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Abstract: An M/G/c/c state dependent network is a quantitative model for 
replicating and analyzing the behavior of occupants travelling through a network.  
The model, however, assumes that its inter-arrival times are independent and 
exponentially distributed, which inadequately reflects the dynamic and high-stakes 
nature in emergency situations.  This paper simulates the M/G/c/c model for 
emergency evacuations using Erlang-k distributions—representing the real-world 
arrival patterns of evacuees in a more controlled and less random arrivals—and 
correlated inter-arrival times—common during evacuations as occupants moving 
in clusters due to panic or structural flow patterns.  To achieve this, an M/G/c/c 
simulation model was first developed using Arena simulation software.  The model 
was used to analyze the impact of various arrival rates on system performance 
metrics. Consequently, the performance metrics were compared with those 
obtained by replacing exponential inter-arrival times with Erlang-k distributions 
and independent arrivals with correlated cluster arrivals.  The results show that 
Erlang-k distributions lead to better performance and smoother flow since the 
arrival is more controlled, while correlated arrivals increase congestion.   

Key words: state dependent queueing systems, building egress, discrete event 
simulation. 

1. INTRODUCTION AND BACKGROUND 
These days, buildings are higher and more complex than before. At the same time, 

there is an exponential increase in the number of people affected by disasters. These 
disasters can be either natural, such as hurricanes, floods and earthquakes, or they can 
have an unnatural cause, such as terrorist attacks, or chemical releases of toxic and 
harmful substances.    The disasters call for emergency evacuations.  Often, due to human 
nature, the initial reaction is to start panicking, which can quickly escalate and lead to 
chaotic situations.  Research in this field aims to formulate strategies in order to 
minimize losses from the disasters.  Evacuation procedures try to minimize chaos and 
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panic.  The construction of evacuation procedures is the process of getting all evacuees 
outside the building in an orderly and organised way, as fast as possible.   

When a disaster happens, the people should be alarmed and guided. Alarming 
systems can be divided into three categories: automatic detection systems, alarm alerting 
systems, and emergency lighting [1].  An automatic detection system is based on sensors 
which can detect heat, smoke or radiation.  Alerting alarm systems include sounders, call 
points with a bell, and an internal communication system such as telephone or intercom.  

There are several important dynamic aspects in an evacuation. At different moments 
in time, a building is busier or less busy. The topology of the building could also play a 
role during an emergency escape.  Large rooms with few furniture, wide corridors and 
multiple large exit doors can facilitate a quicker evacuation. Another influencing factor 
is the type of occupants of the building. The evacuation of elderly people is different 
from the evacuation of children. The type of hazard also affects the course of the 
evacuation. In case of a fire, the smoke can lead to problems with inhalation and reduced 
visibility of the path.  

All of these disasters have a big impact, not only in terms of casualties or even 
deaths, but also in terms of property damage, economic loss, and environmental loss.  
Efficient evacuation methods can help saving lives. In case of a real emergency 
evacuation, being prepared will reduce stress and hence save time.  Saving time in these 
situations is key, as it will also save lives. Europe has made big improvements in fire 
safety over the years.  Fire fatalities have decreased by 65% over the last 30 years, due 
to an improved approach to building. 

The occupant evacuation time can be described as the time lapse from the beginning 
of the disaster until the occupant is safely evacuated [2]. It consists of three stages, 
namely the detection, pre-evacuation and movement stage. The detection time is the time 
between the start of the disaster and the moment it is noticed by the occupant. The pre-
evacuation time covers the initial reaction of occupants, from the moment they notice 
the disaster until they start the actual evacuation process. The third stage is the movement 
time. 

The influencing factors that determine the duration of each phase can be divided 
into three main categories: human characteristics and behaviour, building properties and 
disaster characteristics. An Italian research study investigated the effect of instructions 
on the evacuation process [3]. It was found that participants who received specific 
instructions during an evacuation experiment were able to reach the safe zone quicker 
than those participants that did not receive instructions. Information Technology can 
help a lot for safety and security. New technologies such as Internet of Things (IoT), Big 
Data (BD) and others can create new positive possibilities and challengeable deficits of 
safety [4].  

