i y

2
i x

2
i1 . . .

∑
i y

2
i xi1xi(p−1)

...
... . . . ...∑

i y
2
i xi(p−1)

∑
i y

2
i xi(p−1)xi1 . . .

∑
i y

2
i x

2
i(p−1)

 ,

where we find that availability of the third and fourth joint sample moments involving
the response variable makes it possible for this matrix to be computed.

Similarly, the second term 2(yix
T
i β)xix

T
i is also the product of a scalar 2(yixT

i β) and the
matrix xix

T
i resulting in

2(yix
T
i β) 2(yix

T
i β)xi1 . . . 2(yix

T
i β)xi(p−1)

2(yix
T
i β)xi1 2(yix

T
i β)x

2
i1 . . . 2(yix

T
i β)xi1xi(p−1)

...
... . . . ...

2(yix
T
i β)xi(p−1) 2(yix

T
i β)xi(p−1)xi1 . . . 2(yix

T
i β)x

2
i(p−1)

 .

Summing over all observations leads to the matrix
2
∑

i yix
T
i β 2

∑
i xi1yix

T
i β . . . 2

∑
i xi(p−1)yix

T
i β

2
∑

i xi1yix
T
i β 2

∑
i x

2
i1yix

T
i β . . . 2

∑
i xi1xi(p−1)yix

T
i β

...
... . . . ...

2
∑

i xi(p−1)yix
T
i β 2

∑
i xi(p−1)xi1yix

T
i β . . . 2

∑
i x

2
i(p−1)yix

T
i β


which can be computed from the third and fourth joint sample moments.
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Likewise, the final term (βTxix
T
i β)xix

T
i summed over all observations becomes

∑
i β

Txix
T
i β

∑
i β

Txi1xix
T
i β . . .

∑
i β

Txi(p−1)xix
T
i β∑

i β
Txi1xix

T
i β

∑
i β

Tx2
i1xix

T
i β . . .

∑
i β

Txi1xi(p−1)xix
T
i β

...
... . . . ...∑

i β
Txi(p−1)xix

T
i β

∑
i β

Txi(p−1)xi1xix
T
i β . . .

∑
i β

Tx2
i(p−1)xix

T
i β


and is also composed of the third and fourth joint sample moments.
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