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Abstract

A celebrated result by Orlov states that any fully faithful exact functor between the
bounded derived categories of coherent sheaves on smooth projective varieties is of
geometric origin, i.e. it is a Fourier–Mukai functor. In this paper we prove that any
smooth projective variety of dimension ≥ 3 equipped with a tilting bundle can serve as
the source variety of a non-Fourier–Mukai functor between smooth projective schemes.

1. Introduction

Throughout we fix a base field k and all constructions are linear over k. In 1997, Orlov proved
the following result.

Theorem 1.1 [Orl97, Theorem 2.2]. Let X/k, Y/k be smooth projective schemes. Then every
fully faithful exact functor Ψ : Db(coh(X)) → Db(coh(Y )) is isomorphic to a Fourier–Mukai
functor associated with an object of Db(coh(X ×k Y )), the Fourier–Mukai kernel.

This result is of seminal importance because it allows for such a functor Ψ to be analysed by
means of a geometric study of the kernel.

1.1 Non-Fourier–Mukai functors
The first example of a non-Fourier–Mukai functor between bounded derived categories of smooth
projective schemes was given by the second and third authors, and can be found in [RVdBN19]
together with an appendix by Amnon Neeman improving on one of the key results. The functor
is of the form

Db(coh(Q)) → Db(coh(P4)),
where Q is a three-dimensional smooth quadric and P

4 is its ambient projective space. The
construction proceeds in two steps.

(i) First a prototypical non-Fourier–Mukai functor is constructed between certain non-
geometric DG-categories.
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(ii) Then, using a quite involved argument, this functor is turned into a geometric one.

In step (i), for a smooth projective variety X, and given a Hochschild cohomology class
0 �= η ∈ HH2 dimk(X)(X,ω⊗2

X ), a functor

L : Db(coh(X)) → D∞(Xη)

is constructed, whereD∞(Xη) is the derived category of an A∞-category Xη which can be thought
of as a generalized deformation of X in the η-direction (see § 5 for more details). This functor is
not Fourier–Mukai in a generalized sense, see Definition 2.2.

In step (ii), one needs to move from the non-geometric category D∞(Xη) to an honest derived
category of coherent sheaves. In [RVdBN19, § 11] this is achieved by showing that the inclusion
f : X → Y of a smooth quadric X = Q of maximal isotropy index in Y = P

4 annihilates η (in
the sense that f∗η = 0), which allows for the construction of the functor Ψ as a composition of
L with a pushforward to Db(coh(P4)), back to the geometric world. The composition with the
pushforward yields the required functor

Db(coh(Q)) → Db(coh(P4)),

but the drawback is the need to again check that the composition is non-Fourier–Mukai. This
is achieved using an obstruction theory that quickly gets hard to control as the dimension
of X grows, and indeed the original paper [RVdBN19] only gave one concrete example of a
non-Fourier–Mukai functor despite the very general initial setup.

In this paper we show that, as long as one is not worried about keeping dimk(Y ) small, it
is possible to bypass this intricate analysis and construct non-Fourier–Mukai functors starting
from L in a different way.

Remark 1.2. In a short note [Vol19], Vologodsky shows that over a field of positive characteristic
non-Fourier–Mukai functors arise quite naturally. Given a smooth projective scheme X over Zp,
one considers the embedding i : X ↪→ Z of the special fiber. The main result is a criterion for the
endofunctor Li∗ ◦ i∗ of Db(coh(X)) not to be of Fourier–Mukai type. This criterion is satisfied,
in particular, for X the flag variety of GLn, for n > 2. However, the functors obtained in this
way do admit a Z-linear DG-lift.

1.2 New examples
In this paper we show that if one is not interested in ‘small’ examples the second part of the
construction can be simplified, giving rise to many more examples of non-Fourier–Mukai functors.

Recall that if X is a scheme, then a tilting bundle T on X is a vector bundle on X such that
Ext>0

X (T, T ) = 0 and such that T generates DQch(OX). The following is our main result.

