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ABSTRACT Bayesian optimization is a sequential optimization method that is particularly well suited for
problems with limited computational budgets involving expensive and non-convex black-box functions.
Though it has been widely used to solve various optimization tasks, most of the literature has focused
on unconstrained settings, while many real-world problems are characterized by constraints. This paper
reviews the current literature on single-objective constrained Bayesian optimization, classifying it according
to three main algorithmic aspects: (i) the metamodel, (i7) the acquisition function, and (iii) the identification
procedure. We discuss the current methods in each of these categories and conclude by a discussion of
real-world applications and highlighting the main shortcomings in the literature, providing some promising

directions for future research.

INDEX TERMS Bayesian optimization, constrained optimization, expensive black-box functions, Gaussian

processes.

I. INTRODUCTION

Bayesian optimization (BO) is a sequential optimization
method that is particularly well suited for problems involving
expensive, non-convex black box functions [1], [2], [3],
[4]. In the engineering field, the approach is often used
in process and/or product design optimization [5], [6], [7],
where experiments might involve computationally intensive
simulations (such as computational fluid dynamics (CFD),
[8], [9]), or costly experiments [10]. By smartly designing
experiments and refining models iteratively during the
optimization process, BO succeeds in solving problems while
limiting the number of experiments needed.

Bayesian optimization is based on the concept of Bayesian
inference [11]: each observation obtained by querying the
function modifies the model’s belief about the function’s
behaviour and influences the selection of the next query
location. It has been shown that BO is very powerful for
solving real-world problems with limited evaluation budgets
(see e.g., [6], [12], [13]), as it can automatically balance
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exploration and exploitation, resulting in efficient use of the
evaluation budget.

The majority of the BO literature so far has focused on
single-objective and unconstrained settings, meaning that the
optimum can be anywhere in the search space (which is
typically a hyperrectangle). Nevertheless, in recent years,
constrained BO (CBO) has gained increasing attention [1],
[2], [14], [15], [16] where specific output constraints need
to be met in this type of problem. Imposing constraints
onto the optimization problem restricts the feasible solution
space in an often complex, even uncertain manner [1].
This paper surveys the approaches currently available
for single-objective CBO and categorizes these based on
algorithmic aspects (the metamodel used, the acquisition
function, and the procedure applied to identify the optimal
solution). In general, we consider approaches aimed at
solving single-objective constrained optimization problems
of the following type:

minx € Df (X, &)

St g% &) <0, g€ 2 M

where X is a d dimensional input vector, D = {x € RY -
1 < x < u} defines the hyperrectangle limited by the lower
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bound vector 1 and the upper bound vector u, f : D — R
denotes a scalar-valued objective function, and each ¢,
D — R denotes a scalar-valued constraint function (Q in
total). Here, Z* represents the set of positive integers. The
objective and the constraint functions are expensive black-
box functions, that can only be evaluated through (computer
or physical) experiments. Each of these function evaluations
may be affected by noise (denoted by &), for instance,
because of inherent randomness or measurement errors. This
noise may have constant variance across the search space
(referred to as homogeneous noise, which is independent
of the location x), or may differ across input locations
(heterogeneous noise). In the absence of noise, the function
evaluations are deterministic and reflect the true function -
ie., E[f(x, &)] =f(x) and E[cq(x, &)] = cq(x).

The feasible region of such an optimization problem
consists of the area of the search space D where all constraints
are satisfied. Note that this does not imply that evaluations
of the goal and constraint functions outside the feasible
region are by definition useless. On the contrary, in CBO,
the algorithm is often allowed to deliberately sample in the
infeasible region to gain information about the feasible region
borders [17]. In that respect, CBO differs from Safe BO [14]:
the latter does not allow (at least with a given probability)
any function evaluation outside the feasible region, as this
could lead to critical system failures or could destroy the
system [18]. For readers interested in Safe BO, we refer
to [18] and [19] for more details.

We focus on the CBO literature published between
2000 and 2024 in peer-reviewed journals, conference
proceedings, and book chapters. We performed a WoS
(Web of Science) search, using keywords such as ‘“‘con-
strained Bayesian optimization”, ‘“constrained black-box
optimization™, and “‘constrained simulation optimization”.
By applying the ancestry approach [20], we selected a set
of 48 articles (as shown in Table 1) that are relevant for this
review. To the best of our knowledge, our work presents the
first comprehensive survey for single-objective constrained
BO algorithms with a specific focus on algorithmic aspects.
Previous reviews on Bayesian optimization [1], [14], [21],
[22], [23] have focused mainly on unconstrained algorithms;
CBO algorithms were at best discussed on the sidelines,
listing them as “‘exotic” or as “BO extensions”. A very brief
overview of expensive constrained black-box optimization
has been provided in [24]. The study presented in [25]
focuses on the characteristics of the constraints (which are not
necessarily expensive) in simulation optimization problems.
They provide definitions for several constraint classes, yet
without discussing any algorithmic aspect. In the current
work, we focus explicitly on settings with expensive black-
box functions, and pay specific attention to the algorithmic
design.

The remainder of this article is organized as follows.
Section II introduces the topic of constrained Bayesian
optimization, identifying the key algorithmic aspects in
constrained BO algorithms. Section III discusses the main
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findings of this review and the pros and cons of the different
approaches. Finally, Section IV summarizes the findings,
highlighting potential improvements and avenues for further
research.

Il. CONSTRAINED BAYESIAN OPTIMIZATION

Bayesian optimization facilitates efficient exploration and
exploitation of complex black-box objective functions.
It leverages the principles of Bayesian inference [11],
which allows for the incorporation of prior knowledge and
the continuous updating of beliefs based on sequentially
observed data, providing a framework for estimating outputs
of a system of interest [1], [26].

