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Abstract

Quasi-Nonlinear Fuzzy Cognitive Maps (q-FCMs) generalize the classic Fuzzy
Cognitive Maps (FCMs) by incorporating a nonlinearity coefficient that is
related to the model’s convergence. While q-FCMs can be configured to
avoid unique fixed-point attractors, there is still limited knowledge of their
dynamic behavior. In this paper, we propose two iterative, mathematically-
driven algorithms that allow estimating the limit state space of any q-FCM
model. These algorithms produce accurate lower and upper bounds for the
activation values of neural concepts in each iteration without using any in-
formation about the initial conditions. As a result, we can determine which
activation values will never be produced by a neural concept regardless of
the initial conditions used to perform the simulations. In addition, these
algorithms could help determine whether a classic FCM model will converge
to a unique fixed-point attractor. As a second contribution, we demonstrate
that the covering of neural concepts decreases as the nonlinearity coefficient
approaches its maximal value. However, large covering values do not neces-
sarily translate into better approximation capabilities, especially in the case
of nonlinear problems. This finding points to a trade-off between the model’s
nonlinearity and the number of reachable states.

Keywords: Fuzzy Cognitive Maps, Recurrent Neural Networks, Modeling
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and Simulation, Convergence Analysis.

1. Introduction

Fuzzy Cognitive Maps (FCMs) [1] are recurrent learning systems com-
posed of well-defined neural concepts and causal relationships. They have
gained substantial attention due to their effectiveness in data processing tasks
such as scenario simulation [2, 3, 4], the modeling of control systems [5, 6],
pattern classification [7, 8, 9, 10], multi-output regression [11, 12], time series
forecasting [13, 14, 15], and federated learning [16, 17, 18, 19]. Compared
to other recurrent neural systems, FCMs are preferred when expert knowl-
edge can be integrated into the model in the form of causal relationships or
constraints. Such a feature not only enables building models that better rep-
resent the problem domain but also supports hybrid reasoning. The intrinsic
interpretability offered by these cognitive networks [20, 21, 22] also accounts
for the popularity of these models among practitioners.

During reasoning, FCMs update the neurons’ activation values using a
recurrent approach, where the values produced in the current iteration are
used to compute the system’s output in the next iteration. After perform-
ing a fixed number of iterations, one of the following dynamic behaviors will
be observed [23]: (i) activation values remain constant; (ii) activation val-
ues exhibit a limit cycle; and (iii) activation values show no regular pattern.
Stabilized output signals are used as the basis for prediction, which can be
utilized to make decisions or assign class labels to a given problem instance.
As Bottero et al. [24] and Groumpos [25] underlined, reaching an equilibrium
point is essential for a valid model interpretation and correct execution of
decision-making and simulation tasks in most cases. However, unique fixed-
point attractors are the downfall of FCM models used for prediction and
scenario simulation, rendering them invalid. A more explicit explanation is
that an FCM model governed by a single fixed point will always produce the
same output, regardless of the input used to start reasoning. This behav-
ior contradicts the fundamental principle of any prediction task where the
model’s response cannot remain invariant.
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The literature reports a range of theoretical studies investigating the con-
ditions under which an FCM model would converge to fixed-point attractors.
The most influential work in this area has been conducted by Harmati, Hat-
wagner, and Kóczy [26, 27, 28, 29]. Their studies focused on detecting the
existence and uniqueness of fixed-point attractors in FCM-based models us-
ing several mathematical tools. Their research also covered FCM extensions,
including FCMs implemented with rough sets [30] and interval sets [31]. In
another paper from the same research group [32], they performed a sensi-
tivity analysis to highlight the relationship between weight values and the
occurrence of a unique fixed-point attractor. Despite the remarkable progress
in understanding the dynamic of FCM models, the challenge of how to avoid
unique fixed-point attractors has remained an open issue.

The Quasi-Nonlinear Fuzzy Cognitive Maps (q-FCMs) were introduced
by Nápoles et al. [33] to resolve the convergence issues of FCMs, particularly
those caused by unique fixed-point attractors. This model includes a nonlin-
earity coefficient that regulates the amount of information resulting from the
reasoning process used to update the neurons’ activation values. Therefore,
instead of dealing with the aftermaths of potentially malfunctioning models,
q-FCMs allow for configuring the model through the nonlinearity coefficient
to ensure that unique fixed points are never produced.

Although q-FCMs hold significant promise in the context of scenario anal-
ysis and machine learning tasks, their dynamic properties have not been ex-
tensively studied. Specifically, there is limited understanding of how their
state space behaves during reasoning under the influence of the nonlinear-
ity coefficient. More importantly, to our knowledge, no algorithmic method
has been developed to estimate bounds on the neurons’ reachable activation
values in q-FCM models without knowing the initial conditions. In practice,
domain experts run the reasoning process for a limited set of initial activator
vectors and draw conclusions about the behavior of concepts’ activation val-
ues. The drawback of this approach is that the observed behavior is likely to
change when using a different set of initial conditions, which might not even
be available in some application domains.

This paper brings two contributions to the theoretical analysis of q-FCM
models and their dynamics. Firstly, we propose two iterative algorithms to es-
timate the limit state space of any q-FCM model, supported by two theorems
and several definitions extended from the FCM theory. These algorithms pro-
duce accurate lower and upper bounds for the neurons’ activation values at
each iteration without using any information about the initial conditions.
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Such a tool will enable domain experts to determine which activation values
will never be produced by a neural concept regardless of the initial conditions
used to perform the simulations. In addition, these algorithms could indicate
whether a classic FCM model will converge to a unique fixed point, which
must be avoided at all costs in most application domains. Secondly, we prove
that the covering values of neural concepts in q-FCM models become smaller
as the nonlinearity coefficient approaches its maximal value. However, it
should be stressed that large covering values do not necessarily translate into
better approximation capabilities. This finding indicates a trade-off between
the model’s nonlinearity and the number of reachable states, which helps
explain why classic FCM models sometimes perform poorly when solving
complex simulation problems. The numerical simulations using both real-
world and synthetically generated problems provide empirical evidence for
the accuracy and usability of the estimated bounds.

In the following sections of this article, we introduce the theoretical back-
ground of q-FCMs (Section 2) and the framework for state space analysis,
including shrink functions and their extension to q-FCMs (Section 3). Next,
Section 4 demonstrates the shrinking state space theorems for q-FCMs. Sec-
tion 5 addresses the impact of the nonlinearity coefficient on the estimated
state spaces. Section 6 presents an empirical study concerning the proposed
approach. Finally, Section 7 concludes the study.

2. Quasi-Nonlinear Fuzzy Cognitive Maps

FCMs were introduced in [1] as a tool for modeling causal relationships
between concepts within a complex system. These recurrent neural net-
works are represented as directed and weighted graphs supporting feedback
loops, with nodes symbolizing neural concepts and edges denoting causal re-
lationships. In these neural systems, the weight wij ∈ [−1, 1] characterizes
the impact of neural concept Ci on Cj, which can be positive, negative, or
neutral. The weight matrix WM×M gathers the causal relationships in the
cognitive network. Originally, domain experts were tasked with building the
FCM topology, but modern approaches have resorted to supervised learning
algorithms to derive the network structure from historical data.

