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ERGODICITY IN PLANAR SLOW-FAST SYSTEMS THROUGH1

SLOW RELATION FUNCTIONS2

RENATO HUZAK, HILDEBERTO JARDÓN-KOJAKHMETOV, AND CHRISTIAN KUEHN3

Abstract. In this paper, we study ergodic properties of the slow relation
function (or entry-exit function) in planar slow-fast systems. It is well known

that zeros of the slow divergence integral associated with canard limit periodic
sets give candidates for limit cycles. We present a new approach to detect the

zeros of the slow divergence integral by studying the structure of the set of all

probability measures invariant under the corresponding slow relation function.
Using the slow relation function, we also show how to estimate (in terms of

weak convergence) the transformation of families of probability measures that

describe initial point distribution of canard orbits during the passage near a
slow-fast Hopf point (or a more general turning point). We provide formulas to

compute exit densities for given entry densities and the slow relation function.

We apply our results to slow-fast Liénard equations.

Keywords: density, invariant measures, Liénard equations; planar slow-fast sys-4

tems; slow relation function; weak convergence5

1. Introduction6

This paper is dedicated to describing the relationship between measure-theoretic7

properties of the slow relation function, and the dynamic behaviour of C∞-smooth8

planar slow-fast systems with a curve of singularities (often called critical curve)9

consisting of a normally attracting branch, a normally repelling branch and a con-10

tact point between them. Essentially, we look at planar slow-fast systems with a11

parabola-like critical curve as in Fig. 1. In our context, the slow relation function,12

see Definition 1 in Section 3.1 (also known as entry-exit relation, or entry-exit func-13

tion [6, 15, 17]), is a map S : σ → σ (see a generalisation in Section 3.3) measuring14

the balance between contraction and expansion along branches of the critical curve,15

where the section σ contains the contact point. Roughly speaking, the slow rela-16

tion function assigns to every point p on the attracting branch the point q on the17

repelling branch such that the slow divergence integral along the slow segment [p, q]18

is equal to zero (see Fig. 1). The slow divergence integral [17, Chapter 5] is the19

integral of the divergence of the fast subsystem (singular perturbation parameter20

is zero), computed along the critical curve with respect to the so-called slow time21

(for more details we refer the reader to Section 2.2 and Section 3.1).22

The slow relation function can be used, for example, to describe (singular) pe-23

riodic orbits around the contact point, and more generally, to describe transitions24

across singularities of slow-fast systems [6, 15, 17, 18, 27, 54]. A natural question25

that arises for a small but positive value of the singular perturbation parameter26

is: if an orbit is attracted to the attracting branch near a point p, follows that27

attracting branch, passes near the contact point (called turning point) and fol-28

lows the repelling branch, how do we detect a point q where the orbit leaves the29

1
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Figure 1. A slow-fast system with a contact point p0. The blue
curve is the curve of singularities (or critical curve) where γ− and
γ+ represent the attracting and repelling branches, respectively.
Under appropriate assumptions (Section 3.1), the slow relation
function S : σ → σ can be defined, having the following prop-
erty: the slow divergence integral associated to the critical curve
between ω(s) and α(S(s)) is zero. We study measure-theoretic
properties of S, and relate them with dynamical behaviour of the
system.

repelling branch (see Fig. 1 and Fig. 2(a))? We call such orbits canard orbits30

[17, 37, 52]. Under appropriate assumptions on the slow-fast system, we can find q31

using the slow relation function (see [6, 15] and Proposition 2 in Section 3.3). The32

slow relation function (together with the slow divergence integral) also plays an im-33

portant role in determining the number of limit cycles produced by canard cycles34

[17] (i.e. limit periodic sets consisting of a fast orbit and the portion of the critical35

curve between the α and ω limits of that fast orbit, see Fig. 2(b)). The study of36

planar canard cycles is motivated by the famous Hilbert’s 16th problem [48] (see37

[2, 10, 11, 18, 22, 23, 31] and references therein) and by applications (predator-prey38

models [12, 43], electrical circuits, (bio)chemical reactions [36, 44], neuroscience39

[29, 45, 53, 20], among many others). The slow relation function is indeed closely40

related to the concept of delayed loss of stability [1, 51], and is also important in41

fractal analysis of planar slow-fast systems [19, 30, 32].42

(a) (b)

Γ

Figure 2. (a) Canard orbits. (b) Canard cycle Γ (green).

One of our main motivations to bring ergodic theory into play, is to be able to43

describe the behaviour of ensembles of orbits, instead of single ones. For example,44
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[39] studies the problem of how densities of (uncertain or random) initial conditions45

are transformed, via the flow of the slow-fast system, as the corresponding orbits46

cross a Hopf bifurcation. In particular, [39] finds concrete systems for which, given47

a density of initial conditions, such a density is transformed in particular ways,48

or even into a desired one. We point out that [39] considers mostly problems at49

the level ϵ = 0 and that weak convergence of exit densities are not discussed. In50

this paper, we put emphasis precisely on the weak convergence and asymptotics51

of exit densities, see Section 3.3 and 4 for more details. Other works that include52

randomness in the vector field have also considered “entrance-exit” asymptotics53

in the framework of heteroclinic networks, see [4, 5] and references therein. In our54

context, adding generic stochastic forcing to slow-fast planar vector fields is going to55

destroy all canard phenomena [7, 8] involving a long delay near unstable branches,56

unless such randomness is exponentially small [49].57

Important connections between ergodicity and slow-fast systems can be found58

in [24, 35] (homogenization of slow-fast systems), [41, 55] (multiscale stochastic59

ordinary differential equations and bifurcation delay), and [40, 38] (randomness in60

parameters and bifurcations). See also [13, 14] for results on limit cycles in random61

planar vector fields.62

In this paper we deal with smooth nilpotent contact points of arbitrary even63

contact order (infinite contact order is possible) and odd singularity order. There64

is an additional assumption: such contact points have finite slow divergence integral.65

Then we can define the slow relation function. For more details see Section 3.1.66

The contact order of a slow-fast Hopf point (often called generic turning point) is67

2 and its singularity order is 1. Non-generic turning points have contact order 2n68

and singularity order 2n− 1 with n > 1.69

The results we present can be classified into two types:70

(1) First, we relate invariant probability measures of the slow relation function71

with zeros of the slow divergence integral (Theorem 1 in Section 3.2). More72

precisely, we show that the slow divergence integral has no zeros if and73

only if the slow relation function is uniquely ergodic (see the slow-fast van74

der Pol system in Example 2). Furthermore, the slow divergence integral75

has k zeros (counted without their multiplicity) if and only if the invariant76

measures are supported on a set with k + 1 elements (they are convex77

combinations of k + 1 Dirac delta measures). For slow-fast systems with78

a slow-fast Hopf point or a non-generic turning point, we relate invariant79

measures of the slow relation function with the cyclicity of canard cycles80

(Theorem 2 and Theorem 3 in Section 3.2).81

(2) The second type of results is related to entry-exit probability measures.82

That is, we consider entry measures compactly supported near the attract-83

ing branch of the critical curve, and study how they are transformed near84

the repelling branch, after passage close to a slow-fast Hopf point or a non-85

generic turning point (Theorem 4 in Section 3.3). The transformed mea-86

sures are push-forward measures of the entry measures and we call them87

the exit measures. The entry and exit measures depend on the singular88

perturbation parameter denoted by ϵ > 0.89

Depending on the setup, see more details in Section 3, there are two90

important regions for the dynamics: the tunnel and the funnel regions. In91

the tunnel region, we show that, if the entry measures converge weakly to92
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a measure µ0 as ϵ → 0, then the exit measures converge weakly to the93

push-forward of µ0 under the slow relation function, as ϵ → 0 (Theorem94

4(a)).95

In the presence of both tunnel and funnel regions, separated by a buffer96

point, the exit measures converge weakly to a more complex measure having97

two components, one coming from the tunnel behavior (the push-forward98

of µ0 under the slow relation function) and the other coming from the99

funnel behavior (Dirac delta measure concentrated on the image of the100

buffer point under the slow relation function). Here we also assume that101

the entry measures converge weakly to a measure µ0 as ϵ → 0. For a precise102

statement of this result we refer the reader to Theorem 4(b).103

Suppose that µ0 has density. Then we provide a formula to compute the104

density of the push-forward of µ0 under the slow relation function, called105

the exit density (see Proposition 1 in Section 3.3).106

We often give examples using slow-fast Liénard equations (see system (3) in107

Section 2.2). The main advantage of the Liénard model is a simpler expression for108

the slow divergence integral, see (7) in Section 2.2. For example, the divergence109

of (3) is independent of y. We refer to e.g. [18, 22]. Using Proposition 1, we find110

concrete formulas to compute the exit densities for slow-fast Liénard equations (see111

Corollary 1 in Section 3.3).112

For the sake of readability we have chosen to state Theorem 3 and Theorem 4113

for a class of slow-fast Liénard equations. However, we point out that they can114

be stated and proved in a more general framework [15], even for more degenerate115

contact points than the nilpotent contact points. In fact, Proposition 2 that we use116

in the proof of Theorem 4 (Section 6) is true for a broader class of planar slow-fast117

systems studied in [15].118

The paper is organized as follows. In Section 2 we recall some basic concepts in119

ergodic theory and planar slow-fast systems. In Section 3 we define our planar slow-120

fast model (see also Section 2.2) and state our main results. Section 4 is devoted121

to numerical examples, and in Sections 5 and 6 we prove the main results.122

2. Preliminaries and some notation123

In Section 2.1 we recall some important definitions and results in ergodic theory124

that we will use in our paper. The reader may be referred to, e.g. [3, 9, 34, 42, 47, 50]125

and references therein for further details. In Section 2.2 we recall the notions of126

curve of singularities, fast foliation, normally hyperbolic singularity, contact point,127

slow vector field, slow divergence integral, etc., in planar slow-fast systems (for128

more details see [17, Chapters 1–5] and [37, 52]).129

2.1. Ergodic theory. Assume that X is a measure space. More precisely, X is130

the short-hand notation for the triplet (X,A, µ) where (X,A) is a measurable space131

with A a σ-algebra of subsets of X, for which a measure µ : A → [0,+∞] is defined.132