Theorem 1.3 (see § 5). Let X be a smooth projective scheme of dimension m ≥ 3 which has a
tilting bundle. Then there is a non-Fourier–Mukai functor

Db(coh(X)) → Db(coh(Y )), (1)

where Y is a smooth projective scheme.

As a concrete example, we may for instance take X = P
m, m ≥ 3, which has the Beilinson

tilting bundle T =
⊕m

i=0 OX(i).

1.3 Geometric realizations
To prove Theorem 1.3, we combine results from [Orl16] with ideas from [Orl20]. There are again
two main steps involved.
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(i) In a first step, we construct a fully faithful functor Aus

Db(coh(X)) L−→ A Aus
↪−−→ T

from (the thick envelope of) the essential image A of L to a triangulated category
T with a full exceptional collection. This construction is based on a version of the
Auslander(–Dlab–Ringel) algebra for filtered A∞-algebras, which is explained in § 3.

(ii) We then invoke Orlov’s gluing result [Orl16, Theorem 4.15], which implies the existence of
a fully faithful functor

T Geom
↪−−−→ Db(coh(Y )),

for some smooth and projective scheme Y (this is often referred to as a geometric realization,
not to be confused with the geometric realization of a simplicial set).

One can then show that the composed functor

Db(coh(X)) L−→ A Aus
↪−−→ T Geom

↪−−−→ Db(coh(Y ))

is still non-Fourier–Mukai, thus proving Theorem 1.3.

2. Preliminaries on A∞-categories

Fix an arbitrary base field k.1 Our general reference for A∞-algebras and A∞-categories will be
[Lef03]. For a good reference in English, consult [ELO10]. Sometimes we silently use notions for
categories which are only introduced for algebras (i.e. categories with one object) in [ELO10]. We
assume that all A∞-notions are strictly unital. Unless otherwise specified we use cohomological
grading.

Remark 2.1. We rely throughout on the fact that the homotopy categories of A∞-categories and
DG-categories are equivalent. See [COS19]. This implies, in particular, that we can freely use
Orlov’s gluing results in [Orl16] in the A∞-context.

Definition 2.2. Let a, b be pretriangulated A∞-categories [BLM17] and put A = H0(a), B =
H0(b). We say that an exact functor F : A → B is Fourier–Mukai if there is an A∞-functor
f : a → b such that F ∼= H0(f) as graded functors.

Often a, b are uniquely determined by A, B (see [CS18, LO10]) or else implicit from the
context, and then we do not specify them.

Remark 2.3. If X, Y are smooth projective varieties and F : Db(coh(X)) → Db(coh(Y )) is a tra-

ditional Fourier–Mukai functor which means that it can be written as R pr2∗(K
L
⊗X×Y Lpr∗1(−))

for K ∈ Db(coh(X × Y )), then it is Fourier–Mukai in our sense. This follows from the easy part
of [Toë07, Theorem 8.15] combined with Remark 2.1.

For an A∞-category a we denote by2 D∞(a) the DG-category of left A∞-modules. The
A∞-Yoneda functor

a → D∞(a◦) : X 	→ a(−, X) (2)

is quasi-fully faithful [Lef03, Lemma 7.4.0.1]. The corresponding homotopy category D∞(a) :=
H0(D∞(a)) is a compactly generated triangulated category [Kel06, § 4.9] with compact generators

1 Although the reference [RVdBN19] is written with the blanket assumption of characteristic zero, that hypothesis
is not needed for the parts of the paper that are used here.
2 D∞(a) is denoted by C∞(a) in [Lef03], and by A − mod∞ in [ELO10, § 3.1].
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a(X,−) for X ∈ Ob(a). We write Perf(a) for the full DG-subcategory of D∞(a) spanned by the
compact objects in D∞(a) and we also put Perf(a) = H0(Perf(a)).

If A is a triangulated category and S ⊂ Ob(A), then the category classically generated by
S [BVdB03, § 1] is the smallest thick subcategory of A containing S. It is denoted by 〈S〉. By
[Kel94, § 5.3],[Nee92, Lemma 2.2] Perf(a) is classically generated by the objects a(X,−).

If f : a → b is an A∞-functor, then we may view b as an A∞-b-a-bimodule. Hence, we have
a ