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Abstract: Physical activity (PA) is essential for healthy aging, but its accurate assessment 
in older adults remains challenging due to the limitations and biases of traditional clinical 
assessment. Mobile technologies and wearable sensors offer a more ecological, less biased 
alternative for evaluating PA in this population. This study aimed to optimize digital 
phenotyping strategies for assessing PA patterns in older adults, by integrating ecological 
momentary assessment (EMA) and continuous wearable sensor data collection. Over two 
weeks, 108 community-dwelling older adults provided real-time EMA responses while 
their PA was continuously monitored using Garmin Vivo 5 sensors. The combined 
approach proved feasible, with 67.2% adherence to EMA prompts, consistent across time 
points (morning: 68.1%; evening: 65.4%). PA predominantly occurred at low (51.4%) and 
moderate (46.2%) intensities, with midday activity peaks. Motivation and self-efficacy 
were significantly associated with low-intensity PA (R = 0.20 and 0.14 respectively), 
particularly in the morning. However, discrepancies between objective step counts and 
self-reported PA measures, which showed no correlation (R = −0.026, p = 0.65), highlight 
the complementary value of subjective and objective data sources. These findings support 
integrating EMA, wearable sensors, and temporal frameworks to enhance PA assessment, 
offering precise insights for personalized, time-sensitive interventions to promote PA. 
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1. Introduction 
Physical activity (PA) is widely recognized as a cornerstone of public health, playing 

a pivotal role in reducing the burden of non-communicable diseases and enhancing well-
being across the lifespan [1,2]. However, the accurate and multidimensional assessment 
of PA, particularly among older adults, remains a pressing challenge that limits the 
effectiveness of intervention strategies and public health initiatives. Accurate 
measurement is essential for understanding its determinants, monitoring trends, and 
developing effective interventions [3,4]. Historically, PA research relied heavily on 
retrospective self-report questionnaires, which, despite offering large-scale population 
insights, were prone to recall bias, inaccuracies, and a limited capacity to capture nuanced, 
time-sensitive behaviors [5–7]. These methodological limitations restricted the field’s 
ability to explore the dynamic and contextual nature of PA and its relationship with 
behavioral and physiological determinants [8,9]. 

The introduction of objective tools such as pedometers, accelerometers, and wearable 
devices marked a significant turning point in PA research [10]. These tools offer reliable, 
precise, and reproducible data on the frequency, intensity, and duration of PA, facilitating 
greater standardization and reproducibility [11–13]. However, these tools often lack the 
ability to capture contextual and psychosocial factors, creating a gap between the collected 
data and actionable insights required for effective interventions [14–16]. To bridge this 
gap, digital phenotyping that leverages continuous, real-world data collection through 
personal devices such as smartphones and wearables has emerged as a transformative 
methodology [17–22]. By capturing multidimensional data, digital phenotyping enables 
deeper exploration of PA behaviors, physiological signals, and contextual influences, 
providing insights into temporal and situational patterns that traditional tools often miss 
[19]. 

The ability to integrate diverse metrics, such as heart rate, steps, and environmental 
conditions, has expanded the scope of PA research, enabling a more holistic 
understanding of its biopsychosocial determinants [23]. Despite these advancements, 
there remains limited understanding of how these data streams can be optimized and 
tailored to specific populations, such as older adults, who face unique challenges related 
to mobility, health conditions, and motivational barriers [24–26]. 

Moreover, despite these innovations, the field continues to face critical 
methodological gaps. Many studies still rely on cross-sectional designs emphasizing 
between-subject variability, offering valuable but incomplete insights [27]. For instance, 
such analyses reveal population-level associations such as the relationship between 
higher PA levels and better cardiovascular profiles, yet they fail to capture the intra-
individual factors driving PA engagement or avoidance. This limitation is particularly 
pronounced when examining behaviors that fluctuate across time and contexts within the 
same individual [28]. Moreover, the ecological fallacy—where between-subject findings 
are wrongly generalized to within-subject dynamics—underscores the need for more 
sophisticated analytical approaches [4,29,30]. These discrepancies highlight the necessity 
of capturing within-subject variations to develop actionable insights [31,32]. To address 
these limitations, intensive longitudinal data collection through ecological momentary 
assessment (EMA) offers a promising approach [33,34]. EMA facilitates high-frequency, 
real-time data collection of behaviors, emotions, and contexts in naturalistic settings, 
capturing time-dependent variations that static methods cannot [35,36]. This 
methodology provides a granular view of PA behavior, enabling researchers to 
understand why individuals engage in or avoid PA at specific times or in particular 
circumstances. Such within-subject insights are invaluable for designing interventions 
that address individual-level barriers, such as adapting routines, providing motivational 
feedback, or modifying environmental factors. By focusing on dynamic behavioral 
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patterns, EMA extends beyond static population averages to reveal the real-world drivers 
of PA [37–40]. 

However, questions remain regarding optimizing these methodologies for specific 
populations, particularly older adults. Age-related changes in behavior, physiology, and 
adoption of technology present unique challenges that require tailored solutions [41–43]. 
This study addresses this critical gap by examining how digital phenotyping 
methodologies, specifically the integration of EMA and wearable sensor data, can provide 
nuanced, within-subject insights into PA patterns among older adults. The overarching 
aim is to determine how these methodologies can balance comprehensive data collection 
with participant feasibility while generating actionable insights into PA behaviors. To this 
end, this study employed a novel combination of real-time EMA and wearable data 
collection, with the following aims: 

• Assessing the interplay between PA patterns and psychosocial determinants across 
different times of the day and intensities; 

• Evaluating the feasibility of these methodologies and participant adherence within a 
representative sample of older adults; 

• Exploring optimal durations of data collection to ensure participant engagement 
while capturing meaningful behavioral trends. 

Focusing on these objectives, this research aims to advance the methodological 
toolkit available for PA research, providing a foundation for personalized interventions 
and scalable public health solutions. Ultimately, the findings contribute to bridging the 
gap between technological advancements and practical applications in promoting PA 
among older adults, contributing to healthier aging and improved quality of life. 

2. Materials and Methods 
2.1. Study Setting and Design 

This study employed a two-week prospective observational design that integrated 
both supervised and unsupervised methods to provide comprehensive, multidimensional 
insights into PA behaviors and their determinants, as illustrated in Figure 1. The 
supervised components included self-reported assessments, which collect demographic 
and contextual information, while unsupervised data collection leveraged EMA and 
continuous real-world monitoring through a wearable device. The two-week period was 
chosen based on existing literature on EMA [33,44,45] and PA monitoring [46–49] with 
wearables, which indicates that at least four to seven days are required to capture 
variability in daily behaviors, including both weekdays and weekends. To enhance data 
reliability and ensure all potential fluctuations due to contextual and environmental 
factors were accounted for, we extended the observation period to two weeks. This 
approach provided a more comprehensive view of participants’ PA patterns while 
maintaining feasibility and minimizing participant burden. The study was conducted in 
a naturalistic setting to ensure ecological validity, allowing participants to engage in their 
daily routines without interference. 

This study was registered at Clinical Trials.gov (NCT06094374) on 17 October 2023 
and approved by the Ethical Committee of Hasselt University (B1152023000011). The full 
study protocol detailing recruitment strategies, data collection procedures, and analytical 
methods has been presented separately [50]. Informed consent was obtained from all 
subjects before participation (Appendix A.1). 
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Figure 1. Design of the two-week prospective observational study. 