If µ(X) = 1, one usually says that µ is a probability measure, and calls (X,A, µ)133

a probability space. In this paper we deal with probability measures. We say that134

µ is supported on A ∈ A if µ(X \ A) = 0. A map f : X → X being measurable135

means that if A ∈ A then f−1(A) ∈ A. One further says that µ is f -invariant if136

µ(f−1(A)) = µ(A) for all A ∈ A. In this case, one can also say that f preserves137
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µ. For example, a Dirac measure δx at x ∈ X, defined by δx(A) :=

{
1, x ∈ A

0, x /∈ A
, is138

f -invariant if and only if x is a fixed point of f .139

An f -invariant probability measure µ is said to be ergodic (w.r.t. f) if for any140

measurable set A ∈ A such that f−1(A) = A either µ(A) = 0 or µ(A) = 1. Further,141

we say that a measurable map f : X → X is uniquely ergodic if it admits exactly one142

invariant probability measure (this invariant probability measure has to be ergodic143

w.r.t. f). It is well-known that the space of all f -invariant probability measures144

is convex: if µ and µ̃ are f -invariant probability measures, then (1 − t)µ + tµ̃, for145

any t ∈]0, 1[, is also f -invariant. The ergodic probability measures are the extremal146

points of this convex set (for more details see e.g. [50, Proposition 4.3.2]).147

An important question is whether an invariant probability measure exists for a148

given f : X → X. This leads to the following fundamental result, due to Krylov-149

Bogolubov [34, Theorem 4.1.1]: If X is a compact metric space and f : X → X a150

continuous map, then f has an invariant Borel probability measure. Here, A is the151

Borel σ-algebra of X, often denoted by B (i.e. the σ-algebra generated by the open152

(and therefore also closed) subsets of X). A probability measure defined on the153

Borel σ-algebra B of a metric (or topological) space X is called a Borel probability154

measure. In Section 3.2 X will be a compact metric space (a segment in R) and155

f : X → X continuous (see Remark 5 in Section 3.1).156

One of the most important results in ergodic theory is the Poincaré recurrence157

theorem (see Theorem 5 in Section 5.1). Roughly speaking, this result states that158

f -invariant Borel probability measures on a topological space X imply recurrence159

for f (the definition of recurrent points is given in Section 5.1). We use the Poincaré160

recurrence theorem in the proof of Theorem 1 (Section 5.1).161

Let µϵ, with ϵ ∈]0, ϵ0], ϵ0 > 0, and µ0 be Borel probability measures on R with
the usual Borel σ-algebra B. We say that µϵ converges weakly (or in distribution)
to µ0 as ϵ → 0 if

lim
ϵ→0

∫
R
χ(x)µϵ(dx) =

∫
R
χ(x)µ0(dx),

for every bounded, continuous function χ : R → R (see e.g. [9]). The integrals are162

Lebesgue integrals.163

Let B be the usual Borel σ-algebra of R and let µ be a Borel probability measure
on R. If f : R → R is a measurable function, then the push-forward probability
measure of µ is defined as

µf−1(A) := µ
(
f−1(A)

)
, A ∈ B.

Weak convergence is preserved by continuous mappings (see [9, pg. 20]): if f is164

continuous and µϵ converges weakly to µ0 as ϵ → 0, then µϵf
−1 converges weakly165

to µ0f
−1 as ϵ → 0.166

We will sometimes work with absolutely continuous probability measures w.r.t.
the Lebesgue measure on R (Section 3.3 and Section 4). A Borel probability measure
µ is absolutely continuous w.r.t. the Lebesgue measure if

µ(A) =

∫
A

D(x)dx, A ∈ B,
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where D ∈ L1(R) and D ≥ 0 (L1(R) is the space consisting of all possible Lebesgue167

integrable functions R → R). We call D the density of µ. We refer to [42, Definition168

3.1.4].169

2.2. Planar slow-fast systems. We consider a smooth planar slow-fast system170

defined on an open set M ⊂ R2
171

(1) Xλ,ϵ = Xλ,0 + ϵQλ +O(ϵ2)172

where 0 ≤ ϵ ≪ 1 is the singular perturbation parameter, λ is a regular parameter173

kept in a small neighborhood of λ0 ∈ Rr (we often write λ ∼ λ0), and Xλ,0 and174

Qλ are smooth λ-families of vector fields. In this paper smooth means C∞-smooth.175

We assume that the fast subsystem Xλ,0 has a set of non-isolated singularities176

Sλ, for all λ ∼ λ0, and that for each p ∈ Sλ0
there exists an open neighborhood177

U ⊂ M of p such that Xλ,0 = FλZλ on U . Here, Fλ is a smooth family of functions178

with ∇Fλ(p) ̸= 0, for all p ∈ {Fλ = 0}, and Zλ is a smooth family of vector179

fields without singularities. It is clear that Sλ ∩ U = {Fλ = 0} and Sλ is a one-180

dimensional submanifold of M . We call Sλ the curve of singularities or critical181

curve. In [17, Section 1.1] {U,Zλ, Fλ} is called an admissible expression for Xλ,0182

near p. Notice that the pair (Zλ, Fλ) is not unique: we can take (ρλZλ,
1
ρλ

Fλ) where183

ρλ is a nowhere zero smooth function. We denote by t the time variable related to184

(1) and call it the fast time.185

Example 1. A standard example of a planar slow-fast system is the singularly186

perturbed Liénard equation187

ϵ
dx

dτ
= y − fλ(x)

dy

dτ
= g(x, λ, ϵ),

(2)188

where fλ, g are smooth, (x, y) ∈ R2, λ ∼ λ0 ∈ Rr are parameters, and 0 ≤ ϵ ≪ 1 is189

a small parameter accounting for the timescale difference between the fast variable190

x and the slow variable y. τ is called the slow time variable. The time rescaling191

dτ = ϵdt (t is the fast time) leads to the equivalent representation192

(3) Yλ,ϵ :

{
dx
dt = y − fλ(x)
dy
dt = ϵg(x, λ, ϵ),

193

in which case, for example, Fλ(x, y) = y − fλ(x), Zλ =

[
1
0

]
and Qλ =

[
0

g(x, λ, 0)

]
.194

The curve of singularities is defined as the set195

(4) Sλ =
{
(x, y) ∈ R2 | y = fλ(x)

}
,196

and represents the phase-space and the set of singularities of the limit ϵ → 0 of (2)197

and (3), respectively. System Yλ,ϵ is of type (1). △198

The fast foliation of Xλ,0 is denoted by Fλ and is defined as follows: Fλ is199

a smooth 1-dimensional foliation on M tangent to Zλ in each admissible local200

expression {U,Zλ, Fλ} for Xλ,0. The orbits of the fast flow of Xλ,0, away from Sλ,201

are located inside the leaves of the fast foliation (we denote by lλ,p the leaf through202

p ∈ M). For more details we refer to [17, Chapter 1]. In Example 1, the fast203

foliation is given by horizontal lines (see e.g. Fig. 1).204
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A point p ∈ Sλ is called normally hyperbolic if the Jacobian matrix DXλ,0(p)205

has a non-zero eigenvalue denoted Eλ(p) (p is attracting if Eλ(p) < 0 or repelling206

if Eλ(p) > 0). Notice that there is one zero eigenvalue with eigenspace TpSλ. The207

eigenspace of the nonzero eigenvalue Eλ(p) is Tplλ,p and Eλ(p) is equal to the trace208

of DXλ,0(p) or the divergence of the vector field Xλ,0 w.r.t. the standard area form209

on R2, computed in p. A point p ∈ Sλ is called a contact point (between Sλ210

and Fλ) when DXλ,0(p) has two zero eigenvalues. Contact points are nilpotent211

due to the above-mentioned assumption on Zλ and Fλ. A curve γ ⊂ Sλ is called212

normally attracting (resp. repelling) if every point p ∈ γ is normally hyperbolic and213

attracting (resp. repelling). For the Liénard system (3), we have Eλ(p) = −f ′
λ(x)214

with p = (x, fλ(x)), and p is normally attracting (resp. repelling and contact point)215

if f ′
λ(x) > 0 (resp. f ′

λ(x) < 0 and f ′
λ(x) = 0).216

It is important to define the notion of contact order and singularity order of a217

contact point p0 for λ = λ0 ([17, Section 2.2]): we call intersection multiplicity1218

at p0 between Sλ0
and the leaf lλ0,p0

the contact order of p0 and denote it by n.219

Moreover, for any admissible expression {U,Zλ, Fλ} for X0,λ near p0 and for any220

area form Ω on U , the order at p0 of the function Ω(Qλ0 , Zλ0)|Sλ0
∩U : p ∈ Sλ0∩U 7→221

Ω(Qλ0 , Zλ0)(p) is called the singularity order of p0, denoted by m. The definition of222

singularity order is independent of the choice of the admissible expression near p0223

and Ω (see [17, Lemma 2.1]). For (3) in Example 1 with a contact point p0 = (0, 0),224

n ≥ 2 is equal to the order at x = 0 of fλ0
(x) (i.e. the multiplicity of zero x = 0 of225

fλ0(x)) and m ≥ 0 is the order at x = 0 of g(x, λ0, 0) (see also Remark 1 in Section226

3.1).227

Let p ∈ Sλ be normally hyperbolic. Let Q̂λ(p) ∈ TpSλ be the linear projection228

of Qλ(p) on TpSλ in the direction parallel to the eigenspace Tplλ,p defined above229

(recall that the vector field Qλ comes from (1)). The family Q̂λ is called the slow230

vector field, and its flow is called the slow dynamics. The time variable of the slow231

dynamics is the slow time τ = ϵt. This definition and the classical one using center232

manifolds are equivalent (for more details see [17, Chapter 3]). If we take (3), then233

we get234

(5) Q̂λ :

{
dx
dτ = g(x,λ,0)

f ′
λ(x)

dy
dτ = g(x, λ, 0),

235

when f ′
λ(x) ̸= 0.236

Let γ ⊂ Sλ be a normally hyperbolic segment not containing singularities of237

the slow vector field Q̂λ. We define the slow divergence integral [17, Chapter 5]238

associated to γ as239

(6) I(γ, λ) =

∫ τ2

τ1

Eλ(γ̃(τ))dτ,240

where Eλ is the non-zero eigenvalue function defined above, γ̃ : [τ1, τ2] → R2,241