Aiming at improving FCMs’ convergence features, Nápoles et al. [9] in-
troduced the q-FCM model as a generalization of the classic FCM formal-
ism. The key difference between these two approaches is that q-FCMs use a
quasi-nonlinear reasoning rule. This rule incorporates a nonlinearity coeffi-
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cient ϕ ∈ [0, 1] to control the degree to which the model considers the value
produced by the activation function over the initial activation value of the
neuron. Equation (1) illustrates this reasoning rule:

a
(t+1)
i = ϕ fi

(
M∑
j=1

wjia
(t)
j

)
︸ ︷︷ ︸

nonlinear part

+(1− ϕ) a
(0)
i︸︷︷︸

linear part

, i ̸= j (1)

where the activation value of the j-th neuron at the t-th iteration (t ∈ N) is
represented by a

(t)
j , while fi(.) is the activation function used to constrain the

activation values of the i-th neuron to a desired interval. The nonlinear part
from Equation (1) can be also expressed as fi

(
wiA

(t)
)
, where A(t) = (a

(t)
1 ,

a
(t)
2 , . . . , a

(t)
M ) is the activation vector and wi = (w1i, w2i, . . . , wi−1i, 0, wi+1i,

. . . , wMi), ∀i ∈ {1, 2, . . . , M}. Therefore, we can rewrite the reasoning rule
using vector-like notation as follows:

A(t+1) = ϕf
(
A(t)W

)
+ (1− ϕ)A(0) (2)

where f
(
A(t)W

)
= (f1

(
wiA

(t)
)
, . . . , fM

(
wMA(t)

)
).

Typically, the reasoning rule is executed until the q-FCM converges to a
fixed-point attractor, which can be unique or multiple depending on the ϕ
parameter. Conversely, the q-FCM is deemed unstable if it fails to stabilize
after a fixed number of iterations. Notably, instability manifests itself in two
distinct forms: cyclic or chaotic behavior [9].

When the nonlinearity coefficient ϕ is set to 1.0, the q-FCM narrows
down to a classic FCM, where the activation values of neurons depend on the
states of connected neurons in the previous iteration. In this setting, unique
fixed points are frequent, meaning that the neurons’ activation values in each
iteration are independent of the initial conditions of the reasoning process.
It is straightforward to conclude that any FCM-based model converging to a
unique fixed point has limited usability when it comes to scenario analysis.
In contrast, when ϕ = 0, there is no recursion at all, and the model is
reduced to an identity relation replicating the initial activation vector. The
setting ϕ < 1 guarantees that the initial conditions are explicitly taken into
account when updating the neuron’s activation values in each iteration [9].
More importantly, Nápoles et al. [9] demonstrated that q-FCM models using
ϕ < 1 will never converge to unique fixed attractors.
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We should mention that selecting the right activation function is a key
step when building FCM-based models. As highlighted in [34], the sigmoid
function and the hyperbolic tangent are popular choices among researchers
and practitioners alike. Additionally, functions such as bivalent, trivalent,
and threshold have been utilized yet to a lesser extent. The former group
exhibits continuous open intervals as their image set, while the latter has a
discrete image set bounded into closed intervals. In general, any bounded
and monotonically increasing function over the set of real numbers can be an
activation function, given that the image set of a bounded function belongs
to an interval. The re-scaled [33] and the exponential normalized [4] func-
tions have also been recently introduced and hold promise; however, their
performance remains relatively unexplored.

3. Shrink functions for quasi-nonlinear FCMs

In this section, we will first revisit the definitions introduced in [35] for
classic FCMs as they will serve as the building blocks of our study. Subse-
quently, we will analyze the reachable activation values of neural concepts in
each iteration of a q-FCM model. Finally, we resort to this theoretical basis
to extend the shrink functions theory for the quasi-nonlinear rule, which will
be the core of the algorithms proposed in Section 4.

3.1. Preliminaries on the state space estimation

Let L be the set of all non-negative closed intervals and let SM be the
set of all M -ary Cartesian products over the elements in L. Formally, SM =
{I1 ×I2 × . . .×IM : Ii ∈ L,∀i ∈ {1, 2, . . . ,M}. Every element in SM is an
M -ary Cartesian product of closed intervals.

Definition 1. Let I ∈ L and I ′ ∈ L. The interval I contains the interval I ′
(denoted by I ⊇ I ′) if inf(I) ≤ inf(I ′) ∧ sup(I) ≥ sup(I ′). Analogously, we
say that the interval I strictly contains the interval I ′ (denoted by I ⊃ I ′)
if inf(I) < inf(I ′) ∧ sup(I) > sup(I ′).

Definition 2. The closed interval Ii is the induced activation space for neu-
ron Ci if it is the smallest closed interval containing the interval to which its
associated activation function is bounded.

Remark: It is important to observe that the activation function of the neuron
Ci generates values within this interval. For instance, in FCM models using
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the sigmoid function, the activation values a
(t)
i are confined to the (0, 1) inter-

val. Conversely, if a hyperbolic tangent function is adopted, these activation
values will fall within the (−1, 1) interval.

Definition 3. The closed interval I(t)i is a feasible activation space at t-th

iteration for Ci if the activation values for Ci always lie into I(t)i at t-th

iteration. Formally, the closed interval I(t)i is a feasible activation space at

t-th iteration for Ci if a
(t)
i ∈ I

(t)
i .

Remarks :

• The 0-th iteration corresponds to the initial activation values of neu-
rons, representing their input values.

• If I ′i contains I
(t)
i , then I ′i is also a feasible activation space at the t-th

iteration for Ci. It is important to note that the feasible activation
space for a given neuron Ci is not unique, suggesting the existence of
several feasible activation spaces for the same neuron. Specifically, if
I(t)i is a feasible activation space at the t-th iteration for neuron Ci, then

any closed interval containing I(t)i is also a feasible activation space for
Ci at the same iteration.

Definition 4. The induced state space S is the M-ary Cartesian product
over the induced activation spaces of all neurons. It is defined as S = I1 ×
I2 × . . .× IM , where Ii is the induced activation space for neuron Ci.

Definition 5. A feasible state space S(t) at the t-th iteration is the M-ary
Cartesian product over the feasible activation spaces of all neurons at the
t-th iteration. It is defined as S(t) = I(t)1 × I

(t)
2 × . . . × I(t)M , where I(t)i is a

feasible activation space at the t-th iteration for neuron Ci. Formally, S(t) is
a feasible state space at the t-th iteration if A(t) ∈ S(t).

Remark: Definition 5 relies on Definition 3 to describe a particular state
space of an FCM model. Elements in S(t) are M -tuples, so we have S(t) =
I(t)1 × I

(t)
2 × . . . × I(t)M and A(t) = (a

(t)
1 , a

(t)
2 , . . . , a

(t)
M ). Therefore, we can

affirm that S(t) ∈ SM . Furthermore, it should be noticed that A(t) ∈ S(t) is
equivalent to stating that a

(t)
i ∈ Ii,∀i ∈ {1, 2, . . . ,M}.

Definition 6. The state space S = I1×I2× . . .×IM contains the state space
S ′ = I ′1×I ′2×. . .×I ′M if Ii contains I ′i,∀i ∈ {1, 2, . . . ,M}. Formally, S ⊇ S ′
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(state spaces are sets). Analogously, the state space S = I1 × I2 × . . .× IM
strictly contains the state space S ′ = I ′1×I ′2× . . .×I ′M if Ii strictly contains
I ′i,∀i ∈ {1, 2, . . . ,M}. Formally, S ⊃ S ′.

3.2. Neurons’ activation values in q-FCM models

The reasoning rule in Equation (1) is composed of two terms controlled
by the nonlinearity coefficient (ϕ). If the q-FCM model uses the sigmoid
activation function, then the analysis conducted in the next sections requires
that neurons’ activation values lie in the [0, 1] interval. To generalize, we will
prove for all t that A(t) ∈ (x, y)M or A(t) ∈ [x, y]M when the image set of
the activation function is (x, y) or [x, y], respectively. Therefore, the analysis
holds for other activation functions as well.