2.2. Participants 

This study recruited older adults aged 65 and older, targeting community-dwelling 
individuals living independently at home or in serviced apartments. Participants were 
required to be competent to provide informed consent, able to actively participate in the 
study, and free from severe illnesses that could impair mobility, functional capacity, or 
cognitive ability to the extent that they could not comprehend or follow instructions. The 
inclusion and exclusion criteria (detailed in Appendix A.2) ensured that participants were 
native Dutch speakers without current neurological, cardiovascular, respiratory, severe 
metabolic, or cognitive disorders. Importantly, digital literacy was not a criterion for ex-
clusion, allowing for a diverse range of participants with varying levels of digital compe-
tence. Recruitment occurred between February and September 2024 through a combina-
tion of online and offline strategies. These included social media outreach, newspaper ad-
vertisements, presentations at senior citizen organizations, and collaboration with local 
community services. Because of the lack of accessible prior studies that could provide 
foundational information, sample size calculation was impossible. Therefore, a conven-
ient sample of at least 100 healthy older adults was selected for this trial [19]. We per-
formed interim analyses at regular milestones, such as after recruiting 40, 80, 100 partici-
pants, and so on. During these interim analyses, if we had determined that the data had 
reached a point of saturation—indicating that additional participants were unlikely to 
produce significantly different findings—the sample size would have been finalized. A 
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comprehensive CONSORT flowchart (Appendix B.2) outlines the recruitment process and 
participant flow. 

2.3. Data Collection 

2.3.1. Baseline Assessment 

Self-reported demographic and socio-economic data including age, sex, marital sta-
tus, education level, living arrangements, and previous incidence of falls were collected 
[51,52]. PA was assessed with the International Physical Activity Questionnaire—short 
form (IPAQ) [53–59]. Digital readiness of the participants was measured using the Digital 
Health Readiness Questionnaire (DHRQ) [60]. These data were collected via the online 
survey platform Qualtrics [61]. 

2.3.2. Physical Activity Monitoring 

Throughout the two-week trial, participants’ daily activities were continuously mon-
itored using the Garmin Vivosmart 5® activity tracker (Garmin International, Olathe, Ks), 
which provided 24/7 data collection. This wearable device recorded a range of parameters, 
including stress levels, physical activity (PA), step count, calorie expenditure, heart rate, 
floors climbed, physical activity intensity, cardiometabolic metrics, body battery, and 
sleep patterns. Walking cadence served as a reliable indicator of PA intensity. Moderate 
intensity was characterized by activity exceeding 3 metabolic equivalents (METs), equat-
ing to a cadence of at least 100 steps per minute. Light intensity PA fell within the range 
of 1.6 to 2.9 METs, while movements below 20 steps per minute were classified as inci-
dental and categorized as sedentary behavior. The findings were reported in terms of 
minutes per week, aligning with the World Health Organization’s recommendations on 
the minimum required levels of physical activity [62]. The Garmin wearable enabled non-
intrusive, real-time tracking, offering a comprehensive view of participants’ routines and 
health-related behaviors over the trial period. The Garmin Vivosmart 5® proved to be a 
valid measurement tool for older adults [63–65]. 

2.3.3. EMA 

Participants engaged via the SEMA3 smartphone application [66] (Melbourne eRe-
search Group, Melbourne, Australia) receiving four randomized prompts daily between 
8:00 AM and 11:00 PM. Prompts were evenly distributed across four-time intervals: 8:00–
11:00, 12:00–15:00, 15:00–18:00, and 18:00–23:00. Participants were instructed to respond 
immediately to each prompt (completion time: 2–3 min with an expiration time of 30 min) 
unless engaged in incompatible activities, such as driving. Non-responses triggered up to 
three reminders at 5-min intervals, after which access to the EMA questionnaire was sus-
pended until the next scheduled prompt [66]. 

Participants were asked to assess five key domains: physical well-being, mental well-
being, motivation, efficacy, and context, on a 7-point Likert scale. These assessments in-
cluded self-rated health, physical complaints such as muscle stiffness, pain, dizziness, 
shortness of breath, and fatigue, as well as contextual factors and overall quality of life 
(QoL). To minimize response bias and enhance data reliability, the questionnaire items 
were presented in a randomized order [31]. 

2.3.4. Follow-Up Duration Analysis 

To determine the optimal duration for data collection, data from varying periods 
(e.g., three, seven, ten, and 14 days) were compared. This analysis aimed to identify the 
minimum duration necessary to capture meaningful behavioral trends without compro-
mising participant engagement. Daily PA patterns were analyzed by intensity levels (low, 



Sensors 2025, 25, 858 6 of 34 
 

 

moderate, vigorous) for each timeframe to assess whether shorter durations adequately 
reflected overall activity levels. Similarly, EMA adherence rates were evaluated across the 
different timeframes to understand the impact of follow-up duration on participant re-
sponsiveness and engagement. Finally, the correlation between subjective measures (e.g., 
motivation and self-efficacy from EMA) and objective PA metrics (e.g., step counts) was 
compared to determine whether meaningful relationships could be identified in shorter 
observation windows. 

2.4. Data Processing 

To analyze activity patterns with greater granularity, the Garmin data were divided 
into five distinct time periods throughout the day: night, morning, noon, afternoon, and 
evening, the latter four corresponding to the time period for EMA evaluation. This cate-
gorization enabled detailed temporal analysis of PA levels throughout the day, including 
integration with EMA data. PA was categorized into three intensity levels for these differ-
ent periods: low, moderate, and vigorous. These classifications were based on the device’s 
built-in algorithms for activity recognition, with particular attention to walking activities. 
Data completeness was assessed by examining the number of recorded measurements per 
participant daily. Only days with complete 24-h recordings were included in the analysis. 

Concerning the EMA, data processing involved several stages to ensure the dataset 
was prepared for accurate and meaningful statistical analysis. Our methodology, imple-
mented in R, focused on transforming and categorizing the data, filtering out irrelevant 
information, and aggregating key metrics. The timestamp data were parsed to extract date 
and time information. Days were categorized as either weekday or weekend. The time of 
day was classified into four distinct periods according to when the data were collected. 
Aggregated scores were calculated for physical health (6 items), mental health (8 items), 
motivation (4 items), efficacy (2 items), and context (2 items) by summing individual item 
responses. To simplify the comparison between the categories, the scores were adjusted 
according to the number of questions asked in each dimension for each category. These 
composite scores facilitated a holistic analysis of each construct. Response adherence was 
calculated as the percentage of completed assessments relative to the total number of 
prompted assessments. 

Finally, we merged the Garmin-derived step-count data with the EMA responses us-
ing participant ID, day number, and time category as matching variables to examine the 
relationship between PA patterns and EMA responses. The integrated dataset included 
step counts categorized by PA intensity (low, moderate, vigorous) and five EMA dimen-
sions: physical health, mental health, motivation, self-efficacy, and context. 

2.5. Statistical Analysis 

Multiple analytical and visualization techniques were employed to examine the rela-
tionships between PA and EMA responses. 

To visualize the period of most intensive activity within the day, we plotted the ag-
gregated number of steps per intensity on a clock diagram. We also recorded the most 
active period of the day, defined as the 15 min with the highest number of steps, for the 
different intensities. We plotted this to assess the stability of this parameter over time. 

For the EMA, temporal analysis of adherence patterns was conducted to examine 
potential trends over the study period and across different times of day. Linear mixed-
effects models were employed to analyze the temporal patterns in the EMA responses, 
with participant and assessment type treated as random effects. The models accounted for 
both the nested structure of the data (multiple observations per participant) and the po-
tential interaction between the time of day and study progression (days). Model selection 
was performed using likelihood ratio tests and AIC comparisons. 
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Correlation analyses were performed using Pearson’s method with false discovery 
rate (FDR) correction for multiple comparisons. The relationships between variables were 
visualized using correlation matrices and heatmaps, with data standardization applied to 
account for different measurement scales. The analysis was stratified by PA intensity level 
to examine whether the relationships between step counts and EMA measures varied 
across different activity intensities. Additionally, temporal patterns were investigated by 
analyzing these relationships across different times of day, controlling for potential time-
of-day effects on both PA and psychological states. 