All BO algorithms share some common elements in their
workflow, as visualized in Figure 1. The key aspects in which
constrained BO algorithms differ from their unconstrained
counterparts are highlighted in the figure and form the basis
for a more detailed discussion of the selected papers in
Section III.

A set of initial design points is generated in the first
step. Space-filling designs are to be preferred, such that
information is gathered (ideally) across the entire design
space [23]. Various mathematical techniques and algorithms
are employed to generate space-filling designs, such as Latin
hypercube sampling [27] or Sobol sequences [28].

Next, the BO algorithm enters a loop. Evaluations
(by means of an expensive simulator/physical experiment)
provide information about the unknown function(s) at the
selected design points. Based on this information, the belief
about the functions will be iteratively updated [3], and new
points to be evaluated are selected by means of an acquisition
function. In deterministic settings, the function output is
solely determined by the input parameters, so one evaluation
at each design point suffices. In stochastic settings, the
function’s output is subject to randomness or uncertainty.
Multiple evaluations (referred to as replications) might then
be required to gain a clearer insight into the estimated
outcome (and variability on this outcome) at each point.

The metamodel is a key component in any BO algorithm,
as it enables the algorithm to estimate the function’s
behaviour at unobserved design points, and to guide the
optimization process [3], [14], [29]. Gaussian processes (GP)
(also known as kriging models) are the most popular type
of metamodel in BO algorithms, as they provide a natural
way to quantify the uncertainty of the model outcome at
unobserved design points, which facilitates the efficient
exploration/exploitation of the search space [2], [30], [31].

In the most basic GP formulation (see e.g., [27]), the
underlying function is assumed to be deterministic. Yet, many
real-world settings involve noise [5], [15]. A GP with nugget
effect [14] can be used to handle noisy observations that are
caused by measurement errors or small-scale variability [16],
[32], [33]. In this model, the noise variance is assumed
to be homogeneous across the search space. The nugget
effect is added to the GP model and is reflected in
the resulting predictor uncertainty. When the underlying
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FIGURE 1. General workflow of Bayesian optimization algorithms, highlighting the key steps in which constrained

algorithms differ from their unconstrained counterparts.

function is inherently random, the noise variance is usually
heterogenous. Specific GP approaches exist to approximate
the functions in such settings. Stochastic kriging [35], for
instance, estimates the intrinsic uncertainty (inherent in the
stochastic system) at the different observed points, which
impacts the resulting values for the predictor and predictor
uncertainty at both observed and non-observed points.

In constrained Bayesian optimization, multiple unknown
functions are naturally involved (objective and constraint
functions), so the most natural approach is to fit multi-
ple metamodels, each one corresponding to an individual
unknown function. Yet, some algorithms fit one single
metamodel to an augmented function that encompasses both
objective and constraint functions, as further detailed in
Section III-A.

The acquisition function (also referred to as infill
criterion [35]) is the second key component of any BO
algorithm [1]. It uses the metamodel information (i.e., the
probabilistic belief of the function’s behavior) to quantify
the attractiveness of new solutions to be evaluated by the
expensive simulator [1]. The point where the acquisition
function is maximized then is the point that is sampled next.
In unconstrained BO, the acquisition function is typically
designed to automatically balance exploitation (i.e., sampling
in areas with promising predictor values) and exploration
(sampling in areas with high uncertainty on the objective
function). Popular acquisition functions in unconstrained BO
are Probability of Improvement (PI, [36]) and Expected
Improvement (EI, [27]). For further insights into various
versions of El-based acquisition functions, we refer to [37].
Recently, there has been a growing interest in entropy-related
acquisition functions, which focus on reducing the uncer-
tainty about the location of the optimum [1].

The presence of constraints in CBO leads to changes in
the sampling procedure. Following [33] and [38], we dis-
tinguish two main methods. In the implicit method, a new
acquisition function is defined to incorporate the effect
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of constraints using a merit-type function. In the explicit
method, by contrast, an unconstrained acquisition function is
employed, in each iteration, to evaluate the attractiveness of
the points within the estimated feasible region. Further details
are discussed in Section III-B.

The BO algorithm is terminated when a stopping
condition is met; e.g., when the algorithm has reached a
satisfactory solution [39], or when the available budget has
been depleted [40]. Then, the algorithm needs to identify
the optimal solution(s) in the final step. In the current BO
(and CBO) literature, this last step is often considered to be
trivial. Yet, clear differences in approach can be identified,
depending on three aspects: the information used (either
simulation results or metamodel results), the consideration
set (which may be limited to the evaluated points only or
may consider both evaluated and unobserved solutions), and
the feasibility criterion (the joint probability of feasibility
(PoF), or individual confidence bounds (CB)). We discuss
this further in Section III-C.

Bayesian Optimization is highly effective for optimizing
expensive, black-box functions but faces several computa-
tional challenges. The key issue is the common reliance on
GPs, which scale poorly with data size due to their o)
complexity for training and O(n®) for storage, with n as
the number of observed design points. In CBO, both the
objective and constraint functions are typically modelled
using GPs to account for uncertainty and to limit the number
of expensive evaluations. This adds to the increase in the
computational complexity of unconstrained BO, especially
when the number of constraints grows. The key challenge
in CBO lies in balancing exploration (searching for feasible
regions) and exploitation (optimizing within feasible areas)
since the feasibility threshold is often unknown in the
input space. In general, optimizing acquisition functions is
non-trivial and often requires non-convex and computation-
ally expensive procedures, especially in high-dimensional
spaces.
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In expensive black-box settings, the computational com-
plexity of an optimization algorithm can be evaluated by
means of the worst-case expected running time [41]. The
running time (or optimization time) of an algorithm for a
given function ' can be measured by thenumber of function
evaluations that the algorithm performs until (and including)
the evaluation of an optimal solution for f. For constrained
problems, the running time is largely proportional to the
number of objective and constraint evaluations, as these
evaluation times usually dominate the time required to
perform the remainder of the algorithm’s instructions.