Proof. In the same manner that A(0) ∈ (0, 1)M is considered a restriction
in sigmoid FCMs, we have that A(0) ∈ (x, y)M or A(0) ∈ [x, y]M as a base
case, depending on the activation function. Moreover, let us assume that
A(t) ∈ (x, y)M and prove that A(t+1) ∈ (x, y)M .

According to Equation (1), for every neuron Ci, its (t + 1)-th activation

value is a
(t+1)
i = ϕfi

(∑M
j=1 wjia

(t)
j

)
+(1−ϕ)a

(0)
i . Since the image set of fi(.)

is (x, y), a
(0)
i ∈ (x, y), and 0 ≤ ϕ ≤ 1 we have that:

ϕx < ϕfi

(
M∑
j=1

wjia
(t)
j

)
< ϕy,

and
(1− ϕ)x < (1− ϕ)a

(0)
i < (1− ϕ)y.

Combining both inequalities, we obtain:

ϕx+ (1− ϕ)x < a
(t+1)
i < ϕy + (1− ϕ)y.

Finally, we can establish the following:

x < a
(t+1)
i < y. (3)

As it holds for every neuron Ci, it is proved that A(t+1) ∈ (x, y)M . In
contrast, if the image set is closed, we can proceed analogously. The only
changes needed are substituting open intervals with closed ones and strict
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inequalities (< and >) with non-strict ones (≤ and ≥). Then, assuming that
A(t) ∈ [x, y]M we analogously prove that A(t+1) ∈ [x, y]M .

3.3. Adjusted shrink functions for q-FCM models

The shrink functions were introduced in [35] as tools to estimate the
feasible state spaces in FCMs. In that paper, the activation function could
be seen as a real function whose input is the raw activation value at each
iteration. Therefore, F is defined as the set of all monotonically increasing
functions bounded into non-negative intervals. Hereinafter, we will refer to an
F -function as any function belonging to F such that F 0 ⊂ F and F ′ ⊂ F are
the subsets bounded into open and closed intervals, respectively. Moreover,
fi ∈ F is the activation function used in the activation process of neuron Ci

(i.e., every neuron has its activation function). This means that fi is bounded
into a non-negative interval (open or closed).

Let G be the set of all q-FCMs. In addition, let us consider two functions,
HW : G × SM → SM and HT : G × SM → SM , which take a q-FCM with M
neurons and anM -ary Cartesian product of non-negative closed intervals and
produce another M -ary Cartesian product of non-negative closed intervals.
These functions are commonly referred to as shrink functions, because of the
properties that were unveiled in [35]. Specifically, HW and HT are defined
such thatHW (X ,S(t)) = S(t+1) andHT (X ,S(t)) = S(t+1), respectively, where
X is a q-FCM and S(t) ∈ SM ,∀t.

Assuming that S(t) is a feasible state space at the t-th iteration, the func-
tions HW and HT take an FCM model X and S(t) to produce a feasible state
space at the (t + 1)-th iteration, denoted as S(t+1). The difference between
these functions lies in the fact that HW uses the weight matrix to calculate
S(t+1), whereas HT uses only the information regarding the connections be-
tween neurons (the topology of the FCM model). The terms inf

(t)
j and sup

(t)
j

represent the bounds (infimum and supremum, respectively) of the closed

interval I(t)j for neuron Cj. Then, given a feasible state space S(t) at the t-th
iteration, the following inequality holds:

infj
(t) ≤ a

(t)
j ≤ supj

(t),∀j. (4)

In Equation (1), the dot product between wi and A(t) is of utmost im-
portance to calculate the activation value of Ci. In this regard, it is assumed
that every neuron is influenced by at least one other neural processing entity.
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The activation values for input neurons are either unchanged or inactive,
depending on the FCM implementation.

The quasi-nonlinear rule is a linear combination of an F -function and a
constant term for each initial activation value. In this case, there are two
inputs: the raw activation values passed through the activation function and
the initial activation values. As a result, monotonicity cannot be addressed
in the same way as in real-valued functions of a real variable [35], so the
theory needs to be adapted. While the function associated with the quasi-
nonlinear rule does not fall under the class of F -functions, it shares similar
properties related to monotonicity that will be advantageous for the bounds
estimation. Then, we assume that inf

(0)
i ≤ a

(0)
i ≤ sup

(0)
i where [inf

(0)
i , sup

(0)
i ]

is the induced activation space for the i-th neuron. Let us recall that ϕ and
1− ϕ are non-negative numbers, and fi ∈ F is monotone-increasing. In this
regard, two cases should be analyzed.

• Case 1: The weight matrix W is unknown

infi
(t+1) = ϕfi (minT ) + (1− ϕ)infi

(0)

supi
(t+1) = ϕfi (maxT ) + (1− ϕ)supi

(0)

infi
(t+1) ≤ a

(t+1)
i ≤ supi

(t+1),∀i (5)

such that the minimum value for the dot product is

min
T

(
wiA

(t)
)
= −

M∑
j=1

sup
(t)
j , (6)

and the maximum value is

max
T

(
wiA

(t)
)
=

M∑
j=1

sup
(t)
j . (7)

• Case 2: The weight matrix W is known

infi
(t+1) = ϕfi (minW ) + (1− ϕ)infi

(0)

supi
(t+1) = ϕfi (maxW ) + (1− ϕ)supi

(0)
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infi
(t+1) ≤ a

(t+1)
i ≤ supi

(t+1),∀i (8)

such that the minimum value for the dot product is given by

min
W

(
wiA

(t)
)
=

M∑
j=1

wji

(
sup

(t)
j (1− sgn(wji)) + inf

(t)
j (1 + sgn(wji))

)
2

,

(9)

and the maximum value is given by

max
W

(
wiA

(t)
)
=

M∑
j=1

wji

(
sup

(t)
j (1 + sgn(wji)) + inf

(t)
j (1− sgn(wji))

)
2

.

(10)

Note. The proofs for the maximum and minimum of the dot product
between wi and A(t) are detailed in [35].

It should be mentioned that HT and HW return a feasible state space
at the (t + 1)-th iteration for the analyzed q-FCM by computing a feasible

activation space I(t+1)
i = [inf

(t+1)
i , sup

(t+1)
i ] for each neuron Ci. The Cartesian

product of all these feasible activation spaces allows obtaining a feasible state
space S(t+1) = I(t+1)

1 ×I(t+1)
2 ×. . .×I(t+1)

M at the (t+1)-th iteration. Therefore,
we can conclude that both HT and HW functions maintain the feasibility of
state spaces over the same q-FCM model.

4. Estimating the state spaces of q-FCM models

In this section, we will present a mathematical formalism to approximate
the activation values of any concept in q-FCM models. These approxima-
tions consist of intervals defined by the lower and upper bounds of neurons’
activation values in each iteration. They are also referred to as the limit
state spaces. Such intervals may be either open or closed and will be used
to derive the state space of a q-FCM model. To do that, we will consider
the following settings: (i) unknown weight matrix and initial conditions, and
(ii) known weight matrix and unknown initial conditions. In addition, these
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settings will be formalized into two algorithms that enable estimating the
space state of any q-FCM with reasonable precision.

According to Definition 4, the initial induced state space is given by
S(0) = [inf

(0)
1 , sup

(0)
1 ] × [inf

(0)
2 , sup

(0)
2 ] × . . . × [inf

(0)
M , sup

(0)
M ]. In this regard, it

can be stated that gi : R → [inf
(0)
i , sup

(0)
i ] or gi : R → (inf

(0)
i , sup

(0)
i ), ∀i ∈

{1, 2, . . . ,M}. Using the shrink functions HT and HW for a given q-FCM, we
can produce feasible activation spaces S(t+1) from S(t),∀t ∈ N. If we assume
that we have S(0) = [inf

(0)
1 , sup

(0)
1 ]× [inf

(0)
2 , sup

(0)
2 ]× . . .× [inf

(0)
M , sup

(0)
M ], then

S(1),S(2),S(3), . . . can inductively be obtained.