For multivariate visualization, a hierarchical clustered heatmap was generated using 
the standardized scores for six variables (steps and five EMA dimensions), with data split 
by PA intensity level. This integrated approach ensured a thorough and insightful analy-
sis of the combined Garmin and EMA data, facilitating a deeper understanding of the 
relationships between PA and mental health metrics. 

Finally, to determine the optimal duration of the follow-up, we first analyzed the 
different outcomes (e.g., EMA, Garmin, correlation) during the full follow-up (14 days). 
Using a random sliding window, we segmented the 14-day dataset into overlapping sub-
sets of varying lengths (3, 7, 10, 12, and 14 days). For each window length, subsets were 
generated by randomly selecting starting points within the follow-up period, ensuring 
diverse coverage of the data. The median values of the outcomes within these windows 
were then computed to provide a representative summary for each duration. This method 
reduced biases that might have arisen from analyzing only fixed or pre-determined inter-
vals and allowed robust comparison across different follow-up durations. The Kruskal–
Wallis test was subsequently applied to evaluate differences in the median values across 
these durations, offering a non-parametric assessment of the optimal follow-up period. 

All statistical analyses were conducted using R packages, including lme4 for mixed-
effects modeling and ggplot2 for visualization. Multiple comparison corrections were ap-
plied using the FDR method where appropriate. 

3. Results 
3.1. Baseline Assessment: Participants’ Demographic Characteristics 

The study included 108 participants with a median age of 69, ranging from 65 to 87. 
Among the participants, 60 were female (55.6%), and the median BMI was 26.3 kg/m2, 
with values ranging from 19 to 42. Regarding education, nearly half of the participants 
had completed high school (48.2%, n = 52), with others reporting secondary education 
(25.9%, n = 28), university degrees (21.3%, n = 23), primary education (2.8%, n = 3), or PhDs 
(1.8%, n = 2). 

PA levels assessed through the IPAQ-SF revealed a median total MET-min/week of 
5154 (IQR = 7331), with 77 participants (71.3%) reporting high activity levels, 30 (28%) 
reporting moderate activity, and only 1 (0.7%) classified as having low activity. Digital 
literacy scores were relatively high, with a mean total score of 60 ± 8 out of 75. The com-
plete characteristics of the participants are presented in Table 1. 

Table 1. Sociodemographic characteristics of the participants. 

Variable Value (n = 108) 
Demographics 

Age (years) 69 [65–87] 
Sex (female) 60 (55.6) 
BMI (kg/m2) 26.3 (19–42) 

Marital status  

Single 8 (7.4) 
Living together 9 (8.4) 
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Married 78 (72.2) 
Divorced 8 (7.4) 
Widow 5 (4.6) 

Educational level  

Primary school 3 (2.8) 
Secondary education 28 (25.9) 

High school 52 (48.2) 
University 23 (21.3) 

PhD 2 (1.8) 
Living situation  

Living with partner 85 (78.7) 
Living alone 20 (18.6) 

Living with children 1 (0.9) 
Other 2 (1.8) 

Fall incidence (yes) 18 (16.7) 
Participant-reported outcomes 

IPAQ-SF (total METmin/week) 5154 [99–64,848] 
Low 1 (0.7) 

Moderate 30 (28) 
  

High 77 (71.3) 
Digital literacy, total score (75) 60 ± 8 

Usage (20) 16 [10–20] 
Skills (25) 22 [12–25] 

Literacy (15) 12 [7–15] 
Health literacy (15) 10 [3–15] 

Learnability (25) 19 [5–25] 
Data are expressed as mean ± SD, median [min–max], or n (percentages). Abbreviation: IPAQ-SF: 
International Physical Activity Questionnaire—short form. 

3.2. Physical Activity 

3.2.1. Relationship Between Self-Reported Outcome Measures of PA and Objective 
Measures 

As presented in Figure 2, our analysis revealed a total absence of correlation between 
the total number of steps per day and the self-reported MET values (R = −0.026, p = 0.65). 
The same conclusion was found when performing subgroup analysis at the different in-
tensity levels: low (R = 0.07, p = 0.45, moderate (R = −0.10, p = 0.32), and vigorous (R = −0.09, 
p = 0.36). 

 

Figure 2. Relationship between self-reported PA level (MET using the IPAQ Short Version) and 
quantified PA (number of steps per day at various intensity levels). The black line represents the 
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regression trend line, indicating the general relationship between the two variables. The gray 
shaded area around the black line represents the 95% confidence interval (CI), showing with 95% 
confidence the range within which the true regression line is likely to lie. The points are color-coded 
based on PA intensity levels: low (green), moderate (orange), and vigorous (red). 

3.2.2. Temporal Patterns of Physical Activity: Analysis of Daily Patterns and Weekly 
Variations in Step Distribution and Intensity Level 

We analyzed the total number of steps per day according to the three intensity levels. 
As shown in Figure 3, significant differences were observed in step distribution across 
intensity levels (p < 0.001, chi2 test). The majority of steps were performed at low (51.4%) 
and moderate (46.2%) intensity levels, with only 2.4% of steps classified as vigorous in-
tensity. Notably, this distribution was not influenced by the day of the week (p = 0.89, chi2 
test). As presented in Figure 3, the median number of steps was lower than the 10000 steps 
recommended by the WHO . In order to analyze this in more detail, we computed the 
number of participants that reached this threshold every day. For the 1512 days analyzed, 
only 454 (30%) reached this threshold. Figure 4 shows the repartition of the patients ac-
cording to the number of days they reached the threshold. Notably, none of the partici-
pants reached the recommended number of steps per day during the entire follow-up pe-
riod, and 15 (14%) participants did not reach it on any given day. 

 

Figure 3. Aggregated average number of steps according to time of day. The dashed horizontal 
black line indicates WHO’s recommendation. 
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Figure 4. Distribution of the participants according to the number of days where the WHO’s recom-
mendations of 10,000 steps were reached. 

When examining the overall number of steps per day, we found a statistically signif-
icant difference (p < 0.001) between weekdays and weekends, as illustrated in Figure 5. 
However, when steps were compared individually across the seven days of the week, no 
statistically significant difference was identified (p = 0.47, Kruskal–Wallis test). Similarly, 
no significant differences were found in the total number of steps by intensity level for 
low (p = 0.35), moderate (p = 0.64), or vigorous intensity (p = 0.74). 

 

Figure 5. Variations in physical activity patterns: a comparison of weekday and weekend step 
counts. 

To obtain more insight into the temporal distribution of PA, we plotted the aggre-
gated number of steps, at the different intensity levels, on a watch (Figure 6). We observed 
that most of the activity occurred in the morning at low and moderate intensity, as already 
noted. The vigorous activity, while being significantly limited, mostly occurred exclu-
sively in the morning. The individual results are plotted in Figure 7, highlighting the huge 
variability not only in terms of PA levels (i.e., total number of steps) but also in terms of 
patterns and time preferences. 

 

Figure 6. Aggregated physical activity events by time of day and intensity level. 
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Figure 7. Daily PA patterns across participants (n = 108), categorized by intensity level and time of 
day. 

However, despite this high between-subject variability, PA patterns demonstrated 
consistent temporal rhythms over the course of the 14-day period, as illustrated in Figure 
8, which represents the most active hour of the day for the different intensities through 
the course of the follow-up. The most active hour of the day, regardless of the intensity, 
was between 11:00 and 12:00. No difference was found between the intensities nor the 
effect of the day (β = −0.09 (SE = 0.01), p = 0.65). 
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Figure 8. Temporal patterns of PA intensity levels over a 14-day period. The scatter points represent 
individual data points for PA intensity, color-coded by level: green for low, orange for moderate, 
and red for vigorous activity. The green, orange, and red lines represent the average trends of low, 
moderate, and vigorous activity levels, respectively, across the hours of the day and the 14-day ob-
servation period. The gray zones surrounding these lines indicate the 95% confidence intervals (CI), 
showing the variability in activity intensity trends across participants.  