Ill. RESULTS AND DISCUSSION

Table 1 offers an overview of the CBO studies we surveyed,
classified according to the algorithmic aspects discussed
above. In what follows, we discuss our findings, highlighting
the advantages and limitations of the different approaches.
Additionally, Table 1 offers an overview of real-world prob-
lems solved by these algorithms, highlighting the practical
applications of CBO methods, which will be further discussed
at the end of this section.

A. METAMODELS

Considering that the majority of the surveyed references
focus on the deterministic setting, it is no surprise that
the standard Gaussian Process is mostly considered as the
metamodel type. In [15], it is used in a stochastic setting;
the algorithm replicates the function outcome at each design
point and then assumes that the obtained sample mean is
a perfect estimator of the underlying function. This is a
simple, yet naive approach; it is often used to reduce noise
on output estimates in evolutionary approaches (see, e.g.,
[42]), yet in settings with a small budget and an expensive
simulator, the opportunity for replications will likely be very
limited. Indeed, replicating already observed inputs reduces
the simulation budget for observing new points, which will
impact algorithm performance [35]. Certainly in settings with
substantial noise on the observations, the resulting sample
means may then still exhibit a lot of uncertainty.

The few CBO papers that focus on noisy settings account
for homoscedastic noise in the metamodel, using a GP
with a nugget effect to estimate the unknown objective and
constraint functions. However, many real-world problems
are characterized by heteroscedastic noise; some well-known
examples include the waiting time behaviour in the M/M/1
queueing system [43] and the travel time in a freeway
traffic management system [44]. The algorithms proposed
in [45] and [46] are the only exceptions, accounting for het-
eroscedastic noise through a stochastic kriging metamodel.
Their results show significant improvements in the choice of
sampled points compared to the use of a standard GP.

Constrained BO involves more than one unknown func-
tion; the objective function, and at least one constraint
function. To deal with multiple unknown functions, some
algorithms use an augmentation method to consider all func-
tion outputs simultaneously in a single objective function.
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Hence, a single metamodel can be fit to the resulting
transformed function. The main benefit of this approach
is that the closed-form expressions of many acquisition
functions can be used [37]. Yet, the augmented function is
often much more complex than the individual objective and
constraint functions, which makes it more difficult for the
metamodel to approximate [47]. In [48], the particle learning
multivariate Gaussian process (PLMGP) [49] is employed to
model correlated outputs of the simulation model without the
use of an augmentation function.

In most articles, multiple independent metamodels are
fit to the objective function and the individual constraints.
The authors in [48] observed in their experiments that using
multiple independent GPs yields results similar to fitting a
single GP.

B. ACQUISITION FUNCTION

The existence of constraints necessitates adjustments to the
search step and sampling procedure. We distinguish two
main approaches in the CBO literature: implicit methods and
explicit methods.

1) IMPLICIT METHODS

Algorithms in this class avoid explicitly solving a constrained
problem. They define a merit-type acquisition function
that incorporates the effect of constraints in the sampling
policy [38]. Many implicit acquisition functions are modified
versions of unconstrained acquisition functions to which a
feasibility element has been added.

Constrained Expected Improvement (CEI) [15], [32], for
instance, is widely used. It consists of the well-known EI
function [27] for unconstrained optimization, multiplied by a
factor that estimates the joint probability of feasibility (PoF)
of the solution:

CEI(x) = EI(x) x PoF(x) 2)
0

PoF(x) = H|:Pr (cqt0 < 0)} 3)
g=1

The notation Pr(.) reflects the probability that constraint
q is satisfied. When a GP is used to model the constraint

function, Pr (cq(x) < 0) = ¥ _65 ‘(’i’;)) at any point X,
where [i4(x) and 6,4(x) refer to the predictor and the predictor
uncertainty for constraint g at the point x, respectively and
denotes the cumulative normal probability density function.
Note that individual (independent) metamodels are required
to calculate the Probability of Feasibility (PoF). Eq. (3) also
assumes that the constraints are mutually independent [32],
[50], [51]. Recent results in [52] indicate that incorporating
dependence between the constraints does not significantly
improve the performance of the algorithms.

The authors of [53] replace the El criterion in Eq. (2) by the
Probability of Improvement (PI), resulting in the Constrained
Probability of Improvement (CPI). The CPI suffers from the
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TABLE 1. Overview of constrained Bayesian optimization algorithms, classified according to their algorithmic aspects.

Probl Metamodel Acquisiti Identification’ Real d

roblem cquisition eal worl

Reference setting Type Number fjnction Con. Set Info. Feas. application

Sasena et al., 2002 [56] Deterministic Standard GP Multiple Implicit (modified) NM NM NM Hybrid electric vehicle (HEV) design
problem (3d problem with 8 con-
straints)

Gramacy and Lee, 2011 [17] Deterministic Standard GP Multiple Implicit (penalty) Complete Metamodel PoF Health care policy optimization (64
problem with 2 constraints)

Lee et al., 2011 [57] Deterministic Standard GP Multiple Implicit (modified) NM NM NM Hydraulic capture problem (12d
problem with 8 constraints)

Parr et al., 2012 [58] Deterministic Standard GP Multiple Implicit (filter) NM NM NM Satellite boom design problem (84
problem with 1 constraint), Aircraft
wing box design problem (6d prob-
lem with 2 constraints)

Gardner et al., 2014 [50] Deterministic Standard GP Multiple Implicit (modified) NM NM NM Hyperparameter optimization (2 and
3 d problems with 1 constraint)