Theorem 1 (Weak shrinking state space). In a q-FCM, S(t) contains S(t+1),
∀t ∈ N, when state spaces are iteratively calculated using either shrink func-
tion HT or HW with induced state space S(0) = [inf

(0)
1 , sup

(0)
1 ]×[inf(0)2 , sup

(0)
2 ]×

. . .× [inf
(0)
M , sup

(0)
M ] and fi ∈ F ′,∀i ∈ {1, 2, . . . ,M}.

Remarks:

• If a neuron has no incoming connections, its activation space across all
iterations is determined by the induced one.

• F ′ ⊂ F is the set of all monotonically increasing functions bounded
into closed non-negative intervals.

Proof. Let S(t−1) = [inf
(t−1)
1 , sup

(t−1)
1 ]× . . .× [inf

(t−1)
M , sup

(t−1)
M ], S(t) = [inf

(t)
1 ,

sup
(t)
1 ]×. . .×[inf(t)M , sup

(t)
M ] and S(t+1) = [inf

(t+1)
1 , sup

(t+1)
1 ]×. . .×[inf(t+1)

M , sup
(t+1)
M ].

To prove that S(t) contains S(t+1), the fact that [inf
(t)
i , sup

(t)
i ] contains [inf

(t+1)
i ,

sup
(t+1)
i ] for every i ∈ {1, 2, . . . ,M} must be demonstrated. Proceeding

by induction, let us assume that S(t−1) contains S(t) and then prove that
S(t) contains S(t+1). Therefore, given that I(t−1)

i contains I(t)i for every

i ∈ {1, 2, . . . ,M}, we will prove that I(t)i contains I(t+1)
i .

Since S(1) is calculated using S(0), the induced state space S(0) contains
every state space generated by shrink functions because bounds of S(0) for
every neuron match the activation function’s bounds for this neuron. This
implies that S(0) ⊇ S(t),∀t, and hence S(0) contains S(1).

• Case 1: The weight matrix W is unknown. The bounds for the dot
product between wi and A(t−1) and between wi and A(t) are calculated
using Equations (6) and (7), respectively. Therefore, we have that:
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I(t)i = [ϕfi(minT (wiA
(t−1))) + (1− ϕ)

(0)

inf
i
,

ϕfi(maxT (wiA
(t−1))) + (1− ϕ)

(0)
sup
i
],

I(t+1)
i = [ϕfi(minT (wiA

(t))) + (1− ϕ)
(0)

inf
i
,

ϕfi(maxT (wiA
(t))) + (1− ϕ)

(0)
sup
i
].

Concepción et al. [35] proved that:

minT (wiA
(t−1)) ≤ minT (wiA

(t)),

maxT (wiA
(t−1)) ≥ maxT (wiA

(t)).

We must ensure that the lower bound of I(t)i is less than or equal to the

lower bound of I(t+1)
i , and also that the upper bound of I(t)i is greater than

or equal to the upper bound of I(t+1)
i ,∀i ∈ {1, 2, . . . ,M}. Such a claim holds

from the monotonically increasing property of fi ∈ F , and the fact that ϕ,
1− ϕ, inf

(0)
i and sup

(0)
i are non-negative numbers.

• Case 2: The weight matrix W is known. The bounds for the dot
product between wi and A(t−1) and between wi and A(t) are calculated
using Equations (9) and (10), respectively.

Let us define S(t) = I(t)1 ×I
(t)
2 × . . .×I(t)M and S(t+1) = I(t+1)

1 ×I(t+1)
2 ×

. . .× I(t+1)
M , such that I(t)i and I(t+1)

i are given by:

I(t)i = [ϕfi(minW (wiA
(t−1))) + (1− ϕ)

(0)

inf
i
,

ϕfi(maxW (wiA
(t−1))) + (1− ϕ)

(0)
sup
i
],

I(t+1)
i = [ϕfi(minW (wiA

(t))) + (1− ϕ)
(0)

inf
i
,

ϕfi(maxW (wiA
(t))) + (1− ϕ)

(0)
sup
i
].
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Concepción et al. [35] proved that:

minW (wiA
(t−1)) ≤ minW (wiA

(t)),

maxW (wiA
(t−1)) ≥ maxW (wiA

(t)).

We need to ensure that the lower bound of I(t)i is less than or equal to

the lower bound of I(t+1)
i , and also that the upper bound of I(t)i is greater

than or equal to the upper bound of I(t+1)
i ,∀i ∈ {1, 2, . . . ,M}. This holds

from the monotonically increasing property of fi ∈ F , and the fact that ϕ,
1− ϕ, inf

(0)
i and sup

(0)
i are non-negative numbers.

At this point, the induction thesis is proved for both cases (unknown and
known weights), and the theorem holds.

It should be mentioned that Theorem 3 asserts that the state spaces of q-
FCM models shrink from one iteration to the next one, although it is possible
that S(t) = S(t+1), which implies that S(t) = S(t+k),∀k ∈ N. If that happens,
then the state spaces may not shrink forever.

Theorem 2 (Strong shrinking state space). In a q-FCM, S(t) strictly con-
tains S(t+1), ∀t ∈ N, when state spaces are iteratively calculated using either
shrink function HT or HW with induced state space S(0) = [inf

(0)
1 , sup

(0)
1 ] ×

[inf
(0)
2 , sup

(0)
2 ]× . . .× [inf

(0)
M , sup

(0)
M ] and fi ∈ F 0, ∀i ∈ {1, 2, . . . ,M}.

Remarks :

• F 0 ⊂ F is the set of all monotonically increasing functions bounded
into open non-negative intervals.

• Notice that activation functions are now bounded into open intervals,
which implies that the activation bounds inf

(0)
i and sup

(0)
i are never

reachable at any iteration. This means that S(t) ̸= S(t+k),∀k ∈ N, and
hence, the state spaces will shrink forever.

• To claim that S(t) strictly contains S(t+1), only neurons with incom-
ing connections are relevant. Neurons without incoming connections
are excluded from the analysis since their activation values are always
the same. Depending on the q-FCM implementation, their activation
values remain unchanged or inactive.

14



Proof. To prove that S(t) strictly contains S(t+1), we must prove that [inf
(t)
i , sup

(t)
i ]

strictly contains [inf
(t+1)
i , sup

(t+1)
i ] ∀i ∈ {1, 2, . . . ,M}.

Let us assume that S(t−1) strictly contains S(t) and then prove that
S(t) strictly contains S(t+1). Given that I(t−1)

i strictly contains I(t)i ∀i ∈
{1, 2, . . . ,M}, we must prove that I(t)i strictly contains I(t+1)

i .
Since S(1) is calculated using S(0), the induction’s base case can easily

be verified. More explicitly, we can affirm that induced state space S(0)

strictly contains every state space generated by shrink functions because
the bounds of S(0) for every neuron match the activation function’s bounds
(open intervals), meaning that S(0) ⊃ S(t),∀t. This happens since, given two
intervals with equal bounds, the closed one strictly contains the open one.
Consequently, S(0) strictly contains S(1).

The proof is analogous to the weak version of the theorem, except that
all inequalities are turned into strict ones. This means that every occurrence
of the ≤ and ≥ symbols is replaced with the < and > symbols, respectively.
Therefore, the strong version of the theorem is true.

Motivated by the results in [35], we adapt the definition of limit state
space in the context of q-FCM models. We must emphasize that the demon-
stration is analogous to the one in the original article.

Definition 7. S(∞) ∈ SM is the limit state space of the q-FCM, when state
spaces are iteratively calculated using either shrink function HT or HW and
starting with S(0), such that S(∞) = limt→∞ S(t).

Algorithm 1 formalizes a deterministic procedure to estimate the limit
state space of any q-FCM model. This algorithm requires as input the weight
matrix W , the initial induced state space S(0), the maximum number of
iterations allowed, and the ϕ value used in the quasi-nonlinear reasoning rule
of the q-FCM model under study. Also, ξ = 1.0e-5 is taken as the minimal
distance between two consecutive state spaces needed to stop the procedure
before reaching the maximum number of iterations.

Algorithm 1 is designed to be independent of whether the shrink function

calculation incorporates the weights. Consequently, two supplementary pseu-
docode procedures describing the shrink function are presented in Algo-
rithms 2 and 3, using the weights and the topology of the q-FCM model,
respectively. Observe that although the weight matrix is required as an in-
put of the Algorithm 3, it is only used as an adjacency matrix to infer the
topology of the q-FCM model under analysis.
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Algorithm 1 Limit State Space estimation using weights or topology

Require: W (M ×M), S(0) (2×M), max iters (int unsigned/positive), ϕ

(float in [0, 1])

Ensure: Estimated limit state space (2xM)

for t← 0 to max iters do

S(t+1) ← shrink function(W, S(t), S(0), ϕ)

if distance(S(t), S(t+1)) < ξ then

break

end if

S(t) ← S(t+1)

end for

return S(t)

In short, our algorithms produce lower and upper bounds for the acti-
vation values of each neuron in a q-FCM model. Since these bounds are
independent of the initial conditions, they allow assessing the model’s ca-
pabilities before performing simulations. For example, these algorithms can
help determine which activation values are impossible to produce. When
ϕ = 1, the algorithm may produce a limit state space of zero length, i.e. the
lower and upper bounds of a concept are the same, indicating a unique fixed
point attractor. If the q-FCM model is devoted to machine learning pre-
diction tasks, such an undesirable state may irreversibly affect the model’s
prediction capabilities. Conversely, if 0 ≤ ϕ < 1, the algorithm will produce
a limit state space that does not contain an interval of zero length between
the lower and upper bounds. This means that there is no unique fixed-point
attractor for all initial activation values of the q-FCM model [33]. In this way,
these algorithms may assist experts in understanding the expected model be-
havior when the input data become available and allow for more informed
decisions about the dynamics of the system.
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Algorithm 2 Shrink function: next state space calculation using weights

Require: W (M ×M), S(t) (2×M), S(0) (2×M), ϕ (float in [0, 1])

Ensure: Estimated next state space (2×M)

for i← 0 to M − 1 do

min val← 0

max val← 0

for j ← 0 to M − 1 do

if wji ∈W ≥ 0 then

min val← min val + wji · S(t)
min[j]

max val← max val + wji · S(t)
max[j]

else

min val← min val + wji · S(t)
max[j]

max val← max val + wji · S(t)
min[j]

end if

end for

S
(t+1)
min [i]← quasi-nonlinear(min val, S

(0)
min[i], ϕ)

S
(t+1)
max [i]← quasi-nonlinear(max val, S

(0)
max[i], ϕ)

end for

return S(t+1)
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Algorithm 3 Shrink function: next state space calculation using topology

Require: W (M ×M), S(t) (2×M), S(0) (2×M), ϕ (float in [0, 1])

Ensure: Estimated next state space (2×M)

for i← 0 to M − 1 do

min val← 0

max val← 0

for j ← 0 to M − 1 do

if wij ∈W ̸= 0 then

min val← min val + (−1) · S(t)
max[j]

max val← max val + S
(t)
max[j]

end if

end for

S
(t+1)
min [i]← quasi-nonlinear(min val, S

(0)
min[i], ϕ)

S
(t+1)
max [i]← quasi-nonlinear(max val, S

(0)
max[i], ϕ)

end for

return S(t+1)
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5. Impact of the ϕ parameter on the state spaces

As discussed, the proposed algorithms devoted to approximating the state
spaces of q-FCM models are a powerful tool that domain experts can use
to avoid undesired configurations. In the quasi-nonlinear learning rule, the
model’s nonlinearity is controlled by the ϕ parameter. Since it is deemed a
vital aspect of this reasoning rule, this section will study how sensitive the
predicted state spaces are to this parameter and its actual influence. In this
regard, we will use the concept of covering [35] in our mathematical analysis.
Additionally, it must be highlighted that Definitions 8 and 9 are specified for
general FCMs, but also applicable to q-FCMs.

Definition 8. The covering of a feasible activation space at t-th iteration
for neural concept Ci is the quotient between the associated interval’s length
(lfas) and the length of its induced activation space (lias),

covering(Ii) =

{
lfas
lias

if Ci ∈ Nin

0 if Ci /∈ Nin.

such that Nin stands for the set of neurons with incoming connections. If the
neuron is independent, the covering of every associated feasible activation
space at any iteration is assumed to be zero.

This measure quantifies the percentage of the activation space covered by
the activation values produced by a neuron. For example, a covering value of
0.3 indicates that the neuron’s activation values span a maximum of 30% of
the induced activation space. A covering value of zero means that, during the
specified iteration, the neuron reaches a constant value (since a zero-length
interval contains only a single value) and remains at that value thereafter,
regardless of the initial activation value.

Definition 9. In q-FCMs, the covering of a feasible state space at t-th it-
eration S(t) = I(t)1 × I

(t)
2 × . . . × I(t)M is the average covering of all feasible

activation spaces at t-th iteration I(t)1 , I(t)2 , . . . , I(t)M . That is to say:

θ =
1

M

M∑
i=1

covering(Ci).

Similarly, a covering value of 0.3 signifies that, on average, each neuron’s
activation value reaches at most 30% of its induced activation space. Roughly
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speaking, we can state that the tuple A(t) = (a
(t)
1 , a

(t)
2 , . . . , a

(t)
M ) covers, at

most, 30% of its induced state space. A covering value of zero implies that
the q-FCM will converge to a fixed-point attractor, regardless of the initial
activation value used to start the reasoning process.

The concept of covering is related to the universal approximation property
of multilayer feed-forward networks [36]. For instance, let us consider a neural
network with a single output neuron that produces values in the [0, 1] interval,
applied to a prediction problem where the output values are expected to be
close to either 0 or 1. In this setting, covering values significantly smaller
than 1 suggest inadequate approximations of the given input-output set.
Although values close to one do not guarantee accurate approximations, they
may indicate improved model performance.

Theorem 3. Let S(ϕ+,t) and S(ϕ−,t) be the state spaces produced by the same
q-FCM model at the t-th iteration. It is assumed that the q-FCM’s reasoning
rule uses activation function fi ∈ F

′
,∀i ∈ {1, 2, . . . ,M}, where ϕ+ and ϕ−

represent the ϕ values used in the estimation of S(ϕ,t). If ϕ+ > ϕ−, then
S(ϕ−,t) contains S(ϕ+,t),∀t ∈ N+.

Remarks:

• The state spaces are iteratively calculated using either the shrink func-
tion HT or HW with the induced state space S(ϕ,0) = [inf

(ϕ,0)
1 , sup

(ϕ,0)
1 ]×

[inf
(ϕ,0)
2 , sup

(ϕ,0)
2 ]× . . .× [inf

(ϕ,0)
M , sup

(ϕ,0)
M ].

• I(ϕ,t)i = [inf
(ϕ,t)
i , sup

(ϕ,t)
i ] for every neuron i and iteration t.

Proof. In order to simplify the process and account for varying ϕ values
when estimating the dot product boundaries without considering weights,
let us define the following equations:

minT (ϕ, t) = minT (wiA
(t)),

maxT (ϕ, t) = maxT (wiA
(t)).