3.3. EMA Results 

3.3.1. Adherence 

The overall adherence rate was 67.2% (SD = 8.4) across the entire follow-up period 
(Figure 9). No statistically significant differences were found between time periods (p = 
0.82), with adherence rates of 67.4% (7.3) in the morning, 68.2% (10.0) at noon, 68.0% (7.8) 
in the afternoon, and 65.4% (8.8) in the evening. 

 

Figure 9. Adherence to EMA over time, stratified by time of day. The colored lines (pink for morn-
ing, green for noon, blue for afternoon, and purple for evening) represent adherence trends at 
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different times of the day throughout the 14-day observation period. The black line represents the 
overall adherence trend across all time periods, while the gray shaded area indicates the 95% confi-
dence interval (CI) for this overall trend. 

3.3.2. Correlations Between Dimensions of EMA 

Efficacy and context exhibited the strongest positive correlation (r = 0.62, p < 0.001), 
indicating a close relationship between self-efficacy and situational or environmental fac-
tors. Context also demonstrated moderate positive associations with efficacy (r = 0.51, p < 
0.001) and motivation (r = 0.38, p < 0.001), underscoring the role of environmental influ-
ences on self-efficacy and drive. Mental health was moderately correlated with physical 
health (r = 0.42, p < 0.001), reflecting the interconnectedness between mental and physical 
states. 

3.3.3. Temporal and Intraday Variability in EMA and PA 

A linear mixed-effects model was employed to analyze the interaction between time 
of day and day on EMA responses. This model accounted for the nested random effects 
of repeated EMA measurements on participants, using maximum likelihood estimation. 
The analysis revealed significant main effects for time of day (β = −2.54, SE = 0.27, t = −9.52) 
and day (β = −0.44, SE = 0.09, t = −4.84), as well as a significant interaction between time of 
day and day (β = 0.16, SE = 0.03, t = 4.96). The random effects structure indicated substan-
tial variability between participants (SD = 44.14) and across EMA sessions (SD = 14.04). 

Response scores across the five EMA categories demonstrated distinct patterns 
throughout the day, highlighting variations in participant engagement and response con-
sistency across morning, noon, afternoon, and evening (Figure 10A). Efficacy consistently 
showed the highest response scores, remaining stable during the earlier parts of the day 
but exhibiting a slight decline in the evening. Context followed a similar trend, maintain-
ing high scores with a modest decrease as the day progressed. The categories of motiva-
tion and mental health presented moderate response scores that declined slightly from 
morning to evening. Physical health displayed the lowest and most stable daily scores, 
with minimal variability. The general downward trend across most categories, particu-
larly efficacy and motivation, suggests a potential diurnal effect, with greater engagement 
and accuracy earlier in the day. Figure 10B depicts the evolution of PA throughout the 
day, categorized into low, moderate, and vigorous intensities. Low-intensity activity was 
the most prevalent across all time periods, showing relatively steady levels from morning 
to evening, though with considerable variability as indicated by the wide error bars. Mod-
erate-intensity activity peaked around noon before declining through the afternoon and 
evening. In contrast, vigorous activity remained consistently low throughout the day, 
slightly increasing at noon but involving fewer steps than low and moderate activities. 
Regardless of intensity, PA tended to be highest at noon and declined sharply by evening, 
suggesting reduced movement as the day progressed. 
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Figure 10. Evolution of EMA (A) and PA (B) throughout the different time periods. 

3.4. Integrated Model 

To better understand the relationship between EMA variables—context, efficacy, mo-
tivation, mental health, physical health—and the PA monitored by the wearable, we per-
formed correlation analysis. First, we evaluated correlations for the overall number of 
steps per day, regardless of the time of the day. Statistically significant positive correla-
tions were found between PA and motivation (R = 0.16, p = 0.001), context (R = 0.11, p = 
0.007), efficacy (R = 0.10, p = 0.006), and mental health (R = 0.09, p = 0.031) but not for 
physical health (R = −0.05, p = 0.31). 

Since important variations in both PA and EMA were observed throughout the day 
(Figures 5 and 10), we further analyzed these relationships according to the time of the 
day (Figure 11). For the mornings, we still found a positive and statistically significant 
correlation between mental health and PA (R = 0.26, p = 0.008); at noon, there was a posi-
tive and statistically significant correlation between motivation and PA (R = 0.22, p = 
0.046). No statistically significant correlations were found between PA and EMA in the 
afternoon or evening. 
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Figure 11. Temporal dynamics of psychological and physical correlations across time stamps. 

Interestingly, when comparing these correlations according to the intensity levels, 
we observed statistically significant correlations only at low levels of PA for motivation 
(R = 0.20, p = 0.003), efficacy (R = 0.14, p = 0.013), and context (R = 0.13, p = 0.019). Step 
counts remained totally uncorrelated with the psychological variables across all time pe-
riods, indicating a minimal direct relationship between PA levels and subjective psycho-
logical constructs. 

The heatmap visualized in Figure 12 reveals relationships between the EMA catego-
ries and PA across the three activity levels: low, moderate, and vigorous. The clustering 
of participants and variables highlights patterns within and across activity levels. In the 
low-activity group, variability is observed, with mental health and motivation showing 
fluctuating patterns, while physical health and context remain more stable. More struc-
tured clustering emerges in the moderate activity group, particularly around efficacy and 
context, indicating stronger links between environmental factors and physical states. In 
the vigorous activity group, clustering becomes highly localized, with a relationship be-
tween high physical health and motivation. 

We performed a hierarchical cluster analysis of PA and EMA for the different times 
of day (Figure 13). Motivation and self-efficacy exhibited strong positive associations, 
largely irrespective of the time of day. Context appeared to be negatively associated with 
these factors. PA showed a moderate positive association with mental state, particularly 
in the afternoon cluster. 

Both heatmaps show consistent clustering of self-efficacy and motivation, suggesting 
a strong positive correlation. Context appears to have been inversely related to these fac-
tors, particularly in the moderate and low-intensity PA clusters. Lastly, PA showed some 
positive association with mental state, especially in the afternoon and vigorous activity 
clusters. 
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Figure 12. Heatmap analysis of EMA categories and PA across activity levels. The heatmap values 
range from −4 to +4, representing normalized z-scores of the variables analyzed. Positive values 
(shades of red) indicate above-average levels relative to the dataset, while negative values (shades 
of blue) indicate below-average levels. The intensity of the color corresponds to the magnitude of 
the z-score, with deeper shades reflecting greater deviations from the mean. 
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Figure 13. Heatmap analysis of EMA categories and PA across the day. The heatmap values range 
from −4 to +4, representing normalized z-scores of the variables analyzed. Positive values (shades 
of red) indicate above-average levels relative to the dataset, while negative values (shades of blue) 
indicate below-average levels. The intensity of the color corresponds to the magnitude of the z-
score, with deeper shades reflecting greater deviations from the mean. 

3.5. Optimal Following Time 

Since one of our research questions was to determine the optimal follow-up duration, 
we compared our results both for PA and EMA for different windows of time, namely 
across 14 days (complete duration), one random day, three consecutive random days, 
seven consecutive random days, ten consecutive random days, and twelve consecutive 
random days. 