γ̃′(τ) = Q̂λ(γ̃(τ)) and γ̃(τ1) and γ̃(τ2) are the end points of the segment γ. The242

segment γ is parameterized by the slow time τ . This definition does not depend243

on the choice of parameterization γ̃ of γ. Note that I(γ, λ) is the integral of the244

1If the curves are graphs of smooth functions y = f1(x) and y = f2(x) in a neighborhood of p0
corresponding to (x, y) = (0, 0), then the intersection multiplicity is the multiplicity of the zero
x = 0 of f1 − f2.
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divergence of the fast subsystem Xλ,0 computed along γ w.r.t. the slow time τ . If γ245

is normally attracting (resp. repelling), then I(γ, λ) is negative (resp. positive). We246

point out that the slow divergence integral is invariant under smooth equivalences2,247

see [17, Section 5.3] and Section 3.1.248

Consider (3). Let γ ⊂ Sλ be a normally hyperbolic segment parameterized by249

x ∈ [x1, x2], x1 < x2. Assume that the slow vector field (5) has no singularities in250

γ and points, for example, from x2 to x1. Then251

(7) I(γ, λ) = −
∫ x1

x2

(f ′
λ(x))

2

g(x, λ, 0)
dx.252

Note that the divergence is given by −f ′
λ(x) and dτ =

f ′
λ(x)

g(x,λ,0)dx, using the x253

component of (5).254

Based on [17, Definition 5.2], in Section 3.1 we generalise the definition (6) of255

the slow divergence integral. We allow the presence of a contact point in one of the256

boundary points of the segment γ. This plays an important role when we introduce257

the notion of slow relation function (see Definition 1 in Section 3.1).258

3. Assumptions and statement of the results259

In Section 3.1 we focus on the slow-fast family Xλ,ϵ defined in (1) and make260

some assumptions on Sλ, m, n and Q̂λ. Then we define the slow relation function.261

We state our main results in Section 3.2 (Theorem 1–Theorem 3) and Section 3.3262

(Theorem 4). See also Proposition 1 and Corollary 1 in Section 3.3.263

3.1. Assumptions and slow relation function. Consider system Xλ,ϵ. We use264

the notation from Section 2.2. First we assume that the curve of singularities Sλ0
265

consists of a normally attracting branch, a normally repelling branch and a contact266

point between them.267

268

Assumption 1 We have Sλ0 = γ− ∪ {p0} ∪ γ+, where γ− is normally attract-269

ing, γ+ is normally repelling and p0 is a contact point (see Fig. 3).270

271

γ−
γ+

p0

σ

Figure 3. Dynamics of Xλ0,0, with contact point p0 separating
normally attracting branch γ− and normally repelling branch γ+.

In Example 1 (Section 2.2) Assumption 1 is satisfied if, for instance,272

(8) fλ0(0) = f ′
λ0
(0) = 0, f ′

λ0
(x) > 0 for x > 0, f ′

λ0
(x) < 0 for x < 0.273

2Smooth equivalence means smooth coordinate change and division by a smooth positive

function.
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The contact point p0 is given by (x, y) = (0, 0), γ− = {Sλ0
|x > 0} and γ+ =274

{Sλ0 |x < 0}.275

Remark 1. From Assumption 1 it follows that the contact order n (Section 2.2)276

of p0 has to be even (when n is finite). Indeed, since p0 ∈ Sλ0 is a nilpotent contact277

point for λ = λ0 (see Assumption 1), there exist smooth local coordinates (x, y)278

such that p0 = (0, 0) in which, up to multiplication by a strictly positive function,279

the slow-fast system Xλ,ϵ in (1) with (ϵ, λ) ∼ (0, λ0) can be written as280

(9)

{
ẋ = y − fλ(x)

ẏ = ϵ (g(x, λ, ϵ) + (y − fλ(x))h(x, y, λ, ϵ)) ,
281

where fλ and g are given in (3), h is a smooth function and fλ0(0) = f ′
λ0
(0) = 0282

(see [17, Proposition 2.1]). Thus, (9) is a normal form for smooth equivalence.283

Following [17, Section 2.2], we can read the contact order of p0 and the singularity284

order of p0 from the normal form (9): n ≥ 2 is the order of the function fλ0
(x)285

at x = 0 and m ≥ 0 is the order of g(x, λ0, 0) at x = 0 (this is independent of286

the choice of coordinates for the normal form (9)). Now, since p0 separates the287

attracting portion γ− ⊂ Sλ0
and the repelling portion γ+ ⊂ Sλ0

(Assumption 1), it288

is clear that f ′
λ0
(x) ̸= 0 for x ̸= 0 and f ′

λ0
(x) changes sign as one varies x through289

0. Thus, n is even or n = ∞, and Sλ0 is a “parabola-like” curve of singularities290

(see Fig. 3).291

In order to avoid any confusion we shall distinguish two cases when we use292

the slow-fast Liénard equation Yλ,ϵ in (3): the local case where Yλ,ϵ appears in293

the normal form (9) (Yλ,ϵ is defined in a small neighborhood of the contact point294

p0 = (0, 0)) and the global case where Yλ,ϵ is defined on open set M ⊂ R2, often295

M = R2 (see Section 3.2, Section 3.3 and Section 4). In the global case we always296

assume that the contact point p0 is located at the origin in the (x, y)-space and297

that (8) holds.298

Using Assumption 1 it is also clear that the slow vector field Q̂λ0
(p) is well-299

defined for all p ∈ γ− ∪ γ+ (see Section 2.2).300

The next assumption deals with the singularity order of p0.301

302

Assumption 2 We suppose that the singularity order m of the contact point303

p0 is finite and odd.304

Remark 2. Assumption 2 and Remark 1 imply that the slow vector field Q̂λ0
points305

from γ− to γ+ or from γ+ to γ−, near the contact point p0 (hence, it is not directed306

towards p0 or away from p0 on both sides of p0). To see this, it suffices to use the307

normal form (9) near p0. It can be easily seen that the slow vector field associated308

to (9) is given by (5) with λ = λ0, x ∼ 0 and x ̸= 0. defined near p0. Let us focus309

on the x-component of (5):310

(10)
dx

dτ
=

g(x, λ0, 0)

f ′
λ0
(x)

,311

with x ̸= 0 and x ∼ 0. Since the order of the function g(x, λ0, 0) at x = 0 is finite312

and odd (Assumption 2 and Remark 1), g(x, λ0, 0) changes sign as x goes through313

the origin. Recall that f ′
λ0

has the same property (Remark 1). Thus, the right-hand314
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side of (10) is either positive for all x ̸= 0 and x ∼ 0 or negative for all x ̸= 0 and315

x ∼ 0.316

We further assume:317

318

Assumption 3 γ− ∪ γ+ does not contain singularities of the slow vector field319

Q̂λ0 , and Q̂λ0 points from γ− to γ+.320

321

Assumption 3 is natural because in Section 3.2 and Section 3.3 we study ergodic322

properties and entry-exit probability measures related to canard orbits of Xλ,ϵ with323

λ ∼ λ0 and ϵ small and positive. Such orbits follow a portion of the attracting curve324

γ−, pass close to the contact point p0 and then follow the repelling curve γ+ for a325

significant amount of time.326

Since Q̂λ0
is regular on γ− ∪ γ+ (Assumption 3), the slow divergence integral327

associated to any segment contained in γ−∪γ+ is well-defined (see Section 2.2). As328

mentioned before, it is important to work with the slow divergence integral associ-329

ated to segments of Sλ0 with the property that one of their endpoints is the contact330

point p0. The following assumption enables us to extend the slow divergence inte-331

gral to p0, for λ = λ0 (see Remark 3):332

333

Assumption 4 We assume that m < 2(n− 1).334

Remark 3. Suppose that λ = λ0. Let γ = [q, p0] be a segment contained in335

γ− ∪ {p0}, with one of the endpoints equal to the contact point p0. Then the slow336

divergence integral associated to [q, p0] is defined as337

(11) I−([q, p0]) := lim
p→p0,p∈γ−

I([q, p], λ0) < 0,338

where I is defined in (6) and associated to the normally attracting segment [q, p] ∈339

γ−. Using Assumption 4 and [17, Definition 5.2], I−([q, p0]) is finite. This can be340

easily seen if we use the normal form (9) near p0 (recall that (6) is invariant under341

smooth equivalences). We may assume that the curve of singularities y = fλ0(x)342

of (9) satisfies (8) near x = 0 (if not, we can apply (x, y) → (−x,−y) to (9)). Let343

0 < x1 < x2 with x2 small. The slow divergence integral of (9) associated to the344

attracting segment parameterized by x ∈ [x1, x2] reads as345

I(x1, x2) = −
∫ x1

x2

(
f ′
λ0
(x)

)2
g(x, λ0, 0)

dx < 0.346

For more details we refer to [17, Section 5.5] (see also (7)). Now, from Assumption347

4 it follows that the following limit is finite:348

(12) I−(x2) = lim
x1→0+

I(x1, x2) = −
∫ 0

x2

(
f ′
λ0
(x)

)2
g(x, λ0, 0)

dx < 0.349

The integral I−(x2) in (12) represents the slow divergence integral associated to the350

segment [0, x2] contained in y = fλ0
(x) where the endpoint x = 0 corresponds to the351

contact point (x, y) = (0, 0). Thus, I−([q, p0]) in (11) is well-defined (i.e. finite).352

Similarly, if [q, p0] is a segment contained in γ+ ∪ {p0}, then we define353

(13) I+([q, p0]) := lim
p→p0,p∈γ+

I([q, p], λ0) > 0.354
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In the normal form coordinates we have355

(14) I+(x1) = lim
x2→0−

I(x1, x2) = −
∫ x1

0

(
f ′
λ0
(x)