For the case when we consider weights, we similarly define:

minW (ϕ, t) = minW (wiA
(t)),

maxW (ϕ, t) = maxW (wiA
(t)).
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Additionally, the formulas involving minX(ϕ, t) or maxX(ϕ, t) apply to
cases where it is deemed irrelevant whether the values were estimated using
the weights or not. However, it is important to clarify that in all formulas,
these terms refer either to cases where the weights are known or unknown.
Both cases cannot apply simultaneously.

The proof in Section 3.2 shows thatA(t) ∈ [x, y]M for all t when the image
set of the activation function is [x, y] while ϕ can take any possible value. It
must be recalled that the image set serves as the induced activation space of
a neuron. Therefore, a given neural concept has the same induced activation
space regardless of the value of ϕ. Consequently, the feasible activation

spaces for the initial activation values are the induced ones, and I(ϕ
−,0)

i =

I(ϕ
+,0)

i ,∀i ∈ {1, 2, . . . ,M}. Using this equality, let us prove that I(ϕ
−,1)

i ⊇
I(ϕ

+,1)
i . Regardless of the knowledge about weights and using Equations (6),

(7), (9) and (10), we have the following formulas:

I(ϕ
−,1)

i = [ϕ−fi(minX(ϕ
−, 0)) + (1− ϕ−)

(ϕ−,0)

inf
i

,

ϕ−fi(maxX(ϕ
−, 0)) + (1− ϕ−)

(ϕ−,0)
sup
i

],

I(ϕ
+,1)

i = [ϕ+fi(minX(ϕ
+, 0)) + (1− ϕ+)

(ϕ+,0)

inf
i

,

ϕ+fi(maxX(ϕ
+, 0)) + (1− ϕ+)

(ϕ+,0)
sup
i

]

The equality I(ϕ
−,0)

i = I(ϕ
+,0)

i is equivalent to inf
(ϕ−,0)
i = inf

(ϕ+,0)
i and

sup
(ϕ−,0)
i = sup

(ϕ+,0)
i . It also implies that minX(ϕ

−, 0) = minX(ϕ
+, 0) and

maxX(ϕ
−, 0) = maxX(ϕ

+, 0) because the parameter ϕ has no influence on
the formulas. Hence, the first step consists of proving that the lower bound

of I(ϕ
−,1)

i is less than or equal to the lower bound of I(ϕ
+,1)

i for all i, which
holds true if the following inequality is satisfied:
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ϕ−

(
fi(minX(ϕ

−, 0))−
(ϕ−,0)

inf
i

)

≤ϕ+

(
fi(minX(ϕ

+, 0))−
(ϕ+,0)

inf
i

)
.

(11)

The terms inside parentheses are equal, and we only need to prove they
are non-negative to verify the inequality. Since fi ∈ F

′
, this function always

produces values greater than or equal to its lower bound inf
(ϕ−,0)
i = inf

(ϕ+,0)
i .

Therefore, Equation (11) is validated.

Now, let us prove that the upper bound of I(ϕ
−,1)

i is greater than or equal

to the upper bound of I(ϕ
+,1)

i for all i, which holds if:

ϕ+

(
(ϕ+,0)
sup
i
−fi(maxX(ϕ

+, 0))

)
≥ϕ−

(
(ϕ−,0)
sup
i
−fi(maxX(ϕ

−, 0))

)
.

(12)

As stated before, the terms inside parentheses are equal, and we only
need to prove they are non-negative to verify the inequality. Since fi ∈ F

′
,

this function always produces values less than or equal to its upper bound

sup
(ϕ−,0)
i = sup

(ϕ+,0)
i . Therefore, Equation (12) is validated.

Proceeding by induction, we hypothesize that S(ϕ−,t) contains S(ϕ+,t),∀t ∈
N+, and then prove that S(ϕ−,t+1) strictly contains S(ϕ+,t+1). For the t-th
iteration, we have the following:

S(ϕ+,t) = I(ϕ
+,t)

1 × . . .× I(ϕ
+,t)

M

S(ϕ−,t) = I(ϕ
−,t)

1 × . . .× I(ϕ
−,t)

M ,

while for the (t+ 1)-th iteration we have:

S(ϕ+,t+1) = I(ϕ
+,t+1)

1 × . . .× I(ϕ
+,t+1)

M

S(ϕ−,t+1) = I(ϕ
−,t+1)

1 × . . .× I(ϕ
−,t+1)

M .
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Subsequently, we will prove that I(ϕ
−,t)

i ⊇ I(ϕ
+,t)

i implies that I(ϕ
−,t+1)

i ⊇
I(ϕ

+,t+1)
i , for every i ∈ {1, 2, . . . ,M}. Using Equations (6), (7), (9) and

(10), and assuming that the information concerning the weight matrix is not
available, we can derive the following formulas:

I(ϕ
−,t+1)

i = [ϕ−fi(minX(ϕ
−, t)) + (1− ϕ−)

(ϕ−,0)

inf
i

,

ϕ−fi(maxX(ϕ
−, t)) + (1− ϕ−)

(ϕ−,0)
sup
i

]

I(ϕ
+,t+1)

i = [ϕ+fi(minX(ϕ
+, t)) + (1− ϕ+)

(ϕ+,0)

inf
i

,

ϕ+fi(maxX(ϕ
+, t)) + (1− ϕ+)

(ϕ+,0)
sup
i

].

The relation I(ϕ
−,t)

i ⊇ I(ϕ
+,t)

i is equivalent to the fact that inf
(ϕ−,t)
i ≤

inf
(ϕ+,t)
i and sup

(ϕ−,t)
i ≥ sup

(ϕ+,t)
i . This relation also implies thatminX(ϕ

−, t) ≤
minX(ϕ

+, t) and maxX(ϕ
−, t) ≥ maxX(ϕ

+, t). Therefore, we need to prove

that the lower bound of I(ϕ
−,t+1)

i is less than or equal to the lower bound of

I(ϕ
+,t+1)

i for all i, which holds if:

ϕ−fi(minX(ϕ
−, t)) + (1− ϕ−)

(ϕ−,0)

inf
i

≤ϕ+fi(minX(ϕ
+, t)) + (1− ϕ+)

(ϕ+,0)

inf
i

.

(13)

Let us establish that inf
(0)
i = inf

(ϕ−,0)
i = inf

(ϕ+,0)
i , since ϕ has no influence

in the induced activation values. After simplifying and grouping accordingly,
we have the following inequality:

ϕ−
(
fi(minX(ϕ

−, t))−
(0)

inf
i

)
≤ϕ+

(
fi(minX(ϕ

+, t))−
(0)

inf
i

)
.

(14)
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The fact that fi(.) is monotone increasing and that minX(ϕ
−, t) ≤ minX

(ϕ+, t)) implies that fi(minX(ϕ
−, t))− inf

(0)
i is less than or equal to fi(minX

(ϕ+, t))− inf
(0)
i . Moreover, these terms are non-negative since fi ∈ F

′
always

produces values greater than or equal to inf
(0)
i . These factors, combined with

the premise ϕ− < ϕ+, validate Equation (13).

Next, we will prove that the upper bound of I(ϕ
−,t+1)

i is greater than or

equal to the upper bound of I(ϕ
+,t+1)

i , which holds if:

ϕ−fi(maxX(ϕ
−, t)) + (1− ϕ−)

(ϕ−,0)
sup
i

≥ϕ+fi(maxX(ϕ
+, t)) + (1− ϕ+)

(ϕ+,0)
sup
i

.