The complete results are presented in Table 2. PA levels remained consistent across 
all durations and intensities, with no significant differences observed for the different in-
tensity levels. Similarly, no statistically significant difference was found between EMA 
values for the different time windows. 
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Table 2. Effect of follow-up duration on PA and EMA categories across various time periods. 

Category Outcome Time 
Complete 
(14 Days) 3 Days 7 Days 10 Days 12 Days p-Value 

PA 

Low 

Morning 810 (1187) 799 (1140) 818 (1195) 818 (1210) 817 (1214) 0.58 
Noon 844 (1440) 905 (1377) 874 (1380) 843 (1436) 830 (1465) 0.86 

Afternoon 784 (1191) 824 (1305) 820 (1205) 791 (1212) 792 (1216) 0.84 
Evening 153 (258) 189 (264) 162 (242) 153 (246) 150 (253) 0.70 

Moderate 

Morning 668 (1266) 695 (1157) 624 (1172) 679 (1276) 684 (1287) 0.55 
Noon 860 (1152) 889 (1517) 829 (1578) 880 (1624) 905 (1628) 0.76 

Afternoon 667 (1200) 631 (1264) 648 (1260) 678 (1274) 672 (1208) 0.48 
Evening 154 (258) 142 (312) 152 (268) 156 (266) 155 (269) 0.66 

Vigorous 

Morning 139 (495) 75 (437) 104 (349) 126 (410) 139 (436) 0.22 
Noon 139 (495) 322 (534) 149 (478) 146 (465) 155 (459) 0.45 

Afternoon 158 (495) 260 (395) 260 (610) 218 (496) 200 (491) 0.67 
Evening 90 (152) 120 (157) 116 (161) 78 (179) 80 (57) 0.35 

EMA 

Physical 

Morning 23.8 (23.8) 23.8 (23.8) 23.8 (19.0) 23.8 (19.0) 23.8 (19.0) 0.96 
Noon 23.8 (19.0) 28.6 (21.4) 23.8 (17.9) 23.8 (19.0) 23.8 (19.0) 0.87 

Afternoon 23.8 (23.8) 19.0 (17.9) 23.8 (19.0) 23.8 (19.0) 23.8 (19.0) 0.65 
Evening 23.8 (19.0) 23.8 (26.2) 23.8 (23.8) 23.8 (23.8) 23.8 (23.8) 0.84 

Mental 

Morning 33.3 (19.0) 28.6 (19.0) 28.6 (16.7) 28.6 (19.0) 28.6 (14.3)) 0.88 
Noon 28.6 (19.0) 28.6 (16.7) 28.6 (19.0) 28.6 (23.8) 28.6 (14.3) 0.99 

Afternoon 28.6 (23.8) 31.0 (25.0) 28.6 (22.6) 28.6 (23.8) 28.6 (23.8) 0.87 
Evening 28.6 (23.8) 28.6 (21.4) 28.6 (23.8) 28.6 (23.8) 28.6 (23.8) 0.94 

Motivation 

Morning 67.9 (23.2) 67.9 (21.4) 67.9 (23.2) 67.9 (21.4) 67.9 (23.2) 0.92 
Noon 64.3 (17.9) 60.7 (8.9- 64.3 (14.3) 64.3 (10.7) 64.3 (14.3) 0.86 

Afternoon 57.1 (21.4) 55.4 (16.1) 55.4 (14.3) 57.1 (21.4) 55.4 (21.4) 0.89 
Evening 46.4 (21.4) 39.3 (16.1) 42.9 (21.4) 42.9 (21.4) 42.9 (21.4) 0.84 

Efficacy 

Morning 78.6 (17.9) 78.6 (14.3) 85.7 (17.9) 78.6 (21.4) 78.6 (21.4) 0.84 
Noon 75.0 (28.6) 64.3 (39.3) 75.0 (28.6) 71.4 (28.6) 71.4 (26.8) 0.86 

Afternoon 71.4 (35.7) 60.7 (35.7) 57.1 (35.7) 71.4 (35.7) 71.4 (35.7) 0.82 
Evening 50 (44.6) 42.9 (67.9) 50 (50) 50 (42.9) 50 (42.9) 0.67 

Context 

Morning 71.4 (28.6) 64.3 (21.4) 71.4 (21.4) 71.4 (28.6) 71.4 (25.0) 0.89 
Noon 64.3 (39.3) 64.3 (25.0) 67.9 (41.1) 64.3 (35.7) 64.3 (28.6) 0.78 

Afternoon 64.3 (39.3) 67.9 (32.1) 57.1 (35.7) 64.3 (35.7) 64.3 (35.7) 0.64 
Evening 57.1 (50) 57.1 (53.6) 57.1 (57.1) 57.1 (50) 57.1 (50) 0.87 

3.6. Interplay Between PA Monitoring and EMA 

Finally, Table 3 summarizes the findings addressing the study’s research goals, high-
lighting the relationship between PA patterns, psychosocial determinants, and adherence 
to the methodologies employed. It provides detailed insights into temporal activity pat-
terns, adherence rates, and optimal durations for data collection, offering a comprehen-
sive understanding of participant engagement and the feasibility of the study design. Each 
research goal is addressed based on the detailed analysis and statistical outcomes pre-
sented in the results section. 
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Table 3. Summary of Findings Addressing Research Goals in Digital Phenotyping for Physical Ac-
tivity Monitoring. 

Research Goal Findings 

1. Assess the interplay be-
tween PA patterns and psy-
chosocial determinants across 
different times of the day and 
intensities. 

• Temporal patterns: Most PA occurred in the mornings (11:00–12:00 was the most active hour). 
Low-intensity activity was the most common (51.4%), followed by moderate (46.2%), and vigor-
ous (2.4%). PA declined significantly in the evenings (β = −2.54, SE = 0.27, p < 0.001). 

• Daily variability: PA was higher on weekdays compared with weekends (p < 0.001), but no dif-
ferences were observed across individual weekdays (p = 0.47). 

• Correlations: PA showed weak but significant correlations with motivation (R = 0.16, p = 0.001), 
context (R = 0.11, p = 0.007), efficacy (R = 0.10, p = 0.006), and mental health (R = 0.09, p = 0.031). 
No correlation was observed with physical health (R = −0.05, p = 0.31). 

• Intensity-specific correlations: At low PA intensity, motivation (R = 0.20, p = 0.003), efficacy (R = 
0.14, p = 0.013), and context (R = 0.13, p = 0.019) were positively correlated with PA. 

• Cluster analysis: Self-efficacy and motivation were consistently clustered, suggesting a strong 
relationship, while context was inversely related to these factors in the moderate and low PA 
clusters. Vigorous PA showed localized clustering with physical health and motivation. 

2. Evaluate the feasibility of 
these methodologies, includ-
ing participant adherence 
within a representative sam-
ple of older adults. 

• Adherence: Overall adherence to EMA was 67.2% (SD = 8.4), with similar rates across all time 
periods: morning (67.4%), noon (68.2%), afternoon (68.0%), and evening (65.4%). No significant 
differences were found across time periods (p = 0.82). 

• Consistency of Engagement: Temporal and intraday variability of PA and EMA data indicated 
that participants remained engaged throughout the study period, with no major drop-offs. 

• Activity levels: In total, 71.3% of participants reported high PA levels (median total MET-
min/week: 5154, IQR: 7331), 28% moderate, and 0.7% low, demonstrating a representative and 
physically active sample. 

3. Explore optimal durations 
for data collection to ensure 
participant engagement while 
capturing meaningful behav-
ioral trends. 

• PA stability across durations: PA levels showed no significant differences across follow-up du-
rations (1, 3, 7, 10, 12, and 14 days) for low (p = 0.58), moderate (p = 0.55), or vigorous intensities 
(p = 0.22). 