Gelbart et al., 2014 [32] Noisy GP with nugget Multiple Implicit (modified) NM NM NM Hyperparameter optimization (11d
problem with 1 constraint)

Picheny et al., 2014 [59] Deterministic Standard GP Multiple Implicit (modified) NM NM NM Only synthetic functions

Lindeberg and Lee, 2015 [60] ~ Deterministic Standard GP Multiple Implicit (modified) NM NM NM Hydraulic capture problem (3d prob-
lem with 1 constraints)

Durantin et al., 2016 [61] Deterministic Standard GP Multiple Implicit (filter) NM NM NM Solid propulsion design problem (4d
problem with 3 constraints)

Gramacy et al., 2016 [47] Deterministic Standard GP Multiple Implicit (modified) NM NM NM Hydraulic capture problem (6d prob-
lem with 2 constraints)

Hernandez-Lobato et al., 2016 ~ Noisy GP with nugget Multiple Implicit (modified) Complete Metamodel PoF Hyperparameter optimization (12d

[16] problem with 1 constraint)

Picheny et al., 2016 [62] Deterministic Standard GP Multiple Implicit (penalty) NM NM NM Only synthetic functions

Bagheri et al., 2017 [63] Deterministic Standard GP Multiple Implicit (modified) NM NM NM Aerodynamic shape design problem
(4d problem with 5 constraints)

Lam and Willcox, 2017 [64] Deterministic Standard GP Multiple Implicit (modified) Complete Metamodel PoF Only synthetic functions

Lietal., 2017 [65] Deterministic Standard GP Multiple Explicit Eval. only Simulation Trivial Spring design problem (3d problems

(concurrent) with 4 constraints), Welded beam de-
sign problem (4d problem with 6 con-
straints), and Speed reducer design
problem (7d problem with 11 con-
straints)

Carpio et al., 2018 [53] Deterministic Standard GP Multiple Implicit (modified) Eval. only Simulation Trivial Reactor network design (3d problem
with 4 constraints),

Chung et al., 2018 [66] Deterministic Standard GP Multiple Implicit (penalty) NM NM NM Flange shaft design problem (7d
problem with 1 constraint)

Dong et al., 2018 [67] Deterministic Standard GP Multiple Explicit NM NM NM Spring design problem (3d problem

(concurrent) with 4 constraints), Welded beam de-
sign problem (4d problem with 7 con-
straints), Pressure vessel design prob-
lem (4d problem with 4 constraints),
Speed reducer design problem (7d
problem with 4 constraints), Stepped
cantilever beam design (10d problem
with 11 constraints)

Yuan et al., 2018 [68] Deterministic Standard GP Single Implicit (modified) Eval. only Simulation Trivial Satellite Design Problem (12 d prob-
lem with 7 constraints )

Wang and Ierapetritou, 2018  Noisy Stochastic kriging multiple Implicit (modified) Eval. only Metamodel PoF Synthetic functions only

[46]

Ariafar et al., 2019 [69] Deterministic Standard GP Multiple Implicit (penalty) Eval. only Metamodel PoF Hyperparameter optimization (12d
problem with 1 constraint)

Bartoli et al., 2019 [70] Deterministic Standard GP Multiple Explicit NM NM NM Wing design problem (17d problem

(concurrent) with 1 constraint)

Jiao et al., 2019 [71] Deterministic Standard GP Multiple Implicit (modified) Eval. only Simulation Trivial Only synthetic functions

Letham et al., 2019 [15] Noisy Standard GP Multiple Implicit (modified) Eval. only Metamodel PoF Hyperparameter ~optimization (64
problem with 1 constraint), Server
performance problem (7d problem
with 1 constraint)

Shi et al., 2019 [72] Deterministic Standard GP Multiple Implicit (filter) NM NM NM Satellite design problem (15d prob-
lem with 10 constraints), Internal
combustion engine design problem
(5d problem with 9 constraints), I-
beam design problem (4d problem
with 2 constraints)

Tran et al., 2019 [73] Noisy GP with nugget Multiple Implicit (modified) NM NM NM Slurry pump impeller design problem
(33d problem with 4 constraints)

Akbari and Kazerooni, 2020  Deterministic Standard GP Multiple Implicit (modified) Eval. only Simulation Trivial 10 different engineering design prob-

[74] lems (2 to 10 d problems with 2 to 11
constraints)

Parnianifard, 2020 [75] Deterministic Standard GP Single Implicit (penalty) Eval. only Simulation Trivial Spring design problem (3d problem
with 4 constraints), Welded beam de-
sign problem (4d problem with 7 con-
straints), Pressure vessel design prob-
lem (4d problem with 4 constraints)

Pourmohamad and Lee, 2020  Deterministic PLMGP ¥ Single Implicit (filter) NM NM NM Welded beam design problem (4d

[48] problem with 6 constraints), Hy-
draulic capture problem (64 problem
with 2 constraints)

Priem, 2020 [38] Deterministic Standard GP Multiple Explicit Complete Metamodel CB Hybrid aircraft design (12d problem

(concurrent) with 3 constraints)

Tao et al., 2020 [76] Deterministic Standard GP Multiple Explicit (sequential) ~ Complete Metamodel PoF 8 different engineering design prob-
lems (4 to 7 d problems with 2 to 11
constraints)

Jiang et al., 2021 [77] Deterministic Standard GP Multiple Implicit (filter) Eval. only Simulation Trivial I-beam design (4d problem with 2
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constraints), Pressure vessel design
problem (4d problem with 4 con-
straints), Speed reducer design prob-
lem (7d problem with 11 constraints)

1585



IEEE Access

S. Amini et al.: Constrained Bayesian Optimization: A Review

TABLE 1. (Continued.) Overview of constrained Bayesian optimization algorithms, classified according to their algorithmic aspects.