(15)

As we did before, let us establish that sup
(0)
i = sup

(ϕ−,0)
i = sup

(ϕ+,0)
i , since

ϕ has no influence in the induced activation values. After simplifying and
grouping accordingly, we have the following:

ϕ+

(
(0)
sup
i
−fi(maxX(ϕ

+, t))

)
≥ϕ−

(
(0)
sup
i
−fi(maxX(ϕ

−, t))

)
.

(16)

Since fi(.) is monotone increasing and maxX(ϕ
−, t) ≥ maxX(ϕ

+, t), it

holds that sup
(0)
i −fi(maxX(ϕ

+, t)) is greater than or equal to sup
(0)
i −fi(maxX

(ϕ−, t)). These terms are also non-negative since fi ∈ F
′
produces values less

than or equal to its upper bound sup
(0)
i . Combining these remarks with the

fact that ϕ+ > ϕ− allows us to validate Equation (15). As such, the thesis is
proved by induction and the theorem holds.

Theorem 4. Let S(ϕ+,t) and S(ϕ−,t) be state spaces produced by the same
q-FCM model at the t-th iteration. It is assumed that the q-FCM’s reasoning
rule uses activation functions fi ∈ F 0, ∀i ∈ {1, 2, . . . ,M}, where ϕ+ and ϕ−

are the ϕ values used in the estimation of S(ϕ,t). If ϕ+ > ϕ−, then S(ϕ−,t)

strictly contains S(ϕ+,t),∀t ∈ N+.

Remark: As previously mentioned, the activation spaces of neurons with
no incoming connections remain the induced ones throughout all iterations.
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Therefore, to assert that S(ϕ−,t) strictly contains S(ϕ+,t), only neurons with
incoming connections are relevant for the analysis.

Proof. The proof is analogous to Theorem 3, except that all inequalities,
subset, and superset relationships are turned into strict ones. This means
that every occurrence of the≤, ≥, ⊆ and⊇ symbols is replaced with the<, >,
⊂ and ⊃ symbols, respectively. Additionally, when referring to non-negative
terms, we must state that they are positive. The only exception to the
previous rule is that the inequality ϕ < ϕ+ remains unchanged. Therefore,
the strong version of the theorem holds true.

Theorems 3 and 4 indicate that the covering values decrease (or at least
do not increase) as ϕ approaches its maximum value. In contrast, smaller ϕ
values lead to larger covering values at the expense of harming the model’s
nonlinearity. This behavior suggests the existence of a trade-off between the
number of reachable states and the model’s nonlinearity, which is deemed key
when solving pattern classification, multi-output regression, or time series
forecasting problems. Overall, these insights highlight the complex relation-
ship between ϕ and the contraction of the state space.

6. Numerical simulations

In this section, we will conduct a two-fold experimental study to assess
the correctness of our algorithms. The first experiment uses real-world case
studies to exemplify the impact of the ϕ parameter on the state spaces of
q-FCM models. More importantly, we will illustrate the effectiveness of the
proposed algorithms to estimate the limit state space of q-FCM models even
when no data is available. The second experiment relies on synthetically
generated q-FCM to further evaluate the precision of the estimated limit
state spaces compared to the actual activation values.

6.1. Simulations using real-world case studies

Aiming to study the relation between the ϕ parameter and the estimated
state spaces, we will adopt three real-world case studies. These cognitive
networks represent well the structural complexity and network density of
FCM-based models designed by domain experts.

The crime and punishment model (see Figure 1), proposed by Mohr [37],
has been extensively used to evaluate the correctness of new algorithms and
methodologies [38, 39]. This network is devoted to modeling the effects of
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several coupled social attributes on the prevalence of theft in a given com-
munity. The concepts in this model are the presence of property (C1), op-
portunity (C2), theft (C3), community intervention (C4), criminal intention
(C5), punishment (C6), and police presence (C7).

Presence of 
property Opportunity

Theft

Criminal
intention

Police 
presence

Community
intervention

Punishment

0.5

C1 C2

C3

C4

C5

C6

C7

0.6

0.5

0.7

-0.5

0.5

-0.4

-0.80.6

0.6

0.4

0.5

-0.8

0.5

0.3

Figure 1: FCM model for the “Crime and Punishment” case study.

The second case study concerns civil engineering and investigates the im-
plications of population growth and urban development on the public health
of a city (refer to Figure 2). This network was employed in [40] to assess the
inferential capabilities of binary, trivalent, and sigmoid FCM models. The
concepts in this model are people in a city (C1), migration into city (C2),
modernization (C3), amount of garbage (C4), sanitation facilities (C5), dis-
eases per 1000 residents (C6), and bacteria per area (C7).

The third case study depicts the concepts and causal relationships in a
system modeling a car sales company, as sourced from [2] (see Figure 3).
The neural concepts describing this system are high profits (C1), customer
satisfaction (C2), high sales (C3), union raises (C4), safer cars (C5), foreign
competition (C6), and lower prices (C7).
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Figure 2: FCM model for the “Public Health System” case study.

Aiming to study the effect of ϕ on the covering values, we randomly gen-
erated 1,000 initial activation vectors for each case study. It must be stressed
that generated data is used for validation purposes only since the proposed
algorithms operate without knowledge of the initial conditions. Moreover,
for each problem, we built several q-FCM models resulting from varying ϕ
from 0.0 to 1.0, such that ϕ = 1.0 represents the classic FCM formalism.
After activating the neural concepts, the reasoning process is performed for
T = 10 iterations. In this experiment, the coverage of each neural concept
is calculated with and without considering the information about the weight
matrix. Figure 4 illustrates how the mean coverage decreases as ϕ increases,
whether the weights are included or only the topology is considered. This ex-
periment also demonstrates that incorporating the weights allows for a more
precise calculation of the mean coverage.
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Figure 3: FCM model for the “Car Sales Company” case study.
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Figure 4: Covering results when varying the ϕ parameter with and without knowing the
weight matrix. In both scenarios, the initial conditions are unknown.

Next, let us compare the activation space of arbitrarily selected neurons
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throughout the reasoning process using the generated initial activation vec-
tors. For simplicity, we will consider only two models: q-FCM (ϕ = 1.0) and
q-FCM (ϕ = 0.8). Figure 5 shows the activation values of concept C7 for
the three case studies. The gray area represents the real activation values at
each iteration after using the generated input data to execute the reasoning.
The solid orange lines indicate the lower and upper bounds of that concept
for each iteration produced by our algorithm when using the weight informa-
tion. The dashed blue lines indicate the lower and upper bounds computed
using only information about the network topology. As expected, the gray
area remains within the boundaries defined by the solid lines in every case.
Note that for a different set of inputs, the gray area could shrink further
but will always remain within the boundaries calculated by our algorithms.
Additionally, this experiment illustrates how the activation space decreases
through iterations, supporting Theorems 1 and 2.

A closer inspection of the FCM models in Figure 5 reveals that the lower
and upper bounds using the weight information indicate the presence of a
unique fixed-point attractor, regardless of the initial conditions. This implies
that in classic FCM models, our algorithms can be a useful tool for predicting
a unique fixed-point attractor without knowledge of the initial input. In
contrast, this is not the case for q-FCM models, as ϕ < 1.0 guarantees that
there is no unique fixed-point attractor.

Overall, the experiments using real-world case studies illustrate how the
lower and upper bounds computed by our algorithms approximate the actual
activation values produced by the neurons. This capability demonstrates
that even in the absence of specific input values, we can predict the potential
outcomes of the concepts within q-FCM models, reinforcing the robustness
of our state space estimation approach.

6.2. Simulations using synthetic q-FCM models

To further analyze the precision of the estimated limit state spaces, let
us generate 1,000 synthetic q-FCM models. The number of neural concepts
in these models varies from 5 and 20 concepts, while the sigmoid activator is
used as the activation function. The connectivity is set to 50%, where con-
nectivity refers to the ratio between the number of non-zero weights and the
maximal number of relationships. In our simulations, the ϕ parameter ranges
from 0 to 1, and the reasoning rule is executed until the model converges to
its limit state space such that ξ = 1.0e-5.
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(a) “Crime and Punishment” case study with
selected concept “police presence” (C7). The

nonlinearity coefficient is ϕ = 1.
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(b) “Crime and Punishment” case study with
selected concept “police presence” (C7). The

nonlinearity coefficient is ϕ = 0.8.
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(c) “Public Health System” case study with
selected concept “bacteria per area” (C7). The

nonlinearity coefficient is ϕ = 1.
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(d) “Public Health System” case study with
selected concept “bacteria per area” (C7). The

nonlinearity coefficient is ϕ = 0.8.
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(e) “Car Sales Company” case study with
selected concept “lower prices”’ (C7). The

nonlinearity coefficient is ϕ = 1.
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(f) “Car Sales Company” case study with
selected concept “lower prices” (C7). The

nonlinearity coefficient is ϕ = 0.8.

Figure 5: Estimated feasible activation space of neuron C7 for the three real-world case
studies with (solid) and without (dashed) using the weight information. The gray area

represents the actual activation values.
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In this experiment, we introduce a new performance metric called the
relative average gap, which quantifies how closely the predicted bounds match
the actual activation values of the neurons. Let max(a

(t)
i ) and min(a

(t)
i )

represent the maximum and minimum values of a
(t)
i across all available initial

conditions, corresponding to the ideal bounds for the data. Additionally, it
is worth recalling that sup

(t)
i and inf

(t)
i denote the upper and lower bounds

for the i-th feasible activation space, respectively.

Definition 10. The relative average gap (rag
(t)
i ) of a feasible activation space

I(t)i at the t-th iteration for neural concept Ci is the quotient between the
average gap around the data extreme values and the length of the induced
activation space (lias). That is to say:

rag
(t)
i =


sup

(t)
i −max(a

(t)
i ) +min(a

(t)
i )− inf

(t)
i

2 lias
if Ci ∈ Nin

0 if Ci /∈ Nin

such that Nin stands for the set of neurons with incoming connections. If the
neuron is independent, the relative average gap of every associated feasible
activation space at any iteration is assumed to be zero.

If rag
(t)
i ≈ 0, the interval length is approximately equal to the data range,

indicating an accurate approximation. If rag
(t)
i ≫ 0, the interval is wider

than the actual data range, suggesting that the interval has excess space.
Notice that rag

(t)
i < 0 is not possible, since the feasible activation spaces

always contain the activation values from the data. The relative average gap
can also be computed at the model level.

Definition 11. In q-FCMs, the relative average gap of a feasible state space
at t-th iteration S(t) = I(t)1 × . . . × I(t)M is the average rag

(t)
i of all feasible

activation spaces at t-th iteration I(t)1 , . . . , I(t)M . That is to say:

rag(t) =
1

M

M∑
i=1

rag
(t)
i .

As before, rag(t) ≈ 0 indicates that the intervals accurately approximate
the minimum and maximum activation values produced by all neural con-
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cepts on average. At this point, we have the tools to assess the quality of the
limit state space estimations for q-FCMs models.

Let us randomly generate 1,000 initial activation vectors, apply the rea-
soning rule to the generated q-FCM models under study, and compute the
relative average gap in the final iteration. This metric is averaged across all
initial conditions and topology configurations for each ϕ value. Addition-
ally, the experiment is conducted for state space estimations using either the
weight information or only the network topology information. Figure 6 por-
trays the simulation results, with the standard deviation shown as a shaded
area around the average values in each series.
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Figure 6: Relative average gap when varying the ϕ parameter, with and without
considering the weight information when estimating the bounds.

The relative average gaps in Figure 6 illustrate the substantial impact of
using the weight information on the quality of the state space estimations.
While the topology information alone provides a reasonable level of precision,
integrating the weight information leads to a consistently low relative average
gap below 0.15. Since the covering is maximized when ϕ ≈ 0 (see Theorem 4),
it is reasonable to conclude that the small relative average gaps stem from the
ease of estimating larger state spaces. For the estimations using weights, the
relative average gap increases as ϕ approaches 0.8. This behavior indicates
that estimating the state spaces becomes more challenging while the covering
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decreases. However, after this point, the gap begins to decrease until ϕ = 1,
where the q-FCMs align with classic FCMs. When ϕ = 1, the q-FCM model
exhibits the lowest covering values, allowing the algorithm to potentially
detect unique fixed-point attractors.

In contrast, when only the network topology is known, the relative average
gap increases almost linearly with ϕ, leading to a steady decrease in precision.
In this case, while the available information about the q-FCM model is quite
limited, we can still gain some insights into the model’s behavior, reflected
in an overall average gap of 0.21. However, as discussed, using the weight
information significantly enhances state space estimation precision, reducing
the average gap to 0.05 across all configurations. These findings underscore
that the estimated bounds closely match the actual outcomes, especially
when the weight information is considered.

7. Concluding remarks

In this paper, we introduced two mathematically grounded algorithms to
estimate the limit state spaces of q-FCM models without knowing the input
data. Based solely on the structural information of the cognitive network,
these algorithms produce reasonably precise upper and lower bounds for the
activation values of neural concepts in each iteration. Therefore, the model
will never produce activation values outside these bounds, regardless of the
initial conditions used to perform reasoning. In addition, the proposed algo-
rithms can detect whether a classic FCM model will converge to a fixed-point
attractor. We further demonstrated mathematically that as the nonlinear-
ity coefficient of the q-FCM model approaches one, the covering of neural
concepts shrinks. This behavior reveals a trade-off between the model’s non-
linearity and the range of achievable states.

In our numerical simulations, we validated the correctness of the proposed
algorithms using both real-world and synthetically generated problems. More
explicitly, we explored the behavior of q-FCMs across three case studies of dif-
ferent domains, using the weight matrix and only the network topology. The
results showed that the covering of the state space consistently decreased as
the nonlinearity coefficient increased, regardless of whether the weight matrix
or topology was used. This aligns with our theoretical findings, reinforcing
the statement that higher ϕ values reduce the number of reachable states.
Moreover, the experiments confirmed that when ϕ = 1, the q-FCM behaves
as a classic FCM that often leads to a fixed-point attractor, as evidenced by
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the activation space bounds shrinking to a single point in some cases. For
lower values of ϕ, the q-FCM exhibited more complex dynamics, avoiding the
fixed-point attractor and producing a more diverse range of activation values.
This was particularly evident in scenarios where weights were considered, as
the predicted activation bounds closely matched the actual outcomes. These
findings demonstrate the utility of the proposed algorithms in estimating the
state space under varying configurations.

Despite the ground-breaking results, the proposed algorithms might suf-
fer from scalability issues. In topologies with many interconnected concepts,
the precision of the estimated bounds can decrease, leading to less accu-
rate predictions. However, this limitation is mitigated in practice, as FCM
models devoted to real-world scenario simulation typically involve relatively
simple structures. Looking forward, a promising direction for future research
is to investigate the effectiveness of our algorithms in detecting unique fixed
points, particularly by comparing them with other mathematical techniques
in the literature. Additionally, we plan to extend our work by developing a
learning algorithm based on the proposed weight-driven state space estima-
tion, aiming to bypass the need for input data and offering a new framework
for data-free learning in FCM-based models.
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[19] J. L. Salmeron, I. Arévalo, Concurrent vertical and hor-
izontal federated learning with fuzzy cognitive maps, Fu-
ture Generation Computer Systems 162 (2025) 107482.
doi:https://doi.org/10.1016/J.FUTURE.2024.107482.

36
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