• EMA stability across durations: EMA responses were consistent across durations for all catego-
ries: physical health (p = 0.96), mental health (p = 0.88), motivation (p = 0.92), efficacy (p = 0.84), 
and context (p = 0.89). 

• Optimal duration: Shorter durations, such as 7 days, provided insights similar to those gained 
from the full 14-day period, making this a feasible alternative while reducing participant bur-
den. 

• Consistency in Temporal Patterns: The most active hour (11:00–12:00) and diurnal trends in PA 
(higher in the morning, declining in the evening) were consistent across all durations. EMA re-
sponses also demonstrated similar temporal trends, with efficacy and motivation highest in the 
morning and declining throughout the day. 

4. Discussion 
This study employed EMA and wearable devices to conduct a comprehensive, objec-

tive analysis of PA behaviors and psychological states among older adults. 
The results demonstrated no correlation between self-reported METs, as measured 

by IPAQ-SF, and objective step counts recorded by wearable devices. This lack of correla-
tion was particularly evident at higher PA intensities, aligning with previous research 
highlighting the limitations and inaccuracies of self-reported measures in capturing phys-
ical activity levels [67,68]. Comparison between steps per day according to the wearable 
and self-reported METs from the IPAQ was included to explore potential discrepancies 
between objective and self-reported activity measures, emphasizing the inherent chal-
lenges in accurately capturing intensity and volume through self-reports. Although there 
was no direct conversion between steps and self-reported METs, their inclusion enabled 
examination of different dimensions of PA behavior, as supported by previous studies 
[67,69]. The absence of correlation between these measures can be attributed to several 
factors. First, recall bias and social desirability are known to contribute to the underre-
porting of vigorous activities and the overestimation of lighter-intensity activities [70–73]. 
Moreover, participants may overestimate their activity levels in self-reports due to a 
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desire to present themselves in a socially favorable light, inflating MET values [74–76]. 
Similarly, older adults may face challenges estimating activity intensity and duration due 
to cognitive biases, further compounding these discrepancies [77]. Secondly, self-reported 
MET values also differ in measurement scope compared with wearable devices. While 
wearable devices capture granular, continuous data primarily focused on ambulatory ac-
tivities, MET values also account for a broader range of activity types such as cycling or 
swimming, which are not directly recorded by step counters [46,78–80]. This disparity can 
contribute to variability in correlation. Third, wearables often use algorithms to classify 
activity intensity, which may not align with participants’ perceptions reported in self-as-
sessments [81]. Lastly, variability in device sensitivity and activity types adds complexity. 
For example, wearable sensors optimized for step counting may underrepresent activities 
with minimal foot movement. Older adults’ engagement in low-intensity or incidental 
activities, such as light housework, may be harder to accurately self-report or detect with 
wearables, further contributing to the observed discrepancies [64,82–84]. 

These findings suggest that future studies would benefit from integrating self-reports 
with wearable data to mitigate bias and achieve a more holistic understanding of PA be-
haviors [85]. 

Analysis of activity intensity revealed that 51.4% of PA was classified as low-inten-
sity, with moderate-intensity PA contributing 46.2% and vigorous activity accounting for 
only 2.4%. These findings align with the existing literature indicating that older adults 
predominantly engage in light activities corresponding to their functional capacities and 
exertion thresholds [27,86,87]. Martin et al. reported that levels of light activity remained 
consistent among older women (approximately 30%). In contrast, older men demon-
strated more daytime sedentary minutes (~3), fewer daytime light minutes (~4), and more 
MVPA minutes (~1) than women, with activity declining sharply by early evening [88]. 
Similarly, Copeland and Esliger found that 90% of activity time in older adults was spent 
in low-intensity activities, with light activity averaging 13.8–13.9 h per day and MVPA 
accounting for 68 min, primarily occurring in the morning and as sporadic short bouts. 
Notably, their findings also highlighted significantly lower PA levels in the evening com-
pared with morning and afternoon [89]. 

Importantly, PA levels remained stable over the 14-day observation period, with ac-
tivity peaking at midday and declining in the evening [90,91]. This temporal stability re-
flects the influence of circadian rhythms and habitual routines, as supported by prior re-
search on biological rhythms and daily activity patterns [92–94]. However, the minimal 
contribution of vigorous activity underscores the need for tailored interventions to incor-
porate structured, higher-intensity activities into older adults’ daily routines. Strategies to 
address this gap include the use of behavioral change techniques such as personalized 
goal setting with gradually increasing intensity and progressive challenges to promote 
confidence and safety [95,96]. Additionally, integrating high-intensity interval training 
(HIIT) protocols that are adaptable to individual capabilities may offer a feasible approach 
to improving cardiovascular and muscular fitness in older adults [97,98]. Furthermore, 
social engagement can play a pivotal role in encouraging participation in higher-intensity 
activities [99,100]. Group-based programs and buddy systems have been shown to in-
crease motivation and adherence among older populations [101]. Incorporating gamifica-
tion elements such as point systems or virtual challenges into technology-based interven-
tions can also provide incentives for sustained engagement in vigorous PA [102,103]. 
Moreover, the predominance of low-intensity PA highlights a critical gap in engaging 
older adults in moderate-to-vigorous physical activity (MVPA) [104–106]. While light PA 
is valuable for maintaining mobility and functional independence, this limited participa-
tion in MVPA is concerning, given its established benefits for cardiovascular health, cog-
nitive function, and overall well-being [107–109]. The observed midday peak in activity 
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represents an optimal window for introducing structured programs to encourage MVPA. 
Leveraging this natural engagement period could enhance adherence and maximize 
health outcomes, addressing the disparity between current activity levels and WHO 
guidelines [62]. 

Adherence to EMA protocols was relatively high through the follow-up period, with 
an average completion rate of 67.2% across all time points. This finding highlights the 
feasibility of EMA as a method for collecting real-time behavioral data in older popula-
tions [110]. However, the decline in adherence and motivation during evening assess-
ments suggests potential psychological fatigue or loss of motivation [36]. Adaptive EMA 
designs, including shorter prompts and engaging elements such as gamification, could 
mitigate these challenges and improve participant engagement during times of reduced 
motivation [111]. 

This study offers several significant strengths and contributions, advancing research 
on PA behaviors among older adults. Integrating EMA and wearable data provided a 
multidimensional and ecologically valid perspective, capturing real-time behaviors, psy-
chological states, and contextual factors. This dual approach addresses a critical gap in 
traditional cross-sectional or self-reported studies by enabling the identification of tem-
poral patterns and within-person variations. 

Sustained engagement over the 14-day period, even in real-world, unsupervised set-
tings, demonstrates the practicality of combining wearable technology and EMA for this 
demographic. This finding highlights the approach’s scalability for use in larger and more 
diverse populations, particularly in community-based research and interventions [110]. 

However, an important finding of this study was the absence of difference, both in 
terms of PA monitoring and EMA responses, when comparing the 14 days of follow-up 
and shorter random periods of time. Given the fact that we found statistically significant 
differences in terms of numbers of steps on weekdays and at weekends, we recommend 
opting for a follow-up duration of one week to be able to capture sufficient data while 
maintaining high levels of motivation and participation from participants. 

Another notable strength of the study is its ecological validity. By capturing behav-
iors in natural environments, the methodology minimized biases associated with artificial 
or clinical settings, providing a more accurate representation of real-world activity pat-
terns. Using EMA to assess psychological states in real time complemented wearable data, 
offering a dynamic understanding of how contextual and temporal factors shaped PA be-
haviors. The temporal stability observed in PA patterns—aligned with established circa-
dian rhythms and habitual routines—further validates the robustness of the data collec-
tion methods. This consistency not only strengthens the reliability of the findings but also 
highlights strategic opportunities for intervention. 