Saves et al., 2021 [78] Noisy GP with nugget Multiple

Siefman et al., 2021 [79] Noisy GP with nugget Multiple

Zhang et al., 2021 [80] Deterministic Standard GP Multiple

Zhang et al., 2021 [81] Noisy GP with nugget Multiple

Lu and Paulson, 2022 [33] Noisy
Pourmohamad and Lee, 2022  Deterministic
[40]

Zeng et al., 2022 [82]

GP with nugget
Standard GP

Multiple
Multiple
Standard GP

Deterministic Multiple

Amini and VanNieuwenhuyse, ~ Noisy
2023 [45]
Nguyen et al., 2023 [83]

Stochastic Kriging Multiple

Deterministic Standard GP

Xu et al., 2023 [84] Noisy GP with nugget

Bian et al., 2024 [85] Noisy GP with nugget

Pelamatti et al., 2024 [86] Deterministic Multi-output GP Multiple

Ragueneau et al., 2024 [87] Deterministic Standard GP Multiple

Song et al., 2024 [88] Deterministic Standard GP

Tfaily et al., 2024 [89] Deterministic Standard GP Multiple

Ungredda and Branke, 2024  Noisy
[51]

GP with nugget Multiple

Implicit (modified) NM NM NM

Implicit (modified) NM NM NM

Implicit (modified) NM NM NM

Implicit (filter)

Implicit (penalty)
Implicit (penalty) NM NM NM

Explicit (sequential)

Implicit (penalty)

Multiple Explicit
(concurrent)

Multiple Explicit
(concurrent)
Multiple Explicit
(concurrent)
Implicit (modified) Eval. only

Implicit (modified) NM NM NM

Multiple Explicit
(concurrent)

Implicit (modified) Eval. only

Implicit (modified) Eval. only

Aircraft design problem (12d prob-
lem with 2 constraints), and Hybrid
aircraft design problem (12d problem
with 4 constraints)

Nuclear waste tank design problem
(2d problem with 2 constraints)
Portfolio optimization problem (84
problem with 2 constraints), and robot
pushing problem (3d problem with 1
constraint)

Operational amplifier circuit design
problem (10d problem with 2con-
straints), Class-E power amplifier de-
sign problem (12d problem with 1
constraint), Low-Power amplifier cir-
cuit design problem (24d problem
with 6 constraints), and Charge pump
circuit design problem (36d problem
with 5 constraints)

Synthetic functions only

Hydraulic capture problem (6d prob-
lem with 2 constraints)

26 different engineering design prob-
lems (2 to 10 d problems with 2 to 12
constraints)

Synthetic function only

Eval. only Metamodel PoF

Eval. only Metamodel CB

Eval. only Simulation Trivial

Complete Metamodel PoF

NM NM NM Gas transmission compressor design
problem (4d problem with 1 con-
straint), Hyperparameter optimiza-
tion problem (54 problem with 10
constraints), and Quantum chip prob-
lem (11d problem with 2 constraints)
Temperature controller tuning prob-
lem (3d problem with 1 constraint)
Airfoil design problem (10d problem
with 2 constraints)

Compressor rotor design problem
(20d problem with 5 constraints)
Gantry crane design problem (2d
problem with 1 constraint)

Ten-bar frame structure design prob-
lem (15d problem with 1 constraint),
Journal bearing lubrication problem
(6d problem with 1 constraint), and
Water distribution network problem
(17d problem with 1 constraint)
Aircraft design problem (12d prob-
lem with 12 constraints)
Hyperparameter optimization (94
problem with 1 constraint)

NM NM NM
Eval. only Metamodel PoF
Metamodel PoF

Eval. only Metamodel PoF

Simulation Trivial

Metamodel PoF

T NM: not mentioned in the article
¥ PLMGP: Particle Learning Multivariate GP

same shortcomings as PI does, as it fails to quantify the extent
of “expected” improvement in the objective function.

As an alternative, some authors (see e.g., [47], [48], [49],
[54]) have opted to incorporate the impact of constraints
employing approaches that are also used in the mathematical
programming field, such as the penalty method [55]. In its
classical form, this method transforms the constrained
optimization problem in Eq. I into an unconstrained problem,
by revising the objective function as follows:

min P(x, &)

0
where P(x, &) =f(x, &) + Z [My - h(c(x. 80)] @)

q=1

where h(cy(x, &)) is defined as max[0, cy(x, &)], and the
M, values are positive parameters designed to reduce the
attractiveness of solutions that violate the constraints of
the original problem. This ensures that the optimum of
the revised objective function will be found within the
original problem’s feasible region. The resulting augmented
function is then used directly as an acquisition function [69].
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Alternatively, an unconstrained acquisition function such as
EI has been employed [68].

Despite its apparent simplicity, this approach is non-trivial
to implement, as the penalty parameter should be chosen such
that feasibility is achieved without jeopardizing convergence
to the true optimum. This can be a challenging task [1], [40],
[90]. A low penalty value might result in the algorithm con-
verging to a solution that significantly violates constraints,
while a high penalty value could lead to suboptimal solutions
or slow convergence. Selecting the right penalty value often
necessitates a trial-and-error approach [14].

The algorithm proposed in [75] uses the death penalty
method [90]: M = oo. The acquisition function then exhibits
a discontinuity at the estimated constraint boundary. This can
pose challenges for optimization algorithms. For instance,
algorithms that rely on the smoothness properties of the
objective function to guide the search process will have
difficulties converging when the optimum is at (or close to)
the boundary.

To avoid this issue, alternative approaches such as barrier
methods are used in the literature [45], [48]. Barrier methods,
also known as interior-point methods [40], gradually increase
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the penalty as the search approaches the infeasible region.
The barrier function used by [40] reformulates Problem (1)
as:

min B(x, &x)

0
where  B(X, &) =f(X. &) + b D> _log(—cy(x. &))  (5)

q=1

where b is a small positive constant. Each function (objective
and constraints) is estimated by means of an independent
GP, and Eq. (5) is used as the acquisition function. This
barrier function will never sample solutions that are estimated
to be infeasible, as log(—cy(X, &)) is not defined when for
cq(x, &) > 0. It also penalizes points close to the border
of the feasible region, and thus encourages sampling interior
points. When the optimum point is an interior point, this
might suffice. However, when at least one of the constraints
is binding in the optimum, the performance of the algorithm
is likely to suffer: as the acquisition function discourages
sampling near the border, the metamodel estimates in
that region will remain inaccurate. This may lead to the
identification of a suboptimal solution as the final solution.

In problems with binding constraints, an appropriate b
value improves the quality of the final solution returned.
Theoretically, as b approaches zero, the minimum of B(x, &)
converges to the optimal solution of Problem (1). For this
reason, the authors of [40] propose to replace b by the
predictor uncertainty: b(x) = &fz(x). The value of &fz(x)
automatically decreases as more data points in a given area
are sampled: consequently, the barrier penalty b(x) decreases
and we will automatically be able to push closer to the
boundary. This approach avoids the introduction of an abrupt
discontinuity in the goal function of Eq. (5) when c,(x, &x) >
0, and is also used by [45].

Another penalty approach known as the augmented
Lagrangian method is used in [47] and [62]. With this method,
Problem (1) is reformulated as:

min L(x, &)

Q
where  L(X, &) =f(X, &) + D _ Ag - cq(X, &)
g=1
1< 2
+ 527 2 hleax &) 6)
g=1

where h(cg(x, &)) is defined as max[0, cy(x, &)], M is a
positive penalty parameter, and A, ( ¢ = 1,...,Q) are
the Lagrange multipliers. This method does not introduce
discontinuities and does not explicitly prevent infeasible
solutions from being sampled. It iteratively optimizes the
objective function in Eq. (6), updating the value of M and the
Lagrange multipliers, to find a solution that simultaneously
minimizes the objective function and satisfies the constraints.
Interested readers can find more information in [47] and [62].
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Last but not least, the filter method also provides an
implicit way to solve CBO problems. This approach borrows
ideas from the multiobjective optimization literature, and
solves the constrained optimization problem in Equation 1
by trading off the attractiveness of points w.r.t. the objective
function, and w.r.t. feasibility considerations. The aim is
to identify the set of non-dominated solutions: i.e., those
solutions for which no objective can be improved without
worsening the other objective [91]. For example, [61] (and,
analogously, [58]) use the probability of feasibility and the
expected improvement as the two objectives to be maximized
in their algorithm. The nondominated solutions are identified
by means of the NSGA-II algorithm [92], and the point with
the largest CEI value (see Eq. (2)) is then selected as the
next point to evaluate. They point out that this point does
not necessarily correspond to the point determined using
the CEI acquisition function: the CEI function is severely
multimodal, so treating the problem as multi-objective yields
better solutions.

The authors of [61] also propose a three-objective
approach, where the predictor uncertainty of the constraints
is considered as the third objective to be minimized. The final
point to be evaluated is again the non-dominated solution
with the highest CEI value. The three-objective approach
results in a lower optimality gap, yet this comes at the cost
of more function calls. This is likely caused by the fact
that the predictor uncertainty of the constraints (i.e., the
third objective) encourages more exploration, also in areas
that are not necessarily relevant from the perspective of
feasibility or EI value. In constrained Bayesian optimization,
the focus should primarily be on improving the accuracy
of the constraint metamodels in areas where the objective
function shows promising performance [93].

2) EXPLICIT METHODS

Algorithms using implicit methods solve an unconstrained
problem, and can thus benefit from the progress made in the
field of unconstrained optimization. Yet, the computational
cost of these methods prohibits their use in large-scale
optimization problems [38]. Explicit methods also use
acquisition functions from the unconstrained BO literature
to decide where to sample next. The difference is that,
at each iteration, the feasible region is estimated based on the
available data, and the acquisition function selects the next
solution to sample within that region.

The most common approach is to estimate the feasible
region using the GP predictions for the constraints [56].
However, this may lead to issues in the early iterations of
the algorithm, when the metamodel is not yet sufficiently
accurate [38]. Using confidence bounds helps to overcome
this issue: for example, in [84], the individual lower
confidence bounds of the constraints are used to identify the
feasible region at each iteration. Then the solution with the
minimum lower bound of the objective function is selected
to query. The proposed algorithm in [38] takes a similar
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approach to declare the feasible region, but then uses the
unconstrained acquisition function from [70] to select the
point to evaluate.

The few papers using an explicit method mostly address the
feasible region identification and the optimization problem by
concurrently updating the information about the feasibility
of the constraints and the behaviour of the goal function in
each iteration. The only exceptions are the algorithms by
[76] and [82]: these algorithms use a sequential approach,
in which a first acquisition function is specifically used
to identify the feasible region, while a second acquisition
function is then used to select the next point within
this estimated feasible region. In [76], for instance, the
feasible region is identified using the predictor uncertainty
of the constraints’ metamodels as an acquisition function.
Only when the desired accuracy level is reached for these
metamodels, they locate the estimated optimum solution with
a different acquisition function. Such a sequential approach
avoids the challenge of simultaneously handling feasibility
detection and optimization, yet it comes at a cost: the scarce
computation budget may not be spent in the most data-
efficient way, as samples in the first phase are allocated
without considering the objective function. Here, the analyst
is mainly interested in accurate estimations of the feasible
region’s borders in areas where the objective function has
promising values. Moreover, further information on the
constraint values may be gathered during the optimization
phase, yet current algorithms do not use this information to
modify their beliefs about the feasible region.

C. IDENTIFICATION OF THE BEST SOLUTION

The identification step has not received much attention so far
in the CBO literature. In many papers, the authors do not
even mention explicitly how they identify the final optimal
solution (“NM” in Table 1).

When studying a deterministic problem setting, and
limiting the final consideration set to the evaluated solutions,
identifying the best solutions will be trivial. For the other
articles, we distinguished between three aspects: the ““infor-
mation type”, the “consideration set”, and the ‘“‘feasibility
criterion” (see Figure 2).

The information used to identify the optimum can either
consist of simulation results or metamodel results. If sim-
ulation results are used, only the evaluated points can be
considered in the identification step. In this survey, all articles
using this approach studied deterministic settings. Conse-
quently, there is no specific feasibility criterion required in
the identification step, as the simulated values directly show
whether a point is feasible.

When metamodel information is used, the consideration
set is either limited to the evaluated points (e.g., [53]
or [32]), or to the entire solution space (both evaluated
and unobserved solutions). Each has its pros and cons.
As there is no reason to believe that the best point will by
definition be part of the evaluated set, and the metamodel
information yields predictions (and prediction uncertainties)
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for the entire solution space, it may seem straightforward
to not only consider evaluated points. On the other hand,
relying on metamodel estimates at unobserved points may be
overconfident, given that the model’s belief of the function
behavior will never coincide perfectly with the true function.
Regardless of which consideration set is chosen, the criterion
for checking feasibility is either the joint probability of
feasibility (PoF, Equation 3), or a check on the individual
confidence bounds of the constraint values. In the first case,
all solutions that meet a user-defined minimum threshold for
PoF are classified as feasible solutions. Only two algorithms,
[33] and [38], use the individual confidence bounds of the
constraints: a solution is then considered feasible when all
individual upper confidence bounds (CB) are negative (for
constraints of the form c4(x, £&) < 0, as shown in Problem 1).

D. DISCUSSION OF REAL-WORLD APPLICATIONS
Constrained Bayesian Optimization (CBO) has been applied
to a variety of real-world applications, primarily in the
domain of engineering design. These problems, including
structural design [88], mechanical optimization [38], and cir-
cuit design [81], need to be optimized under constraints using
expensive Computational Fluid Dynamics (CFD) simulation
models, making CBO an ideal approach. While a significant
portion of the research addresses these engineering problems,
there is also growing interest in hyperparameter optimization
in machine learning [51], an area where CBO methods
have been successfully applied to optimize models under
performance constraints.

Some attention has also been given to healthcare opti-
mization problems [17], [94]; although this area remains
relatively underexplored, it shows promise for future CBO
applications. Surprisingly, operations management and logis-
tics applications, areas that inherently deal with constrained
optimization, are largely absent in the literature. This is likely
due to the fact that many problem settings in these fields
are combinatorial and high-dimensional, which presents
significant challenges for CBO algorithms.

Most of the real-world applications reviewed involve
less than 20 decision variables, reflecting the current
limitations of CBO methods in handling high-dimensional
problems. Exceptions are [73] and [81], who have considered
high-dimensional problems (up to 35 decision variables).
The curse of dimensionality is a well-known challenge in
optimization [95], [96], with high-dimensional Bayesian
optimization as a very active area in current BO research [96],
[97].

Real-world problems often come with characteristics that
inspire researchers to develop specific novel approaches in
their algorithms. An example is the decoupled evaluation
of objective and constraint functions [16], [83], [86], which
allows for more flexible optimization processes. In drug
discovery [98], for instance, researchers aim to develop
compounds that maximize the effectiveness of the drug (the
objective function) while minimizing toxicity (a constraint).
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Identification of the best solution in the constrained Bayesian optimization algorithms
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FIGURE 2. Identification methods in the CBO literature.

The decoupled setting allows these evaluations to be con-
ducted independently. A compound’s effectiveness can be
tested first, and if it shows promise, toxicity tests can be
run afterwards. This prevents unnecessary toxicity testing on
ineffective compounds, saving time and resources, and thus
improving efficiency in the drug development process.

Another example is the handling of mixed search spaces,
which arise when the problem setting involves not only
continuous but also discrete numerical and/or categorical
variables. This commonly occurs in real-world settings:
e.g., when designing an aircraft [78], continuous variables
(such as wing span) are combined with categorical variables
(such as engine type). Traditional GP-based BO methods are
not naturally suited for this type of problems. The authors
in [78] used a simple continuous relaxation approach, treating
categorical variables as continuous during the optimization
process.

A final example is the use of batch sampling in [73].
Batch sampling uses an acquisition function to select
multiple points which are then evaluated in parallel. This
may be more cost-effective and time-efficient than running
sequential experiments, in particular in real-world problem
settings that require substantial setup costs in order to
perform evaluations (e.g., preparing equipment for physical
experiments, initializing simulations, preparing an expensive
testing environment, etc.). In industries like pharmaceutical
testing or manufacturing, these setups are typically resource-
intensive [99]. Batch sampling then reduces the number of
setups required compared to single-experiment evaluations,
leading to time and cost savings.

IV. CONCLUSION AND FURTHER RESEARCH DIRECTIONS
This paper surveys the current literature on single-objective
constrained Bayesian optimization (CBO), focusing explic-
itly on three key algorithmic aspects: (7) the metamodels used,
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(i) the acquisition function, and (iii) the identification pro-
cedure. The existing approaches are discussed, highlighting
their advantages and drawbacks.