)2
g(x, λ0, 0)

dx > 0,356

where x1 < x2 < 0.357

We finally define the notion of slow relation function of (1) for λ = λ0. Let358

σ ⊂ M be a smooth closed section transverse to the fast foliation Fλ0 , having the359

contact point p0 as its endpoint (Fig. 3). We let σ be parameterized by a regular360

parameter s ∈ [0, s0], with s0 > 0, where s = 0 corresponds to p0, and we suppose361

that σ \ {p0} lies in the basin of attraction of γ− and, in backward time, in the362

basin of attraction of γ+. We write363

(15) Ĩ−(s) = I−([ω(s), p0]), Ĩ+(s) = I+([α(s), p0]), s ∈]0, s0],364

where I±([q, p0]) are defined in (11) and (13) and ω(s) ∈ γ− (resp. α(s) ∈ γ+)365

is the ω-limit point (resp. α-limit point) of the orbit of Xλ0,0 through s ∈ σ. It366

is clear that Ĩ±(s) → 0 as s tends to zero, Ĩ− is strictly decreasing and smooth367

on ]0, s0] (Ĩ
′
−(s) < 0 for s ∈]0, s0]) and Ĩ+ is strictly increasing and smooth on368

]0, s0] (Ĩ
′
+(s) > 0 for s ∈]0, s0]). If we take Ĩ±(0) = 0, then the functions Ĩ± are369

continuous on the segment [0, s0].370

Definition 1 (Slow-relation function). ConsiderXλ,ϵ defined in (1) and suppose
that Assumptions 1 through 4 are satisfied. If

−Ĩ−(s0) ≤ Ĩ+(s0) (resp. − Ĩ−(s0) > Ĩ+(s0)),

then S : [0, s0] → [0, s0], S(0) = 0, given by371

(16) Ĩ−(s) + Ĩ+(S(s)) = 0 (resp. Ĩ−(S(s)) + Ĩ+(s) = 0), s ∈]0, s0],372

is well-defined and we call it the slow relation function.373

Remark 4. Let us explain why the function S in Definition 1 is well-defined (i.e.374

S exists). Suppose that −Ĩ−(s0) ≤ Ĩ+(s0) and take any s ∈]0, s0]. Since −Ĩ−375

is strictly increasing and −Ĩ−(0) = 0, we have 0 < −Ĩ−(s) ≤ −Ĩ−(s0). Thus,376

0 = Ĩ+(0) < −Ĩ−(s) ≤ Ĩ+(s0). The function Ĩ+ is continuous on the segment [0, s0],377

and the Intermediate-Value Theorem implies the existence of a unique number S(s)378

in ]0, s0] such that Ĩ+(S(s)) = −Ĩ−(s) (the uniqueness and S(s) > 0 follow from379

the fact that Ĩ+ is strictly increasing). The case where −Ĩ−(s0) > Ĩ+(s0) can be380

treated in similar fashion as above.381

Since S(0) = 0 and S(s) → 0 as s tends to zero, it is clear that the slow relation382

function S is continuous on [0, s0]. Moreover, the Implicit Function Theorem, the383

smoothness of Ĩ± on the interval ]0, s0] and (16) imply the smoothness of S on the384

interval ]0, s0]. Moreover, S′ > 0.385

Remark 5. In Section 3.2 we assume that [0, s0] is a segment on R with the386

standard Borel σ-algebra and work with S-invariant Borel probability measures on387

[0, s0]. The main results in Section 3.2 (Theorem 1–Theorem 3) are independent of388

the choice of section σ and a regular parameter s on σ.389

In Section 3.3 we study connection between entry and exit probability measures390

and it is natural to deal with a more general definition of S. Instead of one section391

σ we have two sections σ− (entry) and σ+(exit). We refer to Fig 4.392
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We say that the multiplicity of a fixed point s1 ∈]0, s0] of S is equal to l if s1393

is a zero of S̃(s) := s− S(s) of multiplicity l (that is S̃(s1) = · · · = S̃(l−1)(s1) = 0394

and S̃(l)(s1) ̸= 0). If S̃(n)(s1) = 0 for each n = 0, 1, . . . , then the multiplicity of s1395

of S is ∞.396

Remark 6. We will often work with slow relation functions associated to slow-fast397

Liénard systems (3) satisfying (8) (see Section 3.2, Section 3.3 and Section 4). In398

this case we can take σ ⊂ {x = 0}, parameterized by the coordinate y ∈ [0, s0]. We399

denote y by s. Then the integrals Ĩ±(s) in (15) become400

(17) Ĩ−(s) = −
∫ 0

ω1(s)

(
f ′
λ0
(x)

)2
g(x, λ0, 0)

dx, Ĩ+(s) = −
∫ α1(s)

0

(
f ′
λ0
(x)

)2
g(x, λ0, 0)

dx,401

where α1(s) < 0 and ω1(s) > 0 are the x-coordinates of the α and ω limits of the fast
orbit through s (see (12) and (14)). We have s = fλ0

(α1(s)) and s = fλ0
(ω1(s)),

and by differentiating it follows that

1 = f ′
λ0
(α1(s))α

′
1(s), 1 = f ′

λ0
(ω1(s))ω

′
1(s).

This previous equation, together with (17), imply that402

(18) Ĩ ′−(s) =
f ′
λ0
(ω1(s))

g(ω1(s), λ0, 0)
, Ĩ ′+(s) = −

f ′
λ0
(α1(s))

g(α1(s), λ0, 0)
.403

3.2. Invariant measures and limit cycles. In this section, we suppose that Xλ,ϵ404

in (1) satisfies Assumption 1–Assumption 4. For each s ∈]0, s0] we define a closed405

curve Γs at level (λ, ϵ) = (λ0, 0) consisting of the fast orbit of Xλ0,0 passing through406

s ∈ σ and the portion of the curve of singularities Sλ0 between the ω-limit point407

ω(s) ∈ γ− and the α-limit point α(s) ∈ γ+ of that fast orbit (see Fig. 2(b)). We408

associate the following slow divergence integral to Γs:409

(19) Ĩ(s) := Ĩ−(s) + Ĩ+(s),410

with s ∈]0, s0].411

Theorem 1. Let S : [0, s0] → [0, s0] be the slow relation function defined in (16)412

and let Ĩ be the slow divergence integral associated to Γs, defined in (19). Then the413

following statements hold:414

(1) The function Ĩ has no zeros in ]0, s0] if and only if the slow relation function415

S is uniquely ergodic (i.e. S admits precisely one invariant probability416

measure: the Dirac delta measure δ0 at 0).417

(2) The function Ĩ has a zero at s = s1 ∈]0, s0] if and only if the Dirac delta418

measure δs1 at the point s1 is S-invariant.419

(3) The function Ĩ has exactly k zeros s1 < · · · < sk in ]0, s0] if and only if the420

set of all S-invariant probability measures on [0, s0], denoted by PS, is the421

convex hull of Dirac delta measures δ0, δs1 , . . . , δsk :422

(20) PS =

{
η0δ0 +

k∑
i=1

ηiδsi : η0, ηi ≥ 0,

k∑
i=0

ηi = 1

}
.423

We prove Theorem 1 in Section 5.1. We point out that k in Theorem 1.3 is424

the arithmetic number of zeros of Ĩ, i.e. the zeros of Ĩ counted without their425

multiplicity. Notice that δ0, δs1 , . . . , δsk from Theorem 1.3 are ergodic probability426

measures (they are the extremal points of the convex set PS in (20)). See also427
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[50, Proposition 4.3.2]. In the proof of Theorem 1.1 and Theorem 1.3 we use an428

important result in ergodic theory, the Poincaré recurrence theorem [34, 50].429

We point out that the study of zeros of Ĩ is relevant since the zeros provide430

candidates for limit cycles (for more details see Theorem 2 and Theorem 3 and431

their proof).432

Example 2. Consider the slow-fast Van der Pol system433

(21) Xλ,ϵ :

{
ẋ = y − 1

2x
2 − 1

3x
3

ẏ = ϵ (λ− x) ,
434

where λ ∼ 0 (λ0 = 0). The slow relation function associated with the slow-fast
system (21) is uniquely ergodic. Indeed, for ϵ = λ = 0, we consider the normally
attracting branch γ− = {y = 1

2x
2 + 1

3x
3} ∩ {x > 0}, the normally repelling branch

γ+ = {y = 1
2x

2 + 1
3x

3} ∩ {−1 < x < 0} and the contact point p0 at (x, y) = (0, 0).

Note that (21) is a special case of (3). We take s = y ∈ [0, s0], where s0 ∈]0, 1
6 [ is

arbitrary and fixed. Using (17), the slow divergence integral in (19) can be written
as

Ĩ(s) = −
∫ ω1(s)

α1(s)

x(1 + x)2dx, s ∈]0, s0].

Since Ĩ(s) < 0 for all s ∈]0, s0] (see [23] or [17, Section 5.7]), Theorem 1.1 implies435

that the slow relation function S : [0, s0] → [0, s0] is uniquely ergodic.436

We call the contact point p0 in (21) a slow-fast Hopf point (see below). △437

Example 3. Consider (3) with fλ(x) = xn and g(x, λ, ϵ) = −xm, where n ≥ 2438

is even, m ≥ 1 is odd and m < 2(n − 1). Since the function fλ is even (i.e. the439

curve of singularities is symmetric w.r.t. the y-axis) and the function x 7→ (f ′
λ(x))

2

g(x,λ,0)440

is odd, the slow relation function S is the identity map and the slow divergence441

integral Ĩ is identically zero. In this case, each probability measure is S-invariant,442

and ergodic probability measures are given by Dirac delta measures. △443

For slow-fast Liénard equations with arbitrary number of zeros of the associated444

slow divergence integral we refer to e.g. [18].445

Assume that the contact point p0 in Assumption 1 is of Morse type (this means446

that the contact order of p0 is 2) and that the singularity order of p0 is 1. If the447

slow vector field Q̂λ0
, defined in Section 3.1, points from the attracting branch γ−448

to the repelling branch γ+, then we say that Xλ,ϵ has a slow-fast Hopf point at p0449

for λ = λ0 (sometimes called generic turning point). See e.g. [17, 37]. When p0 is a450

slow-fast Hopf point, then Γs (often called a canard cycle) can produce limit cycles451

after perturbation. More precisely, we say that the cyclicity of the canard cycle Γs452

is bounded by N ∈ N0 if there exist ϵ0 > 0, δ0 > 0 and a neighborhood V of λ0453

in the λ-space such that Xλ,ϵ has at most N limit cycles lying within Hausdorff454

distance δ0 of Γs for each (λ, ϵ) ∈ V × [0, ϵ0]. The smallest N with this property is455

called the cyclicity of Γs. We denote by Cycl(Xλ,ϵ,Γs) the cyclicity of Γs. We have456