Finally, the study’s focus on older adults—a group often underrepresented in digital 
health research—stands out as a critical contribution. By tailoring the methodology to this 
demographic and demonstrating its feasibility, the research lays a foundation for address-
ing the unique barriers and facilitators of PA in later life [112,113]. 

Despite its contributions, this study has several limitations that warrant careful con-
sideration and provide valuable direction for future research. First, the sample primarily 
consisted of physically active and digitally literate older adults, limiting the generalizabil-
ity of the findings when considering more sedentary or less technologically proficient 
populations. This selection bias may have resulted in overestimation of adherence rates 
and engagement with digital tools. To mitigate this issue, future studies should imple-
ment stratified sampling strategies to ensure the inclusion of participants with varying 
levels of PA, digital literacy, and socioeconomic backgrounds [114]. Second, a relatively 
short 14-day observation period, while sufficient to capture stable PA patterns, does not 
account for seasonal or lifestyle variations that may influence activity levels over extended 
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periods. To overcome this limitation, future research should extend the monitoring dura-
tion to include multiple seasons and key lifestyle events. Additionally, periodic assess-
ments at different intervals (e.g., every six months) could provide a broader understand-
ing of how activity patterns evolve over time and under varying conditions. Therefore, 
we have planned a six-month follow-up study. 

Future research must prioritize methodological adaptations and recruitment strate-
gies that ensure greater inclusivity and external validity [114,115]. Recruitment efforts 
should target more diverse populations that encompass a range of digital literacy, physi-
cal functioning, and baseline activity levels [116]. Additionally, refining EMA protocols is 
essential for enhancing participant engagement and data fidelity [117,118]. Adaptive EMA 
designs that account for diurnal variations in motivation and fatigue could include per-
sonalized timing of prompts, shorter response formats during evening periods, and op-
tional rest days in extended observation protocols. Gamification elements and interactive 
feedback mechanisms integrated within EMA platforms may further sustain participant 
interest and reduce drop-off rates over prolonged studies [119–121]. These refinements 
would improve the feasibility of implementing EMA in broader and less digitally profi-
cient populations. 

In the next phase, future research should focus on identifying patterns of PA in rela-
tion to environmental and situational factors, utilizing more detailed analyses and ad-
vanced methodologies [122,123]. Enhancing data resolution, such as examining shorter 
time intervals, can provide deeper insights into daily and weekly PA variations. Ad-
vanced analytical approaches, including computational and statistical techniques, can be 
used to identify patterns and classifications within diverse datasets [124–126]. Exploring 
innovative strategies, such as clustering methods or predictive algorithms, may further 
enhance the ability to detect key trends and inform targeted interventions. Integrating 
wearable data into JITAIs presents a promising avenue for improving the efficacy of PA 
promotion strategies. Wearable devices can provide real-time data on activity levels, sleep 
patterns, and physiological metrics, enabling the development of tailored interventions 
that respond dynamically to individual needs. For example, JITAIs could deliver person-
alized reminders, motivational messages, or activity suggestions during periods of inac-
tivity or when participants are most likely to engage in moderate-to-vigorous physical 
activity [127–129]. This adaptive approach could optimize the effectiveness of interven-
tion by aligning strategies with individual behavioral patterns and contextual factors. To 
support scalability, it is imperative to develop robust automated data-processing pipe-
lines and analytical frameworks. These tools would enable efficient handling of the large 
volumes of data generated by wearable devices and EMA, facilitating timely and action-
able insights [130,131]. 

5. Conclusions 
This study reinforces the value of integrating EMA and wearable data to optimize 

digital phenotyping methodologies for assessing PA patterns among older adults. By 
merging real-time subjective responses with objective activity measures, this research of-
fers a nuanced understanding of PA behaviors, psychological states, and contextual fac-
tors. These findings not only demonstrate the feasibility and acceptability of this approach 
in an older population but also highlight its potential to identify actionable insights, such 
as strategic windows for promoting MVPA. This work contributes to advancing digital 
phenotyping, offering a scalable and adaptable methodology that holds promise for im-
proving PA interventions tailored to the unique needs of older adults. 
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Appendix A 
Appendix A.1. Informed Consent Form Participants 

PART 1: INFORMATION LETTER 
Participating in a scientific study, what does that mean to you? 
Study Title: The Importance of an Active Lifestyle: Promoting physical activity 

among older adults through the use of a mobile application. 
Dear Sir/Madam, 
With this information letter we would like to ask you if you would like to participate 

in a scientific study. Participation is voluntary. In this letter you can read what kind of 
study it is, what it means for you, and what the advantages and disadvantages are. It’s a 
lot of information. Would you like to read through the information and decide if you want 
to participate? If you would like to participate, please fill out the form in Appendix B. 

Ask your questions 
You can make the decision to participate based on the information you will find in 

this information letter. In addition, we recommend that you do this: 

- Ask questions to the researcher who gives you this information. 
- Talk to your partner, family or friends about this study. 

What information can you find in this information letter? 
You will find this information in this letter: 

- What does this study involve? 
- Why am I being asked to participate? 
- Do I have to participate in a study? 
- What will happen during the study? 
- Will I benefit from the study? 
- What are the potential risks and inconveniences of participating in the study? 
- What data is collected and how do we handle your data? 
- Can I end my participation in the study early? 
- What do we expect from you if you participate in this study? 
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- Do I get paid? Or will my participation in the study entail additional costs for me? 
- Am I specially insured for this examination? 
- When does the study end? 
- Who reviewed and approved the documents relating to the study? 

You will find the following attachments to this information letter: 
A: contact details of PXL University of Applied Sciences 
B: consent form 

1. Why are we doing this study? 

PXL University of Applied Sciences has set up this study to investigate how we can 
motivate older people (from the age of 65) to exercise more by means of an exercise pro-
gram. This exercise program will work on a smartphone or tablet. 

2. Why am I being asked to participate? 

You will be asked to participate because you are at least 65 years old. In this study, 
we want to map your exercise behaviour. 

In addition, you meet the inclusion criteria for this study, which are: 

• ≥65 years of age at the start of the study 
• Have a good understanding of the Dutch language and actively speak it 
• Independent living (in a detached house or serviced flat/assisted living apartment) 
• Not suffering from one or more of the following (chronic) conditions: 
o Type 2 diabetes (i.e., both insulin-dependent and non-insulin-dependent type 2 dia-

betes that involves taking oral medication or using injections) 
o Cardiovascular disease (<5 years ago) (e.g., myocardial infarction, bridging surgery, 

stent) 
o Breathing problems (e.g., pneumonia, fibrosis, asthma,) 
o Disorders of the nervous system and brain (e.g., Parkinson’s, Multiple Sclerosis, 

stroke,) 
o Memory problems (dementia, Alzheimer’s) 

3. Do I have to participate in a study? 

Participation in a study is voluntary and should never be done under pressure. This 
means that you have the right not to participate in the study. You may also withdraw at 
any time without having to give a reason, even if you have previously agreed to partici-
pate. Your decision will not affect your relationship with the investigator. 

4. What will happen during the study? 

What data will be recorded and will the researcher see? 

• Data (e.g., number of steps per day, heart rate, respiration,...) collected by the wrist-
watch you will wear for the duration of the study; 

• A few questions about your physical activity in daily life. 
• Some personal data (age, gender, degree, marital status,) 
• A questionnaire about your quality of life 
• A questionnaire about your mental well-being 
• A questionnaire about your sleep habit 
• A questionnaire about your motivation to exercise 
• Measurements of your weight, height, balance, hand and leg muscle strength, ab-

dominal circumference, blood pressure, and your endurance during a walking test. 
How does the study work? 
This study will involve 200 people aged 65 and over in Belgium. At the start of the 

study, we will ask you a number of questions that assess your physical activity in daily 
life, your quality of life, your mental well-being and your sleeping habits. In addition, we 
will also administer a number of physical tests to map out your condition. After that, you 
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will wear a wristwatch for 2 weeks that will collect data on how physically active you are. 
In addition, during these 2 weeks you will receive a number of short questions 3 times a 
day that you have to answer via your smartphone. 