While fitting multiple surrogates is widely preferred by
different authors, the potential benefits of parallel computa-
tion [100], [101] remain underexplored. Parallel computation
in Bayesian optimization can alleviate the computational
burden imposed by matrix inversion, particularly as the
number of points increases. By distributing matrix inversion
computations across multiple processing units (see e.g.,
[102]), parallelization reduces the time required for optimiza-
tion.

So far, Gaussian processes have been the preferred meta-
model in CBO algorithms. Yet, alternatives such as random
forests [103] and neural networks [104] have been considered
in the broader Bayesian optimization literature to enhance the
performance of Bayesian algorithms. These alternatives may
offer capabilities that are better aligned with problem-specific
properties (e.g., mixed search space, scalability). It seems
likely that these alternatives can take up a similar role also
in CBO. In the broader metamodel-based optimization litera-
ture, radial basis functions (RBF) have also been used to solve
constrained expensive black-box problems [105]. While
Gaussian Processes are more advanced and provide better
uncertainty quantification, certain features of radial basis
functions, such as their ability to handle high-dimensional
problems efficiently, as demonstrated in [106], can still
be highly valuable. This opens the potential for a hybrid
framework where the full capabilities of both GP and RBF
are leveraged. Such a framework could benefit from the
uncertainty modelling and interpretability of GP while uti-
lizing the scalability and computational efficiency of RBF in
high-dimensional settings. Recently, Tree-structured Parzen
Estimators (TPE) have demonstrated strong performance in
handling mixed search spaces, particularly in constrained
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optimization problems ( [107]). The authors in [108] have
already explored a hybrid framework combining GP and
TPE, leveraging the strengths of both methods in solving
(unconstrained)hyperparameter optimization problems.

Surprisingly, the large majority of research on CBO
focuses on deterministic approaches (35 out of 48 surveyed
papers in this review). Real-world problems are often
stochastic though, and in constrained settings, the presence
of noise introduces additional challenges for the optimization
process. In the few papers that account for noise, the main
effort has been spent on modifying the search and acquisition
functions, yet the identification phase has been overlooked.
Errors in the estimation of the PoF and/or the estimation
of the goal value may prevent the algorithm from correctly
identifying the true optimum in noisy settings, even when this
optimal solution has been sampled during the search [45].
This highlights the need to develop methods that explicitly
account for uncertainties in the identification phase.

Furthermore, the data efficiency of CBO might be
enhanced further by implementing techniques that are cur-
rently gaining traction in the broader optimization field, such
as multifidelity optimization or transfer learning. In multi-
fidelity optimization [109], [110], both high- and low-fidelity
evaluations can be made of the system at hand, with
low-fidelity evaluations typically being less accurate but
also cheaper to evaluate. Data can also be combined from
disparate sources in view of improving the efficiency of
the optimization; this is referred to as multi-information
learning [111]. Transfer learning, on the other hand, is a
machine learning technique that uses knowledge gained from
solving one task to improve performance on another, yet
similar task. It is especially useful when there is limited data
for the target task but abundant data for a related source
task. For instance, if a similar optimization problem has been
tackled before, the metamodel can be initialized or informed
using data from that previous task [112], reducing the number
of function evaluations needed to reach an optimal solution.
While transfer learning has been explored in unconstrained
Bayesian optimization settings, extending it to CBO could
be a valuable research direction to reduce the computational
effort needed to handle complex constraints.

The papers reviewed in this work primarily focus on
single-fidelity settings. Multifidelity optimization presents a
promising direction for improving constrained Bayesian opti-
mization (CBO). The authors of [109] applied multi-fidelity
techniques to kriging models used in variable fidelity opti-
mization, offering a first attempt at reducing computational
costs by integrating low- and high-fidelity models. A more
recent paper [110], compares a mono-fidelity Bayesian
optimization method with its multi-fidelity counterpart on
a drone design optimization problem. While multi-fidelity
typically refers to a hierarchical relationship among models,
where higher fidelity is always more accurate but also more
expensive to evaluate, [111] consider a multi-information
setting where various sources of information may not have
a clear fidelity hierarchy. In this setting, the focus is on
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fusing data from disparate sources, irrespective of whether
there is a fidelity relationship between them, and efficiently
using this combined information for optimization. While
these approaches showed potential, further advancements
could improve the handling of complex constraints and
the balance between model accuracy and computational
efficiency. Future research could refine these techniques,
particularly in optimizing the use of fidelity models to
enhance convergence speed and data efficiency in CBO.

As another potential research direction, the application
of transfer learning [113] in constrained Bayesian opti-
mization (CBO) offers a promising avenue for improving
data efficiency by leveraging prior knowledge from related
optimization tasks. Transfer learning is a machine learning
technique where knowledge gained from solving one task is
transferred and reused to improve performance on a different
but similar task. It is especially useful when there is limited
data for the target task but abundant data for a related source
task. For instance, if a similar optimization problem has been
tackled before, the metamodel can be initialized or informed
using data from that previous task [112], reducing the number
of function evaluations needed to reach an optimal solution.
While transfer learning has been explored in unconstrained
Bayesian optimization settings, extending it to CBO could
be a valuable research direction to reduce the computational
effort needed to handle complex constraints.

Finally, in the current CBO literature, the only focus is on
finding a solution that optimizes the expected performance
of the objective function of interest, given the constraint
requirements. Optimizing the expected performance of the
system is typically relevant for risk-neutral decision-makers.
In practice, decision-makers tend to be risk-averse and are
thus primarily willing to give in on the expected result in
return for a decrease in the risk/uncertainty. This research
field is known as robust Bayesian optimization [114], [115].
In the unconstrained BO literature, two recent papers have
focused on optimizing a risk measure, i.e., the value-at-
risk [115] or the conditional value-at-risk [114]. Developing
similar methods for constrained settings thus remains an
interesting and highly relevant research direction.
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