Theorem 2. Suppose that Xλ,ϵ has a slow-fast Hopf point at p0 for λ = λ0. Let457

S : [0, s0] → [0, s0] be the slow relation function from Definition 1, associated to458

Xλ,ϵ. The following statements are true.459
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(1) If S is uniquely ergodic, then Cycl(Xλ,ϵ,Γs) ≤ 1 for each fixed s ∈]0, s0].460

The limit cycle, if it exists Hausdorff close to Γs, is hyperbolic and attracting461

(resp. repelling) if Ĩ(s) < 0 (resp. > 0).462

(2) If the Dirac delta measure δs1 is S-invariant for some s1 ∈]0, s0], then s =463

s1 is a fixed point of S of multiplicity 1 ≤ l ≤ ∞, and Cycl(Xλ,ϵ,Γs1) ≤ l+1464

if l < ∞.465

Theorem 2 will be proved in Section 5.2.466

Theorem 3 below deals with the following generalization of slow-fast Hopf points:467

(22)

{
ẋ = y − x2n1 f̃(x)

ẏ = ϵ
(
λ− x2n1−1

)
,

468

where f̃ is smooth, f̃(0) > 0, n1 ≥ 1 and λ ∼ 0 ∈ R (λ0 = 0). The Liénard469

equation (22) is of type (3) with fλ(x) = x2n1 f̃(x) and g(x, λ, ϵ) = λ− x2n1−1. For470

λ = 0, the origin (x, y) = (0, 0) is a contact point with even contact order 2n1 and471

odd singularity order 2n1 − 1. It is clear that Assumption 2 and Assumption 4 are472

satisfied. When n1 = 1 (resp. n1 > 1), (x, y) = (0, 0) is a slow-fast Hopf point or473

generic turning point (resp. a non-generic turning point). We suppose that474

(23) f ′
λ0
(x) > 0 for all x > 0, f ′

λ0
(x) < 0 for all x < 0.475

From (23) and g(x, 0, 0) = −x2n1−1 it follows that Assumption 1, with γ− = {y =476

x2n1} ∩ {x > 0} and γ+ = {y = x2n1} ∩ {x < 0}, and Assumption 3 are satisfied.477

We define the slow relation function S : [0, s0] → [0, s0] of (22) using (16).478

Theorem 3. Consider (22) with a fixed n1 ≥ 1. If the set of all S-invariant prob-479

ability measures is given by (20) for some 0 < s1 < · · · < sk < s0, then s1, . . . , sk480

are fixed points of S. If they all have multiplicity 1 (i.e. they are hyperbolic) and481

if we take sk < sk+1 ≤ s0, then there exists a continuous function λ∗(ϵ), with482

λ∗(0) = 0, such that the Liénard family (22) with λ = λ∗(ϵ) has k + 1 periodic483

orbits Oϵ
1, . . . , O

ϵ
k+1, for each ϵ ∼ 0 and ϵ > 0. The periodic orbit Oϵ

i is isolated,484

hyperbolic and close to Γsi in Hausdorff sense, for each i = 1, . . . , k + 1.485

Theorem 3 will be proved in Section 5.3.486

3.3. Entry and exit measures. In this section we deal with Borel probability487

measures on R with the usual Borel σ-algebra B. The measures will be supported488

on bounded Borel sets L, T, . . . (see below). Roughly speaking, the main result489

of this section, Theorem 4, gives an answer to following natural questions: if an490

ϵ-family of entry measures (ϵ is the singular perturbation parameter) is convergent491

when ϵ → 0, is the ϵ-family of exit measures convergent when ϵ → 0, and, if the exit492

limit exists, how do we read the exit limit from the entry limit and slow relation493

function?494

We consider Xλ,ϵ defined in (1) and suppose that it satisfies Assumption 1–495

Assumption 4. Instead of one section σ (Section 3.2) we now define two sections496

σ− and σ+, transverse to the fast foliation Fλ0 . We refer to Fig. 4. We parameterize497

σ± by a regular parameter s± ∈ [0, s±0 ], where s± = 0 corresponds to the contact498

point p0. The section σ− \ {p0} lies in the basin of attraction of γ− and the section499

σ+ \ {p0}, in backward time, in the basin of attraction of γ+.500
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γ−

σ−σ+

γ+

p0

L
s−b
s−1

s+1

s−2

s+2 s+c
s−c

T

γ−

σ−

σ+
γ+

p0

LT

s+c
s−c

s−1
s+1

(a) −Ĩ−(s
−
c ) ≤ Ĩ+(s

+
c ) (b) −Ĩ−(s

−
c ) > Ĩ+(s

+
c )

Figure 4. Entry section σ−, exit section σ+ and definition of slow
relation function S0 : L → T .

Again we can define slow divergence integrals Ĩ−(s
−) < 0 and Ĩ+(s

+) > 0 (see501

(15)). We take a point on σ− given by s−c ∈]0, s−0 [ and a point on σ+ given by502

s+c ∈]0, s+0 [. We distinguish between two cases:503

(a) −Ĩ−(s
−
c ) ≤ Ĩ+(s

+
c ). For any segment L contained in ]0, s−c [, we can define a504

smooth and increasing slow relation function S0 : L → T = S0(L) ⊂]0, s+c [505

by Ĩ−(s
−) + Ĩ+(S0(s

−)) = 0, s− ∈ L. The proof that S0 is well-defined506

is similar to the proof that S is well-defined, given in Remark 4. See Fig.507

4(a). If σ− = σ+, s
− = s+ and s−c = s+c , then S0 is the slow relation508

function S from Definition 1, defined on [0, s−c ].509

(b) −Ĩ−(s
−
c ) > Ĩ+(s

+
c ). In this case there exists a unique s−b ∈]0, s−c [ such510

that Ĩ−(s
−
b )+ Ĩ+(s

+
c ) = 0 (s−b is called a buffer point [17, Section 7.4]). For511

s−1 ∈]0, s−b [, there is a unique s
+
1 ∈]0, s+c [ such that Ĩ−(s

−
1 )+Ĩ+(s

+
1 ) = 0. For512

s−2 ∈]s−b , s−c [, there is a unique s+2 ∈]s+c , s+0 ] such that Ĩ−(s
−
2 )+ Ĩ+(s

+
2 ) = 0513

(at least for s−2 close to s−b ). We use a similar argument as in Remark 4.514

For a segment L contained in ]0, s−c [ and with s−b in its interior, we consider515

(smooth and increasing) slow relation function S0 : L → T = S0(L) ⊂]0, s+0 ]516

again defined by Ĩ−(s
−) + Ĩ+(S0(s

−)) = 0, s− ∈ L. Clearly, S0(s
−
b ) = s+c .517

See Fig. 4(b).518

In the case when a Borel probability measure µ0 (supported on L) has a density,519

then it is often important (see Section 4) to compute a density of the push-forward520

probability measure µ0S
−1
0 . It is well-known (see e.g. [42, Section 3.2] or [47,521

Theorem 11.8]) that, if Den : R → R is a density, supported on an interval L, and522

G : R → R a Borel function such that G : L → T = G(L) is bijective, G−1 has a523

continuous derivative on T and d
dsG

−1(s) ̸= 0 for all s ∈ T , then Den is transformed524

by G into a new density525

(24) Dex(s) = Den(G
−1(s))

∣∣∣∣ ddsG−1(s)

∣∣∣∣ 1T (s),526

where 1T is the characteristic function of the set T .527
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Proposition 1. Let S0 : L → T be a slow relation function defined in (a) or (b)528

and let Den : R → R be an entry density supported on L. Then Den is transformed529

by S0 into the following exit density supported on T :530

(25) Dex(s
+) = −Den(S

−1
0 (s+))

Ĩ ′+(s
+)

Ĩ ′−(S
−1
0 (s+))

1T (s
+).531

Proof. Proposition 1 follows from (24) by taking G = S0. Note that S0 and S−1
0532

are smooth and increasing and that we can compute d
ds+S

−1
0 (s+) by using Ĩ−(s

−)+533

Ĩ+(S0(s
−)) = 0. □534

Remark 7. For a uniform entry density, the first factor in (25) is a constant. More
precisely, if Den(s

−) = 1
|L|1L(s

−), where |L| denotes the length of the segment L,

then (25) becomes

Dex(s
+) = − 1

|L|
Ĩ ′+(s

+)

Ĩ ′−(S
−1
0 (s+))

1T (s
+).