5. Will I benefit from the study? 

Your participation in this study can contribute to a better understanding of the phys-
ical activity of older people from the age of 65. 

6. What are the potential risks and inconveniences of participating in the study? 

There are no physical risks or discomforts associated with this study. However, you 
should be aware that data is being recorded about you. This data can only be viewed by 
the researchers. 

The data is protected with a username and password, so that it cannot be consulted 
by unauthorized persons. Encryption is used to store your data in order to make it un-
readable for third parties. This ensures that your data is stored securely. 

7. What data is collected and how do we handle your data? 

In this study, data will be collected about your physical activity throughout daily life, 
in addition to the data from the questionnaires and the physical measurements. 

The researcher is bound by professional secrecy when collecting and processing your 
data. This means that he/she will never reveal your identity, not even in a scientific pub-
lication or a lecture, and that he/she will encrypt your data (i.e., replace your identity with 
an identifier in the study). As a result, the investigator, and the study staff under the re-
sponsibility of the investigator, will be the only ones who will be able to link your identity 
to the data recorded during the study. 

Sensors on your Garmin Vivosmart 5 watch send the data to the manufacturer’s serv-
ers. These services are fully compliant with the GDPR legislation. 

There will be 4 simultaneous ways to securely store all data associated with this re-
search project: 

1. Each researcher has the use of a personal database on the laptop that can only be 
accessed via his/her unique staff number and personal password (= “Cloud”). 

2. “Microsoft Authenticator” is used as a “double security step”. This means that, be-
fore files on the laptop can be opened, a unique code must first be entered that can 
only be consulted via the Microsoft Authenticator app on the researcher’s personal 
smartphone. 

3. The password on each researcher’s laptop must be changed every 6 months. 
4. All files containing data relating to the research project will be protected by a pass-

word, which will only be known to the researchers involved. 

In accordance with the GDPR legislation, the data is kept for a maximum of 20 years. 
You also have the right to view the data yourself. 

5. Can I end my participation in the study early? 

You participate in this study voluntarily and you have the right to withdraw your 
consent for any reason. You don’t have to give a reason for this. If you withdraw your 
consent, the data collected up to the time of termination will be retained. This is to guar-
antee the validity of the study. No new data will be recorded. 

6. What do we expect from you if you participate in this study? 

If you participate in this study, we ask you to: (1) fully cooperate for the proper con-
duct of the study, and (2) Do not conceal information about your state of health (especially 
your physical activity). 

7. Do I get paid? Or will my participation in the study entail additional costs for me? 
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You will not be paid to participate in this study. Participation is voluntary and you 
do it to help science. There is no cost to you to participate in this study. 

8. Am I specially insured for this study? 

The sponsor is liable, even if there is no fault, for the damage that you as a partici-
pant—or in the event of death your beneficiaries—incur and that is directly or indirectly 
attributable to participation in this study. The client has taken out an insurance contract 
for this purpose. 

9. When does the study end? 

The study will stop after 2 weeks. Furthermore, you have the right to stop at any time 
without giving a reason. Participation is completely voluntary. 

10. Who reviewed and approved the documents relating to the study? 

The study documents were reviewed by an independent Belgian Ethics Committee, 
namely the Ethics Committee of Hasselt University. 

Ethics committees have the task of protecting the people who participate in a study. 
The competent health authorities will ensure that the study is carried out in accordance 
with the applicable legislation. You should not take their approval as an incentive to par-
ticipate in the study. 

Appendix A.2. Contact Details of Pxl University of Applied Sciences 

This research is carried out from: 
PXL University of Applied Sciences 
Expertise Centre for Healthcare Innovation and Expertise Centre Smart-ICT 
Guffenslaan 39 
3500 Hasselt 
Coordinating Principal Investigator Contact Information: 
Mevr. Kim Daniels 
(Master of Rehabilitation Sciences and Physiotherapy) 
Email: kim.daniels@pxl.be 
Phone: +32 011 77 52 27 
Local Principal Investigator Contact Details: 
dr. Nastasia Marinus 
(Bachelor of Occupational Therapy, Master of Rehabilitation Sciences & Physiother-

apy, Doctor of Rehabilitation Sciences & Physiotherapy) 
Email: nastasia.marinus@pxl.be 
Phone: +32 011 77 52 27 
Dr. Ryanne Lemmens 
(Master of Molecular Life Sciences & Master of Human Movement Scientist, Doctor 

of Rehabilitation Medicine) 
Email: ryanne.lemmens@pxl.be 
Phone: +32 011 77 52 27 
Dr. Jolien Robijns 
(Master of Biomedical Sciences, Doctor of Biomedical Sciences) 
Email: Jolien.robijns@pxl.be 
Phone: +32 011 77 52 27 

Appendix B. Consent Form 
Study Title: The Importance of an Active Lifestyle: Promoting physical activity 

among older adults through the use of a mobile application. 
INFORMED CONSENT 
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Participant 

• I declare that I have been informed about the purpose of the study, its duration and 
consequences, possible risks and inconveniences and what is expected of me, and 
that I have understood all this. My rights as a participant in a study have been ex-
plained to me and I have understood them. 

• I have had enough time to think about it and talk about it with a confidant (e.g., 
friends, family, attending physician, etc.). 

• I have had the opportunity to ask all the questions that came to my mind and I have 
received a satisfactory answer. 

• I understand that I will participate in this study voluntarily and without being forced 
to do so and that I can stop my participation in the study at any time. 

• I understand that data about me will be collected and treated confidentially. 
• I understand that the client has taken out insurance in case I would suffer damage in 

connection with my participation in this study. 
• I understand that I have no costs when participating in this study. 
• I agree that I will not participate in another study at the same time without informing 

the investigator or study staff, and that they may refuse to participate for justified 
reasons. 

• I understand that I must cooperate and follow the instructions of the investigator and 
of the study staff around the study. 

• I understand that my participation in the study may be terminated without my con-
sent if I require a different treatment, do not follow the study schedule, have an injury 
related to the study, or for any other justifiable reason. 

• I confirm that all the information I have given about my medical history is correct. I 
understand that it may cause me harm if I fail to inform or point out possible exclu-
sion criteria to the investigator. 

I agree to participate in the study, and I have received a signed and dated copy of all 
pages of this document. 

Name and surname of the participant: 
Date: 
Signature of the participant: 
Name and surname of the researcher: 
Date: 
Signature of the investigator: 

Appendix B.1. In- and Exclusion Criteria 

Inclusion Criteria Exclusion Criteria 

• Participants are 65 years of older 
• Participants are competent to give informed 

consent 
• Participants are able to actively participate in 

the study 
• Participants are community-dwelling (living 

independent at home or in a service apartment) 
• Without a severe illness 
• Dutch language proficiency as native speaker 

• Current neurological disorder such as Parkinson’s disease, 
multiple sclerosis, cerebrovascular accident, … 

• Current cardiovascular disorder such as stroke, acute 
myocardial infarct, coronary artery bypass grafting, 
percutaneous coronary intervention less than 5 years ago 

• Current respiratory disorder, such as chronic obstructive 
pulmonary disease, pneumonia, pulmonary fibrosis, 
asthma, … 

• Current severe metabolic disorder, such as diabetes type 1 
and 2, severe osteoporosis, … 

• Current severe cognitive disorders, such as Alzheimer’s 
disease, vascular dementia, Lewy Body dementia, 
frontotemporal dementia, … 
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