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Analysing matched continuous longitudinal data: A
review

Abstract

Longitudinal data is frequently encountered in medical research, where participants are fol-
lowed throughout the time. Additional structure and hence complexity occurs when there there
is pairing in the participants (e.g., matched case-control studies) or within the participants (e.g.,
analysis of participants’ both eyes). Various modelling approaches, identified through a systematic
review, are discussed, including (un)paired ¢-tests, multivariate analysis of variance (MANOVA),
difference scores, linear mixed models (LMM), and new statistical methods. Next, highlighting
the importance of selecting appropriate models based on the data’s characteristics, the methods
are applied on both a real-life case study in ophthalmology and a simulated case-control study.
Key findings include the superiority of the conditional linear mixed model and multilevel models
in handling paired longitudinal data in terms of precision. Moreover, the article underscores the
impact of accounting for intra-pair correlations and missing data mechanisms. Focus will be on
discussing the advantages and disadvantages of the approaches, rather than on the mathematical
or computational details.

Some Keywords: longitudinal data; paired data; random effects model

1 Introduction

Longitudinal studies are fundamental in medical research, providing valuable insights into the pro-
gression of diseases, treatment effectiveness, and patient outcomes over time. Longitudinal data,
where measurements are collected on the same subjects at multiple time points, offer the opportunity
to investigate within-subject changes while controlling for inter-subject variability. Clearly, it should
be taken into account that the measurements from different subjects are independent, while obser-
vations within subjects are correlated. Due to this dependence, traditional techniques like classical
(generalised) linear regression models are not suitable. Still, a large number of approaches to model
longitudinal data have been developed and implemented in standard statistical software (Verbeke
and Molenberghs, 2000).

In practice, the subjects are not always independent, as there can be a meaningful one-to-one rela-
tionship between them. This is evident in various scenarios, such as case-control studies, where each
control is carefully matched to a case based on multiple attributes to minimise confounding. Twin
studies, widely utilised in both biomedical and psychological research, serve as another example, aim-
ing to account for genetic influences. Additionally, the pairing can also be present within individuals,
such as, for example, hearing thresholds measured on both ears of a set of subjects. In, for example,
ophthalmology research, a case can serve as its own control when treatment is administered to only
one eye. Leveraging these intra-pair correlations within pairs can yield more precise estimates of the



effect under investigation. However, our literature study found that this is often not the case, and
the pairing feature is ignored.

In longitudinal studies, missing data poses additional challenges to statistical analysis and inference.
The nature of longitudinal data collection, spanning multiple time points, heightens the probability
of missingness due to, amongst others, participant dropout. Addressing missing data is vital for
maintaining the validity of study findings. Various techniques, such as multiple imputation meth-
ods, likelihood-based or Bayesian approaches, and modelling strategies accounting for missing data
mechanisms, have been developed to handle this issue (Molenberghs and Kenward, 2007). How-
ever, selecting an appropriate method requires careful consideration of the underlying missing data
mechanism. When data is Missing Completely at Random (MCAR), the missingness is independent
of both observed and unobserved outcomes (Rubin, 1976). When missingness is linked to observed
data, it falls under the category of Missing at Random (MAR). Conversely, if it is further associated
with unobserved data, it is labelled as Missing Not at Random (MNAR). Ignoring missing data or
applying inadequate handling techniques can lead to biased estimates.

In Section 2, a motivating real-life dataset, the Ophthalmology data, is introduced. Section 3 delves
into the modelling techniques identified through a literature review. These approaches are then
contrasted using the Ophthalmology data in Section 4 and a simulated case-control datasets in
Section 5. Finally, Section 6 presents concluding thoughts.

2 Ophtomology data

The dataset at hand, provided by the DRCR Retina Network, was collected in the context of a
clinical trial comparing the efficacy and safety of three treatments for central-involved Diabetic
Macular Edema (DME).The study spanned 2 years with four-weekly follow-up visits. In the original
study, 660 eyes were included, but our analysis was restricted to the 497 patients who had DME in
one eye, but not in the other. Our research question involves comparing the evolution of the visual
acuity in the eye exhibiting DME with the unaffected eye, taking into account both the correlation
induced by the repeated measurements as well as the correlation due to the pairing of eyes within
a subject. The mean visual acuity in our dataset over time is depicted in Figure 1, at this point
ignoring both correlations.

3 Modelling approaches

To identify the methods that were used in the literature for the analysis of paired longitudinal data,
a systematic review was conducted, which resulted in 56 articles that employed various methods.
These methods are grouped in different categories, which are discussed in the sections below. A
more detailed overview of the methodology and the results of the systematic review can be found in
Appendix A.

In the remainder of the paper the notation will be as follows: the measurements of subject j of pair
i at time k can be defined as y;;, with i =1,...,N/2, j=1,2and k =1,...,n;.
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Figure 1: Mean visual acuity over time

3.1 Paired t-tests

A first approach is to employ paired ¢-tests or the non-parametric Wilcoxon rank sum tests to compare
the pairs at specific time points. In the paired t-test, differences are used: w;r = y;1x — Yiok, Which
result in a single longitudinal sequence. Next, the one-sample t-test is performed at a single time
point ¢: -
Wi, — Moy,
Swy,
follows a Student'’s t-distribution with N/2 — 1 degrees of freedom when the differences wy, can be
considered to be normally distributed and:
(Wi, —W;)?
W, = > Wik 2 ZZ(N/;—l J
N/2 7 Wk N/2

Eight studies used this approach due to its benefits in terms of a straightforward interpretation,
simplicity, and use of all available data. The method has, however, considerable disadvantages: it
does not consider ‘overall’ differences across all time points, and more importantly, it does not allow
to study differences in evolution. In addition, corrections for multiple testing have to be applied to
keep the Type | error at bay.

3.2 Unpaired t-tests

The independent samples t-test, or unpaired t-test can detect whether two independent groups have
a different mean at a specific time point k. Under the assumption of equality of variances and
normality of Y;1; and Yo, the test statistics Y”L};ﬂ’“ follows a Student’s t-distribution with 2NV — 2

Spy/ w

82, 782,
degrees of freedom, where s, = y/ k522



Four studies (Shih et al., 2019; Mok et al., 2023; Dayal et al., 2017; Rebibo et al., 2013) performed
an unpaired t-test or the non-parametric Mann-Whitney U-test to compare pairs at specific time
points. Notably, in each study there was a 1:1 matching of a cases and controls, as opposed to pre-
existing pairs such as siblings. However, when the pairs are positively correlated, the paired t-test has
more power. Conditional on the null hypothesis being false, the size of this correlation is positively
associated with the amount of statistical power. In addition, the unpaired t-test suffers from the
same drawbacks as the paired ¢-test: it is not possible to test for ‘overall’ differences, nor differences
in evolution. Similarly to the paired t-test,a correction for multiple testing should be administered.

3.3 Multivariate analysis of variance

Multivariate analysis of variance (MANOVA) is the multivariate extension of one-way analysis of
variance (ANOVA). MANOVA s a statistical method that examines the effect of one or multiple
factors on several dependent variables simultaneously. It allows for the assessment of null hypotheses
regarding the effects of factor variables on the means of different groupings of dependent variables.
In our scenario specifically, it can be used to test for pair (group) differences for the response at all
time points simultaneously.

Beutel et al. (1996) used this methodology. While 27% of the dyads had missing data, they only
included the complete cases in the MANOVA analysis. Since the resulting conclusions are only valid
under the strict assumption of MCAR, extra steps such as multiple imputation should be implemented.
A second disadvantage is that while this method can test for 'overall’ differences, no conclusions can
be made about evolution.

3.4 Difference scores

A fourth approach, adopted by three studies, is to calculate difference scores within the subjects
between two specific time points. Let the two time points be a and b and the new difference scores
2i = Yila — Yi1b and v; = Y24 — Yizp. Ruhdorfer et al. (2015) administered a paired ¢-test on z; and
v; to draw inference on differences between the pairs, while Goodman and Must (2011) used the
non-parametric Wilcoxon test. This method allows studying differences in the evolution of the paired
groups. Still, choices have to be made about which interval to use: Goodman and Must (2011) only
considered the difference from baseline to the last timepoint, discarding data from intermediate time
points. In contrast, Goodman and Must (2011) compared multiple pairs of difference scores between
subsequent time points, necessitating correction for multiple testing.

The third study (LoCascio et al., 1998) calculated differences between baseline and each follow-up
measurement for each patient, but later ignored both the longitudinal and paired nature of the data
by applying ANCOVA on all difference scores simultaneously.

Closely related to the subject-specific difference scores is the calculation of a summary measure of
the evolution for each subject and subsequently comparing these for the paired groups. (Schlee et al.,
2021) first calculated slopes for each subject via linear regression and then calculated the Wilcoxon
rank-sum test to test if the distributions of the slope estimates are equal in the study group and
the matched control group. An advantage of this method is that each subject with more than
one measurement can be included in the analysis, and it does not necessitate regular measurement
intervals. In addition, no multiple testing issues arise. Still, this method treats the slopes as observed
values and does not take the standard errors of the slopes into account. As a consequence, the



standard errors and the corresponding p-values of this method are incorrect.

3.5 Linear mixed models

Linear mixed models were introduced by Laird and Ware (1982) for the analysis of clustered continu-
ous responses. Using the notation introduced at the onset of this section and ignoring the existence
of pairs, let Yj;, denote the kth measurement of subject 7 of pair j. The mixed model of a longitu-
dinal sequence is specified as:

Yijlbij ~ N(XiiB+ Z;jbij, %i5), (1)
b;; ~ N(0,D),

where X;; and Z;; denote, respectively, (n;; x p) and (n;; X ¢) dimensional matrices of known
covariates. 3 is the p-dimensional vector containing fixed effects and b;; denotes the g-dimensional
vector of random effects. Finally, X;; equals the (n;; x n;;)-dimensional residual covariance matrix
and D denotes the variance-covariance matrix of the random effects. The marginal density of Yj;
equals

v = / F (i lbig) £ (b )b = X138 + €, (2)
6%' ~ N((): VZ])?

ij
. . /
where the covariance matrix V; = Z;; DZ;; + %;.

One key benefit of employing (generalized) linear mixed models lies in their fully parametric nature,
enabling the use of both maximum likelihood and Bayesian estimation. This implies ignorability when
data are incomplete, as outlined in Rubin (1976), under the assumption of Missingness at Random
and mild regularity conditions. In essence, this means that the inferences drawn from a linear mixed
model remain valid even in scenarios where missing data is dependent upon observed data, as long
as the missingness is further to that independent of unobserved data. Still, as we will discuss in
Section 3.5.3, ignorability does not hold when direct likelihood is not used, which is for example the
case when the robust variance, or ‘sandwich,’ estimator is applied.

The literature review identified linear mixed models as the predominant method; the method was
used in 37 of the 56 included studies. However, it should be noted that the random effects structure
was unclear in Bouwmans et al. (2015). The different strategies found in the literature review are
discussed below.

3.5.1 Random subject effect

24 studies used exclusively random effect on the level of the subject: b;;. Next, a fixed effect of
group membership, and an interaction between group and time was used to assess the impact of
being in the case or the paired control group.

However, two comments should be made. Firstly, all of these studies stated they 'matched’ partic-
ipants in the case and control group. However, in the literature study 'matching’ was sometimes
used to indicate that the distributions of age and gender were alike, instead of case-by-case match-
ing of individual participants based on several attributes. Still, some of the studies in this category



described a 1:1 matching process (e.g. laffaldano et al. (2021)), and subsequently did not take
into account the pairing. Secondly, six of these studies indicated that they used repeated measures
ANOVA. While very similar to a linear mixed model, repeated measures ANOVA assumes a common
set of time points or a time schedule and time is regarded as a factor with n levels, with subjects as
subplots (Krueger and Tian, 2004). As a consequence, mixed models are superior to the repeated
measures ANOVA in handling multiple missing data points.

The primary disadvantage is that the method does not take into account the correlation induced by
the pairing and hence assumes that the pairs are independent. As a consequence, the standard errors
of this method are incorrect. Still, the parameters estimates will be unbiased since the fixed effect
estimates are independent of the chosen variance-covariance structure of the random effects (Lange
and Ryan, 1989).

3.5.2 Random pair effect

In three studies, the model exclusively contained random effects for pairs b;, omitting a random
effect for individual members within each pair. A study conducted by Ahmed et al. (2018) took
the form of a case-control study, while in another study (Shek and Dou, 2020) an inherent link
was present between members of a pair. In this particular study, a child repeatedly completed two
identical questionnaires about maternal control on the one hand, and paternal control on the other.
However, this approach implicitly assumes that all the measures of the dyad are independent, given
the random effect of pair.

In contrast, a case-control study conducted by Border et al. (2020) employed a random pair effect
while also incorporating an autoregressive residual correlation structure to relax the conditional in-
dependence assumption. Still, changing the residual structure will affect the parameter estimates of
the fixed effects, as will be discussed in Section 5.

3.5.3 Robust variance estimation

Another possibility found in the literature (Sibbel et al., 2016) was to use a random effect on the
subject level, as described in Section 3.5.1, and combine this with a robust variance estimator to take
into account the pairing. An asymptotically consistent estimator, the so-called sandwich estimator,
described in Huber (1967), White (1980), and Liang and Zeger (1986) is the following:

N
X'V X)) (Z X;ﬁlaa’ﬁlxi> X'V Xx)",
=1

where € = y; — XZ-B. The estimator is consistent when the mean is correctly specified in the
model (Verbeke and Molenberghs, 2000). Hence, when interest lies in the estimation of average
longitudinal evolution and the dataset is sufficiently large, the sandwich estimator is a solution with
minimal effort. But importantly, when missing data is present, very strict assumptions have to be
made regarding the underlying process of missingness in order to obtain valid conclusions regarding
the fixed effect based on the sandwich estimator. More specifically, it is assumed that the missing
data is missing completely at random (MCAR), which means that the missingness is independent on
observed as well as unobserved data. A second drawback is that efficiency is gained if an appropriate



covariance model can be specified (Diggle and Zeger, 1994).

3.5.4 Marginal linear mixed model

A versatile method is employing a marginal linear mixed model, as denoted in (2), where the random
effects are integrated out of the density of the hierarchical model. Here, the population mean is
modelled via the mean structure, and the dependence in the data is modelled via the marginal
positive-definite matrix V;. Note that this model is more flexible, since it only imposes positive-
definiteness on V;, in contrast to the hierarchical model that needs positive definiteness of both X;
and D (Verbeke and Molenberghs, 2000). This method was utilised by Benestad et al. (2022), who
incorporated an unstructured covariance matrix to account for the pairing and repeated nature of his
matched case-control study.

3.5.5 Nested random effects

Six studies used nested random effects or so-called three-level multilevel models to analyse their paired
longitudinal data. These models are described by (Fitzmaurice et al., 2004, Ch. 22) as follows:

1

3),(3 2),(2
ijk — Xz]kﬁ + Zz(]k):bl(c ) + Z(]IzbEk) + €ijks
where Zz(jk): and Zl(flz are the design matrices for the random effects at the level of the pair and the
subject, respectively. Here, the notation of the superscript signals the levels at which the random
effects vary. The model allows that the random effects are correlated within a given level, but assumes
that there are no correlations between levels. In addition, €;;;, the random component at the lowest

level, is assumed to be independent within their level, with variance o2.

3.5.6 Conditional linear mixed model

A last possible option in the linear mixed model family, is the conditional linear mixed model. This
model was employed by one study in our literature review: Gerber et al. (2016) investigated the
effect of early antibiotic exposure on weight in twins during the first 8 years of life. The researchers
specifically chose twins who were discordant in their early-life antibiotic exposure. Their model
predicted the difference in growth trajectories in twins (weight of the exposed twin minus the weight
of the unexposed twin) with a linear mixed model. As a consequence, the fixed slope of time
represents the effect of antibiotic exposure on the growth evolution. It is worth noting that this

method is equivalent to the conditional linear mixed model, discussed in (Verbeke and Molenberghs,
2000, Ch. 13).

Verbeke and Molenberghs (2000) indicate as a main advantage of the conditional linear mixed model
that inferences about the longitudinal effects can be made without making assumptions about the
cross-sectional components. Ignoring the pairing, the model is as follows:

Y; = 1,07 + XiB + Z;ib; + €1y, (3)

where b} represents the cross-sectional components and is considered a nuisance. The matrices X
and Z; and the vectors b; and (3 are submatrices of their original counterparts in (1), after the dele-
tion of the cross-sectional effects. In a conditional linear model, the model fitting proceeds in two



steps. First, there is conditioning on sufficient statistics for the nuisance parameters b;. Second, the
remaining parameters in the conditional density of Y; given these sufficient statistics are estimated
via (restricted) maximum likelihood. The details can be found in Verbeke and Molenberghs (2000).

Importantly, the conditional model can be obtained via first taking the difference between the mea-
surements within a pair z;; = ¥;1% — Ys26 and then employing a standard linear mixed model as shown
in (1). As a result, the intercept can be interpreted as the baseline difference between the groups,
while the slope of time denotes the treatment effect on the evolution.

3.6 New methods

Two studies described new statistical methods to use for paired longitudinal data. The study by
Wilson (1979) focuses on examining individualised growth trajectories in longitudinal twin data using
repeated measures ANOVA. The total variance is partitioned into various substantial sources of
variance, and the magnitude of their effects are calculated. The author subsequently formulates a
hypothesis test concerning twin concordance, exploring whether twins within each pair exhibit greater
similarity than they do with twins from different pairs. This directly leads to the calculation of intra-
class correlations, representing the concordance within pairs in the form of correlation coefficients.

A second paper by Kim (2006) is in the context of longitudinal ophthalmology data, where the
paired eyes are assigned to different treatments. He constructs methods to test the hypothesis that
an interaction exists between the treatment (eye-specific factor) and race (person-specific factor).
Two methods are described: a large sample-based non-parametric test statistic and a non-parametric
bootstrap test analogy. He compares the results of his methods with generalized estimating equations
(GEE) with different working correlation structures.

4 Analysis of the ophthalmology data

In the previous section, several approaches to model paired continuous longitudinal data have been
presented. To demonstrate how to choose the right approach for a specific scenario, we revisit the
ophthalmology data presented in Section 2. Here, our main emphasis is on selecting the appropriate
modelling approach rather than delving into the results and insights gained from the statistical
analysis. The main research question is to study the impact of the medication on the evolution of
visual acuity in eyes with diabetic macular edema (DME=0) and without diabetic macular edema
(DME=1).

The results of the different approaches can be found in Table 1. Scrutinising the results of analyses
of the complete dataset, it is clear that the research question cannot be answered by the paired
or the unpaired t-test. Based on these tests, we can only conclude that the acuity is different at
baseline, but the differences are no longer significant at subsequent time points. As expected, the
standard errors of the paired t-test are considerably smaller compared to those of the unpaired ¢-test.
MANOVA confirms these results and shows that there is an overall difference in visual acuity in the
first five time points. Note that the latter results are only valid under the assumption of MCAR.

The remaining five methods can answer the research question at hand. For instance, based on the
paired t-test on the slopes of the subject-specific regression models, the conclusion can be drawn that
the visual acuity has a better progression in the DME eyes. However, as the slopes are treated as



Table 1: Analysis of the ophthalmology data.

Full data Complete cases

Method Parameter Estimate SE p-value Estimate SE p-value
Baseline -4.646 0.956 <.0001 -4.618 0.999 <.0001

4 weeks -0.788 0.962 0.413 -0.873 0.991 0.379

Paired t-test 8 weeks 0.126 0.926 0.892 0.251 0.957 0.793

12 weeks 1.128 0.911 0.216 1.230 0.941 0.192

16 weeks 0.787 0.899 0.382 0.906 0.916 0.323
Baseline -4.646 1.098 <.0001 -4.618 1.161 <.0001

4 weeks -0.788 1.088 0.469 -0.873 1.121 0.436

Unpaired t-test 8 weeks 0.126 1.062 0.905 0.251 1.086 0.817

12 weeks 1.128 1.050 0.283 1.230 1.084 0.257

16 weeks 0.787 1.042 0.450 0.906 1.060 0.393
MANOVA Wilks lambda  0.905 <.0001 0.905 <.0001
Comparison slopes 0.005 0.002 0.004 0.046 0.005 <.0001
LMM naive DME -0.342 0.284 0.227 -3.097 0.593 <.0001
time*DME 0.005 0.001 <.0001 0.043 0.008 <.0001

LMM sandswich DME -0.342 0.858 0.690 -3.097 0.993 0.002
time*DME 0.005 0.001 <.0001 0.043 0.006 <.0001

LMM nested DME -0.363 0.982 0.656 -3.255 0.939 0.001
time*DME 0.004 0.001 <.0001 0.046 0.004 <.0001

. DME -0.366 0.813 0.653 -3.256 0.935 0.001
Conditional LMM o0 spyME 0,004 <0.001 <.0001  0.046 0.004 <.0001

‘observed’ and the standard errors are not taken into account, the p-value of this analysis is incorrect.
This is also true for the standard error of the ‘naive’ linear mixed model, where the pairing was not
taken into account, and only a random intercept of the subject was included. In other words, it is
assumed that all measurements of the eyes within a participant are independent, conditional on the
person-specific random effect. Still, the estimated fixed effects are very similar, and in each analysis
it can be concluded that when treated, there is a beneficial evolution in visual acuity in the eyes with
DME. When comparing the standard errors of the three approaches that correctly take into account
the pairing, they are the lowest in the conditional linear mixed model.

Next, in two columns on the right of Table 1, the analysis is repeated on a dataset restricted to
the first five measurements of cases who have no missing data on these time points. It is apparent
that the results of the MANOVA analysis are exactly equal, as by default only complete cases are
considered in the analysis. All other methods take into account incomplete profiles, but differ in
their assumptions with regards to the missingness. Specifically, the (un)paired t-test, MANOVA, and
sandwich LMM assume missingness to be completely at random (MCAR), whereas the nested and
conditional LMM uphold validity under the more lenient Missing at Random (MAR) assumption. In
contrast, the standard errors with regards to the slope comparisons and the naive LMM are invalid.



Table 2: Average parameter estimates, average standard errors and standard deviation of the esti-
mates of the treatment effect at baseline and the treatment effect on the evolution of 100 simulated
datasets.

Method Parameter Avg. Estimate Avg. SE SD estimates
LMM naive treated -0.5372 0.4637 0.2100
time*treated -0.2411 0.1028 0.1714
LMM sandwich treated -0.5372 0.2967 0.2067
time*treated -0.2411 0.1710 0.1711
LMM marginal treated -0.5377 0.2956 0.2050
time*treated -0.2414 0.1708 0.1698
LMM nested treated -0.5372 0.2243 0.2067
time*treated -0.2411 0.1714 0.1711
LMM combination treated -0.5303 0.3380 0.2271
time*treated -0.2423 0.1404 0.1761
Conditional LMM  treated -0.5372 0.2243 0.2067
time*treated -0.2411 0.1711 0.1711

5 Simulation study

To compare the performance of various methods across a wide array of standardized datasets, sim-
ulated data from case-control studies are employed. Specifically, we simulated 100 datasets, each
comprising five measurements from 200 pairs of subjects. While the treatment effect remains fixed
across datasets, the variances of both the random effects and the residuals were varying. The result-
ing estimates and standard errors from the different categories of linear mixed models are averaged
and presented in Table 2.

Comparing the parameter estimates, it is clear that some are slightly different from the others. This
is the case for both the marginal model and the 'combination’ method, where a random effect of
the pair is combined with an autoregressive correlation structure in the residual variance-covariance
matrix. Previous studies (Lange and Ryan, 1989) showed that in the absence of missing data, fixed
effects do not depend on the chosen variance-covariance structure of the random effects, but the same
does not hold true for the variance-covariance structure of the residuals. While the naive, sandwich,
nested, and conditional models assume that the residuals are uncorrelated given the random effects,
this is not the case for the marginal and 'combination’ model. In the marginal model, the residual
variance-covariance matrix is unstructured, and in the combination model, autoregressive correlation
is assumed.

Next, the differences in average standard errors of the treatment effect on the evolution are negligible,
while larger differences exist in the average standard errors of the baseline effects. The smallest
standard errors are found in the conditional LMM and the nested random effects model. Comparing
the averaged SE to the standard deviation of the estimates, it is apparent that these estimates are
also more accurate compared to the other models. Notably, the standard errors of the naive model
are proven to be incorrect since they do not take the intra-pair correlation into account.

10



6 Concluding Remarks

In this research, we focus on the analysis of paired longitudinal data, where the pairing is either
within the participant, or between the participants. First, a systematic review has been conducted
to identify the methods that are used in the literature. Next to showing the broad range of methods
that are used for this kind of data, the systematic review demonstrated that most studies ignored
the pairing, while it could be used in favour of getting more precise estimates.

We presented the various methods that emerged from the systematic review and discussed the
possible research questions they can answer, along with their respective advantages and limitations.
For instance, while MANOVA and (un)paired t-tests are suitable for comparing pairs at different
time-points, they fall short in assessing differences in progression over time. The questions can be
answered by linear mixed models, or alternatively, by deriving summary measures (like slopes) for
comparison among groups. However, it is crucial to account for standard errors of the summary
statistics in the analysis. Furthermore, in linear mixed models with only a random effect at the
subject level, standard errors can be misleading since pairs are assumed to be independent. These
nuances underscore the importance of selecting the appropriate modelling approach.

In addition, special attention has been given to missing data, which is frequently encountered in
longitudinal studies. Some methods are only valid under the very restrictive assumption of Missing
Completely at Random (MCAR), which assumes that the missingness does not depend under observed
nor unobserved data. This is the case for MANOVA, as well as linear mixed models with the robust
sandwich estimator. In contrast, in linear mixed models that do not employ the sandwich estimator,
ignorability holds under the less restrictive Missing at Random assumption.

Following the methodological exploration, we applied these techniques to a real-life ophthalmology
dataset, where both eyes of participants were examined concurrently. Interestingly, neither the
(un)paired t-test nor MANOVA could effectively address the specific research question concerning
the differences in evolution between eyes with and without diabetic macular edema. Moreover, we
concluded that the standard errors in analyses comparing slopes via the paired ¢-test and the linear
mixed model with only a random subject effect were flawed. Our analysis demonstrated that the
most precise estimates are obtained via the conditional linear mixed model.

Next, we compared the linear-mixed model based techniques on 100 simulated datasets of a case-
control study with identical treatment effects. Our analysis revealed slight disparities in parameter
estimates attributable to variations in residual covariance structures. However, these differences
proved inconsequential, as did variations in standard errors regarding the estimation of treatment
effects on evolution. Notably, the standard errors of the treatment effect at baseline were the
most accurately estimated when employing either the multilevel ('nested’) linear mixed model or the
conditional linear mixed model.
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Analysing Matched Continuous Longitudinal Data
Supplementary Materials

A Literature review

A.1 Data sources and searches

Computerized bibliographic databases Web of science, Pubmed and Scopus were used to identify
studies. These databases were searched on October 18, 2023 and without limitations regarding to
the year of publication. The search criteria were restricted to containing 'longitudinal’ in the title
(or abstract in Web of Science) and 'matched’ and/or 'paired’ in the abstract.

A.2 Study selection

Publications were included in this systematic review if the following inclusion criteria were met: 1)
the study is longitudinal and subjects have measurements on more than two time points. 2) the
data is paired, which means that there is an obvious and meaningful one-to-one correspondence
between subjects. This can also be the case when there is one-to-one (propensity score) matching.
3) the response is continuous. The yield of the database search were first screened based on title
and abstract and next the full text of the selected articles was screened for relevance.

A.3 Data extraction

The included studies were grouped based on the various statistical methodologies employed. These
categories were

1. Difference scores

2. Comparison of subject-specific slopes

3. Paired t-tests or non-parametric alternative

4. Unpaired t-tests or non-parametric alternative
5. Linear mixed models

(a) Without consideration for the paired nature of the data

(b) With consideration for the paired nature of the data

6. New methodology



Table 3: Number of studies per category of statistical method.
Method N
Paired t-tests at specific timepoints

Difference scores

Subject-specific slopes

Unpaired t-tests or non-parametric alternative
MANOVA

Linear mixed models

Without consideration for the paired nature of the data
With consideration for the paired nature of the data
New methodology
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Figure 2: Flowchart of the literature search.

A.4 Results

The search strategy in the database identified 4916 potentially relevant studies (953 in Web of
Science, 5 in Pubmed, and 4143 in Scopus). Based on the title and abstract, 304 articles appeared
to meet the selection criteria, but after reading the full text of these studies, only 56 fulfilled the
inclusion criteria (see flowchart in Fig. 2). The studies are grouped in different categories based on
the used methods in Table 3. An article-by-article overview can be found in Table 4.
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Table 4: Overview of the studies included in the systematic review