Evacuation routes are part of this evacuation policy, and thus efficient routes also 
reduce property loss. The quicker occupants of a building are safely evacuated, the 
quicker the fire services can focus on controlling the disaster and limiting the building 
damage.  

Queueing models are very useful to capture the specific dynamics of evacuees. A 
doorway, staircase or room is considered a server, in front of which evacuees’ queue up 
according to the dynamics of a queueing model. The service time is related to the 
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walking speed of the evacuees, as well as the time it takes to cross the doorway, staircase 
or room. Lino, et al. [5] uses two different queueing models to capture the emergency 
evacuation process.  One queueing model accounts for rooms, corridors and stairways, 
and the capacity of the servers is related to the area of the considered spaces. A second 
queueing model accounts for the bottlenecks in the building, i.e. doors, exits, entrances 
and gateways, and in this case the capacity of the servers is related to the width of the 
bottleneck. These queueing models can then be used to estimate congestion and overall 
evacuation time. 

This research focuses on state-dependent queueing models, specifically variants of 
the M/G/c/c models. These models are studied and compared. However, they typically 
assume independent, exponentially distributed inter-arrival times, which may not 
accurately capture the dynamic and critical nature of emergency situations. To address 
this, we simulate the M/G/c/c model for emergency evacuations using alternative arrival 
processes. Two types of arrival processes are considered. The first is the Erlang-k 
distribution, which better represents the real-world arrival patterns of evacuees with 
more controlled and less random arrivals. The second involves correlated inter-arrival 
times, common during evacuations when occupants move in clusters due to panic or 
structural flow patterns. The impact of these arrival processes on performance measures 
is then analysed. 

This paper is organized as follows. Section 2 elaborates on the related work on state-
dependent queueing systems. Section 3 proposes the experimental design and explains 
the discrete event simulation (DES) model to run the experiments. Section 4 shows the 
results of the experiments and discusses them. In the last section, conclusions are 
formulated. 

2. STATE-DEPENDENT QUEUEING SYSTEMS: RELATED WORK 
A queueing system is called state-dependent if either the arrival rate or the service 

rate depends on a certain state.  The most obvious system with a state-dependent arrival 
rate is the single server queueing system with finite capacity, the M/G/1 queue with only 
K waiting places.  The system is state dependent as the arrival rate 𝜆𝜆𝑗𝑗 = 𝜆𝜆, 𝑗𝑗 < 𝐾𝐾 
and 𝜆𝜆𝑗𝑗 = 0, 𝑗𝑗 ≥ 𝐾𝐾, where new customers arrive at a rate 𝜆𝜆𝑗𝑗  when j customers are in the 
system.  Another example refers to the single repairman problem.  A closed queueing 
system with K machines is served by a repairman.  Machines operate between 
breakdowns during an exponential time with mean 1 𝜆𝜆� .  When a machine breaks down, 
it queues for repair.  The state of the system is defined as the number of machines j not 
working.  The arrival rate to the repair facility is 𝜆𝜆𝑗𝑗 = (𝐾𝐾− 𝑗𝑗)𝜆𝜆, 0 ≤ 𝑗𝑗 ≤ 𝐾𝐾 [.  Another 
interesting example is the switched Poisson process. The arrival rate switches 
alternatively between 𝜆𝜆1 and 𝜆𝜆2, governed by some random mechanism.  The model is 
interesting since the arrival process covers both renewal and non-renewal processes with 
coefficients of variation larger than one [6].   

When studying occupant movements, such as during the evacuation of a building, 
the service rate—representing the speed of movement—is state-dependent.  The speed 
at which individuals can move and exit the building varies depending on the system’s 
current conditions, such as crowd density, available exit routes, and the movement 
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urgency.  In the M/G/c/c state-dependent model, this relationship is modeled by treating 
the service rate as a dynamic function of the number of occupants present and their 
interactions.   

As crowd density increases, the service rate decreases due to congestion, bottlenecks 
at exits, or the natural slowing down of movement within the crowd.  Conversely, when 
fewer occupants are present, the service rate increases, facilitating quicker evacuation.  
Thus, the M/G/c/c model provides a powerful model for analyzing how different states 
of the system impact evacuation efficiency and can further be used to predict outcomes 
under various scenarios, helping to optimize evacuation strategies.   

3. THE M/G/c/c ANALYTICAL MODEL 
The effect of the density of occupants to the current walking speed was formularized 

by Yuhaski and Smith [7]. They presented an exponential model of walking speed in a 
confined space, such as a corridor: 
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γ, β = Shape and scale parameters for the exponential model, 
Vn = Average walking speed for n occupants in a confined space, 
Va = Average walking speed when crowd density is 2 peds/m2 = 0.64 m/s, 
Vb = Average walking speed when crowd density is 4 peds/m2 = 0.25 m/s, 
V1 = Average walking speed for a single occupant = 1.5 m/s, 
n = Number of occupants in a space, 
a = 2 × l × w, 
b = 4 × l × w,  
l = space length in meters, and 
w = space width in meters. 
 

Based on the model, Yuhaski and Smith [7] developed the limiting probabilities for 
the number of occupants: 
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λ is the arrival rate to a space, E(S) is the expected service time of a single occupant 
in the space, i.e., E(S)= l/1.5, Pn is the probability of having n occupants in the space, P0 
is the probability of having no occupant in the space, and f(n) is the service rate,  given 
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by 
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= .  c refers to the capacity of the space.  The probability of such blocking 

(Pbalk) is equal to Pn where n equals to c.  Cheah and Smith [8] showed that M/G/c/c 
networks are equal to M/M/c/c networks.  As a result, various performance measures of 
the space can then be computed as: 
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θ  is the throughput of the space (in occupants per second), E(N) is the expected number 
of occupants in the space, and E(T) is the expected service time in seconds.   

4. SIMULATING AN M/G/c/c ANALYTICAL MODEL 
Simulating the M/G/c/c analytical model using programming languages, or 

simulation software, such as Arena [9], involves modelling a model that dynamically 
captures the nature of state-dependent queuing systems. The process starts by defining 
the system’s states, with occupants arriving according to a Poisson process and their 
service rates depending on the current occupant number in the system.  The simulation 
model involves initializing the system, scheduling its events (arrivals and departures), 
and updating its states accordingly. The model must dynamically adjust the service rate 
as occupants enter or exit, capturing the crowd density effect on system performance.  
Key metrics, such as throughput, blocking probability, expected number of occupants, 
and expected service time, are then collected and analyzed to assess the model’s behavior 
under various conditions. 

The simulation model should sufficiently represent complex state-dependent 
behaviour and non-linear interactions, allowing flexible scenario testing and 
performance measurement, which is not possible with analytical models. Scenario 
testing with simulations, such as adjusting arrival rates and using other speed-density 
models [10], provides insights into how the system behaves under different conditions 
and shows how key parameter changes impact performance, aiding in risk assessment 
and strategy planning. 

Several M/G/c/c models have been discussed in the literature [11-14], along with 
computer programs that implement traditional analytical models using a Poisson process 
[15,16]. We used and modified the simulation model developed by Khalid, et al. [12]. 
To develop the M/G/c/c simulation model in Arena, key parameters such as arrival rate, 
service times, and the number of service channels, were defined.  Various modules were 
also used. A Create module generates occupants based on a Poisson process to reflect 
the stochastic nature of inter-arrival times.  The system’s capacity, representing c servers, 
was modelled using Seize, Delay, and Release modules, which simulate service 
allocation and adjust the service rate as occupancy levels change. 

The core of simulation involves dynamically updating the system’s state as events 
such as arrivals or departures occur. Each event alters the service rates, reflecting the 
impact of varying crowd densities on system performance.  An Assign module was used 
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to track performance metrics.  Decide and Signal modules were integrated to manage 
conditional flows and ensure accurate event synchronization and timely state updates.   

After setting up the model, it was run multiple times to generate various outputs.  
Additionally, Arena’s Process Analyzer was used to evaluate key performance metrics.  
This tool offers insights into how the system behaves under different conditions, such as 
varying arrival rates or service channels.  The outputs can then be analysed to improve 
overall system performance. Details and graphical representation of the model can be 
found in Khalid, et al. [12]. 

5. SIMULATION EXPERIMENTS WITH EXTENDED VERSION OF  
         THE MODEL 

5.1. Base M/G/c/c Simulation Model 
To demonstrate the impact of changing correlated inter-arrival times and the Erlang-

k distribution on the performance metrics, the base M/G/c/c model was first simulated 
and evaluated.  The simulation results were conducted over 20,000 seconds and 30 
replications for a confined space of 8m x 2.5m.  The results (including confidence 
intervals for each performance measure) are presented in Table 1.   
 

Table 1. Performance measures versus arrival rates 
λ  θ  P(c) E(N) E(T) 

1.000 1.000 
[0.998, 1.003] 

0.000 
[0.000, 0.000] 

6.021 
[6.004, 6.037] 

6.019 
[6.017, 6.021] 

2.000 1.998 
[1.995, 2.000] 

0.000 
[0.000, 0.000] 

14.461 
[14.427, 14.494] 

7.239 
[7.232, 7.246] 

3.000 1.967 
[1.956, 1.977] 

0.343 
[0.339, 0.347] 

97.444 
[96.745, 98.144] 

49.572 
[48.957, 50.187] 

4.000 1.931 
[1.931, 1.931] 

0.516 
[0.516, 0.517] 

99.759 
[99.751, 99.768] 

51.660 
[51.649, 51.671] 

 

5.2. Changing the Exponential to Erlang-k Interarrival Times 
The Erlang-k distribution simplifies to the exponential distribution when the shape 

parameter k=1. As k increases, the Erlang-k distribution approaches to a normal 
distribution, with reduced variability and more predictable arrival times.  This 
characteristic makes the Erlang-k distribution suitable for modelling M/G/c/c networks 
in emergency evacuations, as it more accurately reflects the real-world arrival patterns 
of evacuees in controlled and less random situations compared to the exponential 
distribution.     

By reducing variability and providing more controlled modelling, the Erlang-k 
distribution improves the predictability of system performance metrics, such as 
congestion and expected service time. This predictability is crucial for planning 
evacuation strategies and routes. Using the Erlang-k distribution in M/G/c/c networks 
enhances the safety and efficiency of emergency evacuations. 

The Erlang-k distribution is also effective for modelling multi-phase processes such 
as evacuations. While the M/G/c/c model typically assumes independent arrivals without 
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accounting for phases, the Erlang-k distribution can represent multiple phases.  In an 
evacuation, for instance, occupants may pass through various phases, including 
evacuating offices, moving to corridors and stairwells, and exiting the building. The 
Erlang-k distribution models these phases as a separate exponential distribution, offering 
a more realistic depiction of the total evacuation time and capturing real-world 
complexities.  

Smaller k values (2 to 5) are suitable for systems with moderate variability, 
balancing structure and randomness. Moderate k values (6 to 10) provide greater 
predictability and reduced variability, concentrating the distribution around the mean.  
Larger k values (over 10) offer very low variability and high predictability.  

To assess the impact of changing the shape parameter k on performance metrics, 
four k values were tested. For each k, four different arrival rates were evaluated. Figure 
1 shows the plots of throughput and expected service time versus arrival rates.  
 

  
Figure 1.  Throughput and expected service time (in seconds) versus arrival rates 

 
Table 2.  The impact of arrival rates on performance for a set of parameter k values 

λ k=1 k=2 
θ P(c) E(N) E(T) θ P(c) E(N) E(T) 

1 1.004 0.000 6.044 6.022 0.500 0.000 2.786 5.576 
2 2.012 0.000 14.614 7.263 0.998 0.000 5.934 5.943 
3 1.963 0.348 97.754 49.822 1.499 0.000 9.635 6.428 
4 1.931 0.519 99.765 51.670 1.999 0.000 14.191 7.098 
 k=5 k=10 
1 0.200 0.000 1.074 5.374 0.100 0.000 0.533 5.334 
2 0.400 0.000 2.192 5.480 0.200 0.000 1.072 5.363 
3 0.600 0.000 3.362 5.605 0.300 0.000 1.625 5.414 
4 0.800 0.000 4.598 5.745 0.400 0.000 2.188 5.469 

 
The detailed simulation results are presented in Table 2. As observed, increasing the 

k value, while maintaining the same arrival rate, reduces variability in the arrival process 
and increase predictability. This leads to improved system performance.   

To further explore how varying k affects system performance, k values are examined 
specifically for arrival rates of 2 and 4 occupants/sec. Figure 2 illustrate the throughput 
and expected service time (in seconds) for different k values at these arrival rates.  
Detailed performance metrics are provided in Table 3. Changing exponential inter-
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arrival times to the Erlang-k distribution enhances performance metrics by lowering the 
blocking probability and expected service time.   
 

 
 

 

Figure 2.  Throughput and expected service time (in second) versus k values 
 

Table 3.  The impact of the shape parameter k on performance for a set of arrival rates 

K 
2λ =  4λ =  

θ  P(c) E(N) E(T) θ  P(c) E(N) E(T) 
1 2.012 0.000 14.614 7.263 1.931 0.519 99.765 51.67 
2 0.998 0.000 5.934 5.943 1.999 0.000 14.191 7.098 
3 0.667 0.000 3.780 5.667 1.332 0.000 8.286 6.220 
4 0.499 0.000 2.770 5.546 0.999 0.000 5.898 5.906 
5 0.400 0.000 2.192 5.480 0.800 0.000 4.598 5.745 
6 0.333 0.000 1.811 5.439 0.666 0.000 3.762 5.645 
7 0.285 0.000 1.545 5.411 0.572 0.000 3.192 5.579 
8 0.250 0.000 1.349 5.391 0.500 0.000 2.767 5.532 
9 0.222 0.000 1.194 5.375 0.444 0.000 2.440 5.496 

10 0.200 0.000 1.072 5.363 0.400 0.000 2.188 5.469 
20 0.100 0.000 0.533 5.333 0.200 0.000 1.070 5.357 
30 0.067 0.000 0.356 5.333 0.133 0.000 0.711 5.334 
40 0.050 0.000 0.267 5.333 0.100 0.000 0.534 5.333 
50 0.040 0.000 0.214 5.333 0.080 0.000 0.427 5.333 

 
In a real-life situation, this reflects the benefits of having a well-coordinated and 

planned approach to managing the arrival of people during emergency evacuations.  For 
example, if evacuees arrive at evacuation points in a controlled and predictable manner, 
such as through staggered arrivals, emergency services can operate more efficiently.  
This results in fewer bottlenecks, smoother movement of people, and less congestion, 
making the evacuation process safer and more effective.   

5.3. Correlated Inter-Arrival Times 
Correlated inter-arrival times occur when the time between consecutive arrivals is 

influenced by previous arrivals, rather than being independent.  In an emergency 
evacuation, this might happen as people exit in quick succession due to panic or crowd 
flow, creating clusters of arrivals.  Modeling these correlated arrivals can improve the 
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accuracy of evacuation simulations, leading to better predictions of bottlenecks, more 
precise evacuation time estimates, and more effective planning for safety and efficiency.   

The M/G/c/c model uses a Poisson process, assuming that arrivals are independent 
and memoryless, which may not reflect how people behave and move in emergencies.  
In such situations, people often arrive due to panic, urgency, and crowd dynamics, 
leading to highly correlated or time-dependent arrivals.  These arrival rates are typically 
non-stationary, increasing as the situation escalates.  As time passes, more people rush 
to exits, increasing the arrival rate.  This increasing intensity cannot be captured by a 
basic Poisson process.  To address this, a non-homogeneous Poisson process with a time-
dependent rate for arrivals should be used, where the rate of arrivals increases over time 
to reflect the growing urgency and crowd density to exit the area.     

To model a time-dependent Poisson process in Arena, we used a combination of the 
Create module, Variables spreadsheet, and Expressions spreadsheet.  First, we 
determined the function that describes how the arrival rate increases over time.  For this, 
we considered an arrival rate λ(t) that increases linearly over time: 

0( )t ktλ λ= +       (4) 

where ( )tλ  is the arrival rate at time t, 0λ  is the initial arrival rate, and k  is the rate of 
increase per time unit.   

We set 0 0.5λ =  (0.5 occupant per second) and vary k values from 0 to 0.05.  This 
expression can be included in an Expression spreadsheet in Arena as ArrivalRate = 
Lambda0 + k * TNOW where TNOW refers to the current simulation time in Arena.  The 
ArrivalRate variable was then used in a Create module to set the Time Between Arrivals 
to EXPO(1/ArrivalRate). As the simulation runs, TNOW increases, leading to an increase 
in ArrivalRate. Two cases are considered: one with no batch arrivals, where occupants 
arrive individually, and another with batch arrivals, where occupants arrive in clusters 
up to three. The impact of correlated arrivals on performance measures under different 
scenarios is shown in Table 4. 

As the rate of arrival per time unit, k, increases, the blocking probability, the 
expected number of occupants, and the expected time spent in the system consistently 
rise for both cases: individual arrivals and batch arrivals. 
 

Table 4.  The impact of correlated arrivals on performance measures 

k 
No batch arrival Batch arrival 

θ  P(c) E(N) E(T) θ  P(c) E(N) E(T) 
0.000 0.100 0.000 0.561 5.633 0.199 0.000 1.236 6.219 
0.010 0.385 0.905 18.551 48.149 0.387 0.907 18.828 48.671 
0.020 0.385 0.952 19.143 49.728 0.386 0.952 19.287 49.935 
0.030 0.385 0.968 19.352 50.307 0.385 0.976 19.535 50.742 
0.040 0.385 0.976 19.490 50.590 0.385 0.984 19.634 50.991 
0.050 0.384 0.981 19.527 50.797 0.385 0.988 19.689 51.118 

 
In the no batch arrival case, the blocking probability starts at 0.100 when k=0, 

indicating low congestion when arrivals are evenly spaced. As k increases to 0.05, the 
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blocking probability gradually increases to 0.384, reflecting a higher chance of 
congestion as arrivals become more clustered over time.  Similarly, the expected number 
of occupants and expected time spent show a significant rise, indicating that more 
occupants are in the system for longer periods as k increases.   

In the batch arrival scenario, the results are slightly higher across all metrics.  For 
example, when k=0, the blocking probability is 0.199 compared to 0.100 in the no batch 
case, and the expected time spent is also longer.  This suggests that batch arrivals, even 
when limited to clusters of up to three, significantly impact system performance, 
worsening congestion and delays compared to individual arrivals.   

Overall, the data show that increasing the arrival rate and allowing batch arrivals 
worsen performance measures such as higher blocking probability and longer expected 
service time, as shown in Figure 3.  Batch arrivals further increase the impact of 
correlated arrivals as congestion grows.  These findings highlight the need to manage 
arrival patterns to reduce congestion and improve system performance.  

  
 

  
Figure 3.  Blocking probability and expected service time versus increased arrival rate  

 
6. CONCLUSION 

 
This study demonstrates that incorporating Erlang-k distributions and correlated 

inter-arrival times into M/G/c/c models improve evacuation simulations.  Erlang-k 
distributions reflect the more structured and less random nature of real-world evacuee 
arrival patterns, compared to the independent and memoryless exponential inter-arrival 
times. This controlled and predictable arrival process leads to better system performance, 
smoother flow, and reduced congestion during evacuations. This highlights the 
importance of planning and coordination for safer and more effective emergency 
evacuations.   

Considering correlated arrivals is also important since it mirrors real-world 
behaviors during emergencies, where people often move in clusters due to panic or 
structural flow patterns. Correlated arrivals increase congestion, highlighting the 
challenges of managing evacuations and the need for models that can capture such 
dynamics.  By integrating both correlated and cluster arrivals, the model more accurately 
represents real-world evacuation scenarios, offering critical insights for optimizing 
evacuation strategies, predicting performance, and effectively utilizing available space 
during emergencies.   
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