We use this formula in Example 4 in Section 4 when we compute exit densities for535

the van der Pol equation.536

We can apply Proposition 1 to find exit densities in slow-fast Liénard family (3).537

We can take s± to be the coordinate y.538

Corollary 1. Suppose that (3) satisfies Assumption 1–Assumption 4. Let S0 :539

L → T be a slow relation function associated to (3) and let Den : R → R be an540

entry density supported on L. Then Den is transformed by S0 into541

(26) Dex(s
+) = Den(S

−1
0 (s+))

f ′
λ0
(α1(s

+))g(ω1(S
−1
0 (s+)), λ0, 0)

f ′
λ0
(ω1(S

−1
0 (s+)))g(α1(s+), λ0, 0)

1T (s
+).542

Proof. Expression (26) follows directly from (18) and (25). □543

In the rest of this section we focus on544

(27)

{
ẋ = y − x2n1 f̃(x)

ẏ = ϵ̃2n1

(
ϵ̃2n1−1λ̃− x2n1−1

)
,

545

where 0 ≤ ϵ̃ ≪ 1 is a new singular perturbation parameter, λ̃ ∼ 0 and f̃ is546

smooth with f̃(0) > 0. Suppose that Assumption 1–Assumption 4 are satisfied.547

Note that (27) is (22) with (ϵ, λ) = (ϵ̃2n1 , ϵ̃2n1−1λ̃). For the sake of simplicity, we548

state Theorem 4 for system (27) (the same result can be proved in a more general549

framework [15]).550

Following [17, Theorem 7.7] or [15], there exists a smooth curve λ̃ = λ̃c(ϵ̃)551

such that for every ϵ̃ > 0 system (27), with λ̃ = λ̃c(ϵ̃), has an orbit connecting552

s−c ∈ σ− with s+c ∈ σ+. λ̃ = λ̃c(ϵ̃) is sometimes called a control curve. We553

denote by Sϵ̃, ϵ̃ > 0, the transition map of (27), with λ̃ = λ̃c(ϵ̃), from L to σ+.554

Clearly, Sϵ̃ : L → Sϵ̃(L) is a smooth diffeomorphism and S′
ϵ̃ > 0, due to the555

chosen parameterization of σ±. The following result is a direct consequence of [17,556

Proposition 7.1] and [15, Theorem 7] (see also [21, Section 3]).557

Proposition 2. Let S0 : L → T be a slow relation function associated to (27) and558

let λ̃ = λ̃c(ϵ̃) be a control curve as above. The following statements are true.559
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(a) If −Ĩ−(s
−
c ) ≤ Ĩ+(s

+
c ), then for ϵ̃ > 0 small enough the orbit through s−1 ∈ L

(tunnel behavior) of system (27), with λ̃ = λ̃c(ϵ̃), intersects σ+ in positive
time at

s+ = Sϵ̃(s
−
1 ) = s+1 + o(1), ϵ̃ → 0,

where s+1 = S0(s
−
1 ) and o(1) tends to 0 as ϵ̃ → 0, uniformly in L.560

(b) If −Ĩ−(s
−
c ) > Ĩ+(s

+
c ), then for ϵ̃ > 0 small enough the orbit through s−1 ∈

L∩]−∞, s−b [ (tunnel behavior) (resp. s−2 ∈ L∩]s−b ,+∞[ (funnel behavior))

of system (27), with λ̃ = λ̃c(ϵ̃), intersects σ+ in positive time at

s+ = Sϵ̃(s
−
1 ) = s+1 + o(1), ϵ̃ → 0,

where s+1 = S0(s
−
1 ) and o(1) tends to 0 as ϵ̃ → 0, uniformly in any compact561

subset of L∩]−∞, s−b [ (resp. s+ = Sϵ̃(s
−
2 ) = s+c + o(1), ϵ̃ → 0).562

Following Proposition 2, in the tunnel region the transition map Sϵ̃ is a small563

ϵ̃-perturbation of the slow relation function S0, while in the funnel region Sϵ̃ is564

close to the constant s+c . In Proposition 2(b) these two regions are separated by565

the buffer point s−b .566

If µϵ̃, µ0 are probability measures supported on L, then µϵ̃S
−1
ϵ̃ , µ0S

−1
0 denote567

push-forward probability measures of µϵ̃, µ0. Notice that µϵ̃S
−1
ϵ̃ , µ0S

−1
0 are sup-568

ported on Sϵ̃(L), S0(L) = T . Assume that µϵ̃ converges weakly to µ0 as ϵ̃ → 0. In569

the first case (Fig. 4(a)), we show that µϵ̃S
−1
ϵ̃ converges weakly to µ0S

−1
0 as ϵ̃ → 0570

(see Theorem 4(a) below). In the second case (Fig. 4(b)), µϵ̃S
−1
ϵ̃ converges weakly571

to µ0S̃
−1
0 as ϵ̃ → 0, where S̃0 : L → S̃0(L) = T∩]−∞, s+c ] is a continuous function572

defined by573

(28) S̃0(s
−) =

{
S0(s

−), s− ∈ L∩]−∞, s−b [,

s+c , s− ∈ L ∩ [s−b ,+∞[.
574

We refer to Theorem 4(b). Notice that the function S̃0 is equal to the slow relation575

function S0 below the buffer point s−b (in the tunnel region) and equal to the576

constant s+c above the buffer point s−b (in the funnel region). The push-forward577

probability measure µ0S̃
−1
0 of µ0 under S̃0 is supported on T∩]−∞, s+c ].578

Theorem 4. Let S0 : L → T be a slow relation function associated to (27). Let579

µϵ̃, µ0 be Borel probability measures supported on L. The following statements hold.580

(a) If −Ĩ−(s
−
c ) ≤ Ĩ+(s

+
c ) and if µϵ̃ converges weakly to µ0 as ϵ̃ → 0, then µϵ̃S

−1
ϵ̃581

converges weakly to µ0S
−1
0 as ϵ̃ → 0.582

(b) If −Ĩ−(s
−
c ) > Ĩ+(s

+
c ) and if µϵ̃ converges weakly to µ0 as ϵ̃ → 0, then µϵ̃S

−1
ϵ̃583

converges weakly to µ0S̃
−1
0 , as ϵ̃ → 0.584

Using (28) it can be easily seen that µ0S̃
−1
0 from Theorem 4(b) can be written585

as586

(29) µ0S̃
−1
0 (·) = µ0S

−1
0 (· ∩ Tb) + µ0

(
[s−b ,+∞[

)
δs+c (·),587

where Tb := T∩]−∞, s+c [. The first term in (29) comes from the tunnel behaviour588

and the second from the funnel behaviour (see Section 6 and Proposition 2(b)). If589

µ0 is supported on L∩]−∞, s−b [ (below the buffer point s−b , in the tunnel region),590

then the measure in (29) is equal to µ0S
−1
0 , similarly to Theorem 4(a) where we591
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also have the tunnel behaviour. If µ0 is supported on L∩[s−b ,+∞[ (above the buffer592

point s−b , in the funnel region), then (29) is a Dirac delta measure δs+c .593

Theorem 4 will be proved in Section 6. We know that weak convergence is pre-594

served by continuous mappings (see Section 2.1). This property cannot be used595

directly because mappings Sϵ̃ depend on the singular parameter ϵ̃. To prove Theo-596

rem 4(a) (resp. Theorem 4(b)), we will need uniform convergence of Sϵ̃ to S0 (resp.597

to S̃0), as ϵ̃ → 0. For more details we refer to Section 6.598

4. Numerical results599

In this section, we present two numerical examples that illustrate the results600

presented in Section 3.3. These numerical simulations are performed in Mathe-601

matica [33] which, by default, uses the LSODA integration method [46]. We recall602

that the numerical integration of singularly perturbed problems is highly delicate603

[28], and in some cases, discretizations may even change the behavior of canards604

[26, 25]. That is why, regarding the numerical integration, we use for all simula-605

tions a MaxStepSize of 1
100 and a PrecisionGoal3 of 50, which we found to be606

enough for the numerical result to be in accordance to the theory presented above.607

Furthermore, we emphasize that although the initial conditions are randomly gen-608

erated (via a random distribution; see more details below), the plots we show below609

are representative of at least 10 distinct simulation runs. Regarding the histograms,610

the bin sizes are automatically set to show 10 bins. Any further detail is mentioned611

when relevant.612

The first example concerns the van der Pol equation, and we show the entry-exit613

behaviour for the cases −Ĩ−(s
−
c ) ≤ Ĩ+(s

+
c ) and −Ĩ−(s

−
c ) > Ĩ+(s

+
c ). In partic-614

ular, we compute numerically the exit density (for ϵ = 0 via (26), and for ϵ > 0615

small from numerical integration) provided that the entry density is from a uniform616

distribution, and compare the effect of lowering ϵ. See Example 4 below.617

The second example deals with a non-generic Liénard equation (22) (or equiva-618

lently (27)), and shows the entry-exit relation, and densities, for a truncated Cauchy619

entry density (see Example 5).620

Example 4. Consider the van der Pol equation (21). We present below numerical621

simulation showing the relationship between entry and exit densities of uniformly622

distributed initial conditions. We present the simulations for two values of the623

singular parameter ϵ showcasing the behaviour as ϵ → 0.624

a) −Ĩ−(s
−
c ) ≤ Ĩ+(s

+
c ): for this case we choose s−c = 1

20 and s+c = 1
10 with ϵ =625

1
100 and ϵ = 1

200 giving a corresponding value of the parameter λ̃ ≈ − 231
20000626

and λ̃ ≈ − 107135
20000000 . This parameter gives the red orbit that connects s−c with627

s+c via an orbit for the particular chosen value of ϵ, see the phase-portraits628

of figures 5 and 6. For both sets of simulations, some initial conditions are629

chosen uniformly along the section σ−, parametrized by the y−coordinate630

and within the interval s ∈ [s−1 − δ, s−c ] with s−1 = 1
30 and δ = 1

150 . The631

corresponding orbits are numerically computed until they arrive to the exit632

section σ+, blue orbits in the phase portrait of figures 5 and 6. The corre-633

sponding entry and exit densities, the latter given by (26), are numerically634

computed and shown in the right of side of the figures. We recall that such635

densities correspond to the singular case ϵ = 0. Alongside these densities,636

3That is, the number of effective digits of precision for the numerical computations.
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we numerically compute a histogram of the exit coordinates of the orbits of637

the phase portrait (also shown on the right of the figures). This histogram638

corresponds to the distribution of the orbits as they cross σ+. By comparing639

figures 5 and 6, notice that as ϵ decreases, the histogram resembles more640

the exit distribution Dex (see Theorem 4(a)).641
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Figure 5. Numerical simulation for the case −Ĩ−(s
−
c ) < Ĩ+(s

+
c )

with ϵ = 1
100 . The left panel shows a phase-portrait highlighting

in red the orbit for λ̃ ≈ − 231
20000 . The right panels show the entry

distribution (top), exit distribution (middle), and a histogram of
the exit points of the orbits crossing σ+. The horizontal coordinate
of all the right panels is the height (y-component) of points along
the sections σ±.

b) −Ĩ−(s
−
c ) > Ĩ+(s

+
c ): for this case we choose s−c = 1

10 and s+c = 1
7 with642

ϵ = 1
100 and ϵ = 1

200 , as above, giving corresponding values of the parameter643

λ̃ ≈ − 2348
200000 and λ̃ ≈ − 1071435

200000000 , respectively. These parameters give the644

red orbits connecting s−c with s+c , in figures 7 and 8. For this setup, the645

value of s−b (which satisfies Ĩ−(s
−
b )+Ĩ+(s

+
c ) = 0) is numerically obtained as646

s−b ≈ 651
10000 . Some initial conditions are chosen uniformly along the section647

σ−, parametrized by the y−coordinate and within an interval around s−b ,648

distinguishing those initial conditions with s ≤ s−b and those with s > s−b649

(blue and orange orbits respectively in the phase-portraits). We notice that,650

as predicted by Proposition 2, the exit density for the orbits starting below s−b651
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Figure 6. Numerical simulation for the case −Ĩ−(s
−
c ) < Ĩ+(s

+
c )

with ϵ = 1
200 . The left panel shows a phase-portrait highlighting in

red the orbit for λ ≈ − 107135
20000000 . The right panels show the entry

distribution (top), exit distribution (middle), and a histogram of
the exit points of the orbits crossing σ+. The horizontal coordinate
of all the right panels is the height (y-component) of points along
the sections σ±. Compare with figure 5 and notice that the exit
histogram resembles more the exit density.

is not “concentrated”(tunnel behaviour), while the exit density correspond-652

ing to initial conditions above s−b clearly look concentrated near s+c (funnel653

behaviour). As in the previous example, we also compute an histogram of654

the coordinates of the exit points of the orbits crossing σ+. One can indeed655

notice, from figures 7 and 8, that the exit distribution corresponding to the656

funnel region (orbits above s−b ) seems to approach to a Dirac delta as ϵ657

decreases, as predicted in Theorem 4(b).658

△659
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Figure 7. Numerical simulation for the case −Ĩ−(s
−
c ) > Ĩ+(s

+
c )

with ϵ = 1
100 . The left panel shows a phase-portrait highlighting

in red the orbit for λ̃ ≈ − 2348
200000 that connects s−c with s+c . The

right panels show the entry distribution (top), exit distribution
(middle), and a histogram of the exit points of the orbits crossing
σ+. The exit distribution is computed via (26), while the histogram
corresponds to the vertical coordinates at σ+ of 500 orbits starting
from σ− according to the entry density Den. On the one hand, it is
worth noticing that, from the histogram, the orbits that start above
s−b concentrate in σ+ near s+c , see Proposition 2 and Theorem
4(b). On the other hand, the exit density computed via (26) (in
the second panel) corresponding to the funnel region (orange) is
not related to the Dirac measure at s+c , recall (29). This same
observation holds for the rest of the examples involving a funnel
region, see figures 8 and 10.
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Figure 8. Numerical simulation for the case −Ĩ−(s
−
c ) > Ĩ+(s

+
c ),

similar to the one shown in figure 7, but with ϵ = 1
200 . The

left panel shows a phase-portrait highlighting in red the orbit for
λ̃ ≈ − 1071435

200000000 , which connects s−c with s+c . The right panels show
the entry distribution (top), exit distribution (middle), and a his-
togram of the exit points of the orbits crossing σ+. Compare with
figure 7 and notice that the exit histogram resembles more the exit
density for the tunnel behaviour, while for the funnel behaviour
the exit histogram is thinner. This evidences the fact that accord-
ing to Proposition 2 and especially Theorem 4(b), the exit density
in the funnel region converges to a Dirac delta.
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Example 5. Following a similar idea as in the previous example, let us now con-660

sider the non-generic Liénard equation, see (22) (or equivalently (27))661

dx

dt
= y − x4

dy

dt
= ϵ(λ− x3),

(30)662

but we now (randomly) choose initial conditions y(t0) from a truncated Cauchy663

distribution.664

A realisation for the case where −Ĩ−(s
−
c ) ≤ Ĩ+(s

+
c ) is shown in Fig. 9. Here665

ϵ = 1
100 and λ̃ = − 22535

10000000000 . For the phase-portrait we choose 50 initial conditions666

along σ− according to the truncated distribution (Den) shown in the right panel of667

Fig. 9. Due to the symmetry of the problem, the entry distribution, which is centred668

at s−1 is mapped to a distribution centred close to s+1 which has the same vertical669

coordinate. As ϵ → 0, and due to the symmetry again, the exit density along σ+
670

converges (weakly) to the entry density, which is visible in the Figure (keep in mind671

that the vertical coordinate of s+1 coincides with that of s−1 in the limit ϵ = 0).672

We also show a histogram of the vertical coordinates at σ+ of 500 trajectories with673

initial conditions in σ− according to Den.674

Analogously, a realisation for the case where −Ĩ−(s
−
c ) > Ĩ+(s

+
c ) is shown in675

Fig. 10. Here ϵ = 1
100 , λ = 2

1000000 , and we also choose 50 initial conditions676

along σ− according to the distribution (Den) shown in the right panel of Fig. 10.677

Similar to the previous example, we see a contrast between the orbits below (tunnel678

region) and those above (funnel region) s−b which is translated into an equivalent679

exit distribution (Dex) and corresponding exit histogram as indicated in Proposition680

2 and Theorem 4. In particular it is evident that the orbits that start above s−b are681

concentrated at σ+ near s+c .682

△683

5. Proof of Theorem 1–Theorem 3684

In this section we prove Theorem 1, Theorem 2 and Theorem 3. We assume
that Assumption 1–Assumption 4 are always satisfied. Following Definition 1, if
−Ĩ−(s0) ≤ Ĩ+(s0), then the slow relation function S : [0, s0] → [0, s0], S(0) = 0,
satisfies

Ĩ−(s) + Ĩ+(S(s)) = 0,

for s ∈]0, s0]. This and (19) imply that for s ∈]0, s0]685

Ĩ(s) = Ĩ−(s) + Ĩ+(s)686

= Ĩ−(s) + Ĩ+(S(s)) + Ĩ+(s)− Ĩ+(S(s))687

= Ĩ+(s)− Ĩ+(S(s)).(31)688

Let us recall that Ĩ ′+(s) > 0 for s ∈]0, s0] (Section 3.1). From this property and

(31) it follows that s1 ∈]0, s0] is a zero of Ĩ if and only if s1 is a fixed point of the
slow relation function S. Moreover, if we define a smooth positive function Ψ(s, w)

for s, w ∈]0, s0]: Ψ(s, w) = Ĩ+(s)−Ĩ+(w)
s−w if s ̸= w and Ψ(s, s) = Ĩ ′+(s), then using

(31) we get

Ĩ(s) = Ψ(s, S(s)) (s− S(s)) ,
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Figure 9. Numerical simulation of the entry-exit tunnel be-
haviour (−Ĩ−(s

−
c ) ≤ Ĩ+(s

+
c )) for (30). The left panel shows a

phase portrait where the height of the initial conditions along σ−

are chosen according to Den. We also show on the right the corre-
sponding exit density Dex computed with (26) (we recall that this
map is for ϵ = 0). The histogram shows the distribution of the
heights along σ+ of the numerical integration of 500 orbits start-
ing on σ− according to the entry density, and the parameters (ϵ, λ̃)
previously mentioned.

for s ∈]0, s0]. We conclude that s1 ∈]0, s0] is a zero of Ĩ of multiplicity l if and only689

if s1 is a zero of s− S(s) of multiplicity l.690

If −Ĩ−(s0) > Ĩ+(s0), then the slow relation function S : [0, s0] → [0, s0], S(0) =691

0, satisfies Ĩ−(S(s))+Ĩ+(s) = 0 for s ∈]0, s0], and the study of this case is analogous692

to the study of the case where −Ĩ−(s0) ≤ Ĩ+(s0).693

5.1. Proof of Theorem 1. We will use the following topological version of the694

Poincaré recurrence theorem (see [50, Theorem 1.2.4]).695

Theorem 5. Let X be a topological space, endowed with its Borel σ-algebra B.696

Assume that X admits a countable basis of open sets and that f : X → X is a697

measurable transformation. If µ is an f -invariant probability measure on X, then698

µ-almost every x ∈ X is recurrent for f .699
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Figure 10. Numerical simulation of the entry-exit behaviour of
(30) for the case −Ĩ−(s

−
c ) > Ĩ+(s

+
c ), showing tunnel (blue) and

funnel (orange) behaviour. The left panel shows a phase portrait
where the height of the initial conditions along σ− are chosen ac-
cording to Den. We also show on the right the corresponding exit
density Dex computed with (26) (we recall that this map is for
ϵ = 0). The histogram shows the distribution of the heights along
σ+ of the numerical integration of 500 orbits starting on σ− ac-
cording to the entry density, and the parameters (ϵ, λ̃) previously
mentioned.

We say that x ∈ X is recurrent for f : X → X if fni(x) → x for some sequence700

ni → ∞. Whenever we say that some property holds for µ-almost every x ∈ X we701

mean that the said property holds for all x ∈ X\Y , with µ(Y ) = 0.702

If X is the compact metric space [0, s0] and f is the slow relation function703

S : [0, s0] → [0, s0] (recall that S is continuous), then assumptions of Theorem 5704

are satisfied.705

706

Proof of Theorem 1.1. Since S(0) = 0, δ0 is S-invariant. We know that Ĩ has707

no zeros in ]0, s0] if and only if S has no fixed points in ]0, s0] (see the paragraph708

after (31)).709

Since S is increasing on [0, s0], for each s ∈ [0, s0] the sequence S
n(s) is bounded710

and monotone (thus, convergent) and its limit has to be a fixed point of S. This711

implies that s ∈ [0, s0] is recurrent for S if and only if s is a fixed point of S.712
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Assume that S has no fixed points in ]0, s0] (s = 0 is the unique recurrent point).713

Then Theorem 5 implies that for each S-invariant probability measure µ on [0, s0]714

we have µ({0}) = 1. We conclude that µ = δ0 and S is therefore uniquely ergodic.715

Suppose now that S is uniquely ergodic. Then there is a unique S-invariant
probability measure (δ0). It is clear that S has no fixed points in ]0, s0] (if S(s) = s
for some s ∈]0, s0], then δs is a new S-invariant probability measure). This com-
pletes the proof of Theorem 1.1.

Proof of Theorem 1.2. We know that s1 ∈]0, s0] is a zero of Ĩ if and only if s1
is a fixed point of S. Now, it suffices to notice that a Dirac measure δs1 is S-
invariant if and only if s1 is a fixed point of S.

Proof of Theorem 1.3. Suppose that Ĩ has k zeros s1 < · · · < sk in ]0, s0]. Then
S has k + 1 fixed points 0, s1, . . . , sk in [0, s0] and δ0, δs1 , . . . , δsk are S-invariant.
Thus, 0, s1, . . . , sk are the unique recurrent points for S (see the proof of Theorem
1.1) and Theorem 5 implies that for every S-invariant probability measure µ on
[0, s0] we have µ({0, s1, . . . , sk}) = 1 and

µ = µ({0})δ0 + µ({s1})δs1 + · · ·+ µ({sk})δsk .

Since the set of all S-invariant probability measures is convex, we get (20).716

Conversely, suppose that the set PS of all S-invariant probability measures is717

given by (20). Then δs ∈ PS if and only if s ∈ {0, s1, . . . , sk}. Then S has k fixed718

points s1, . . . , sk in ]0, s0]. Thus, Ĩ has k zeros in ]0, s0]. This completes the proof719

of Theorem 1.3.720

5.2. Proof of Theorem 2. We suppose that Xλ,ϵ has a slow-fast Hopf point at721

p0 for λ = λ0. Let S : [0, s0] → [0, s0] be the slow relation function.722

723

Proof of Theorem 2.1. Assume that S is uniquely ergodic. Then Theorem 1.1724

implies that the slow divergence integral Ĩ has no zeros in ]0, s0]. Following [16,725

Proposition 2.2] or [17], we have Cycl(Xλ,ϵ,Γs) ≤ 1 for all s ∈]0, s0], and the limit726

cycle, if it exists, is hyperbolic and attracting (resp. repelling) if Ĩ(s) < 0 (resp.727

> 0).728

729

Proof of Theorem 2.2. Suppose that a Dirac delta measure δs1 is S-invariant for730

some s1 ∈]0, s0]. Then from Theorem 1.2 it follows that Ĩ has a zero at s = s1 with731

the multiplicity equal to the multiplicity of the fixed point s1 of S, denoted by l732

(see also the paragraph after (31)). If l < ∞, then [16, Proposition 2.3] (or [17])733

implies that Cycl(Xλ,ϵ,Γs1) ≤ l + 1.734

5.3. Proof of Theorem 3. We focus on (22) with a fixed n1 ≥ 1 and assume that735

the set of all S-invariant probability measures is given by (20) for some 0 < s1 <736

· · · < sk < s0. Then Theorem 1.3 implies that s1, . . . , sk are zeros of Ĩ in ]0, s0].737

Thus, if we take any sk+1 ∈]sk, s0], then Ĩ(sk+1) ̸= 0. Since we assume that the738

fixed points s1, . . . , sk of S are hyperbolic, we have that s1, . . . , sk are simple zeros739

of Ĩ. Now, Theorem 3 follows from [18, Theorem 2] (see also [15]).740
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6. Proof of Theorem 4741

Proof of Theorem 4(a). Assume that −Ĩ−(s
−
c ) ≤ Ĩ+(s

+
c ) and that µϵ̃ converges742

weakly to µ0, i.e.743

(32) lim
ϵ̃→0

∫
L

χ(s−)µϵ̃(ds
−) =

∫
L

χ(s−)µ0(ds
−),744

for every bounded, continuous function χ : R → R (µϵ̃, µ0 are supported on L and745

we may use L instead of R in the definition of weak convergence, see Section 2.1).746

For a bounded and continuous function χ : R → R we have747 ∫
Sϵ̃(L)

χ(s+)µϵ̃S
−1
ϵ̃ (ds+) =

∫
L

χ(Sϵ̃(s
−))µϵ̃(ds

−)748

=

∫
L

(
χ(Sϵ̃(s

−))− χ(S0(s
−))

)
µϵ̃(ds

−)749

+

∫
L

χ(S0(s
−))µϵ̃(ds

−),(33)750

where in the first step we use a well-known formula for the integration under a751

push-forward measure (see e.g. [9, Section 2]). Since χ ◦ S0 is bounded and752

continuous, from (32) it follows that the second integral in (33) converges to753 ∫
L
χ(S0(s

−))µ0(ds
−) =

∫
T
χ(s+)µ0S

−1
0 (ds+) as ϵ̃ → 0 (again we use the above754

mentioned formula for integration). Thus, it suffices to show that the first integral755

in (33) converges to 0 as ϵ̃ → 0. Then we have that µϵ̃S
−1
ϵ̃ converges weakly to756

µ0S
−1
0 .757

It is clear that there exists a bounded segment T̃ (for example, T̃ = [0, s+c ]) such

that Sϵ̃(L) ⊂ T̃ for all ϵ̃ ∈ [0, ϵ̃0], with a sufficiently small ϵ̃0 > 0. Let ϱ1 > 0 be an

arbitrary and fixed real number. Since χ is uniformly continuous on T̃ , there exists

a ϱ2 > 0 such that for every x, y ∈ T̃ with |x− y| < ϱ2 we have

|χ(x)− χ(y)| < ϱ1.

Since Sϵ̃ converges to S0 as ϵ̃ → 0, uniformly in L (see Proposition 2(a)), for all
ϵ̃ ∈]0, ϵ̃0] and s− ∈ L we have

|Sϵ̃(s
−)− S0(s

−)| < ϱ2,

up to shrinking ϵ̃0 if needed. Putting all this together, for ϵ̃ ∈]0, ϵ̃0] we get758 ∣∣∣∣∫
L

(
χ(Sϵ̃(s

−))− χ(S0(s
−))

)
µϵ̃(ds

−)

∣∣∣∣ ≤ ∫
L

∣∣χ(Sϵ̃(s
−))− χ(S0(s

−))
∣∣µϵ̃(ds

−)759

<

∫
L

ϱ1µϵ̃(ds
−) = ϱ1,760

where in the last step we use the fact that µϵ̃ is a probability measure supported on761

L. Thus, we have proved that for every ϱ1 > 0 there is ϵ̃0 > 0 (small enough) such762

that the above inequality holds for all ϵ̃ ∈]0, ϵ̃0]. This implies that the first integral763

in (33) converges to 0 as ϵ̃ → 0. This completes the proof of Theorem 4(a).764

765

Proof of Theorem 4(b). Suppose that −Ĩ−(s
−
c ) > Ĩ+(s

+
c ) and that µϵ̃ converges766

weakly to µ0 as ϵ̃ → 0, see (32). Let us recall that the function S̃0 : L → T∩]−∞, s+c ]767

is defined in (28). It suffices to show that Sϵ̃ converges to S̃0 as ϵ̃ → 0, uniformly768
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in L. Then the proof of (b) is analogous to the proof of (a) (we replace S0 with S̃0769

and the segment T with the segment T∩]−∞, s+c ]).770

Let us prove that Sϵ̃ uniformly converges to S̃0 as ϵ̃ → 0. Let ϱ̃1 > 0 be an771

arbitrarily small but fixed real number. Using Proposition 2(b) (the tunnel region)772

we may assume that s+c − ϱ̃1

2 ∈ Sϵ̃(L) for all ϵ̃ > 0 small enough.773

Since S̃0 is continuous in the buffer point s−b (s−b is in the interior of L) and774

S̃0(s
−
b ) = s+c , there is a ϱ̃2 > 0 small enough such that for every s− ∈ L with775

|s− − s−b | < ϱ̃2 we have776

(34) |S̃0(s
−)− s+c | <

ϱ̃1
2
.777

Proposition 2 implies that S−1
ϵ̃ (s+c − ϱ̃1

2 ) → S−1
0 (s+c − ϱ̃1

2 ) as ϵ̃ → 0 and S−1
0 (s+c −778

ϱ̃1

2 ) < s−b . (Indeed, first we apply (x, t) → (−x,−t) to (27), with λ̃ = λ̃c(ϵ̃).779

The new system is of type (27), with λ̃ = −λ̃c(ϵ̃), having the orbit connecting780

s+c with s−c , and having S−1
0 as the slow relation function. Then it suffices to781

apply Proposition 2(a) to the new system.) From this property it follows that782

S−1
ϵ̃ (s+c − ϱ̃1

2 ) < s−b − ϱ̃2 < s−b for every ϵ̃ ∈]0, ϵ̃0], with ϵ̃0 > 0 small enough783

(we take a smaller ϱ̃2 > 0 if necessary and fix it). Then, since system (27), with784

λ̃ = λ̃c(ϵ̃), has the orbit connecting s−c ∈ σ− with s+c ∈ σ+ and the segment L lies785

below s−c (see Fig. 4(b)), we get786

(35) s+c − ϱ̃1
2

< Sϵ̃(s
−) < s+c ,787

for all s− ∈ L∩]s−b − ϱ̃2,+∞[ and ϵ̃ ∈]0, ϵ̃0].788

Now, we have789

|Sϵ̃(s
−)− S̃0(s

−)| ≤ |Sϵ̃(s
−)− s+c |+ |s+c − S̃0(s

−)| < ϱ̃1
2

+
ϱ̃1
2

= ϱ̃1,(36)790

for all s− ∈ L∩]s−b − ϱ̃2,+∞[ and ϵ̃ ∈]0, ϵ̃0]. We used (34), (35) and the fact that791

S̃0(s
−) = s+c for s− ∈ L ∩ [s−b ,+∞[, see (28).792

On the other hand, since Sϵ̃ converges to the slow relation function S0 as ϵ̃ → 0,793

uniformly in the compact set L∩]−∞, s−b − ϱ̃2] (see the tunnel case in Proposition794

2(b)) and S̃0(s
−) = S0(s

−) for s− ∈ L∩]−∞, s−b − ϱ̃2], we get795

|Sϵ̃(s
−)− S̃0(s

−)| < ϱ̃1,(37)796

for all s− ∈ L∩]−∞, s−b − ϱ̃2] and ϵ̃ ∈]0, ϵ̃0] (up to shrinking ϵ̃0 if necessary).797

Combining (36) and (37) we obtain the uniform convergence on L. This com-798

pletes the proof of Theorem 4(b).799
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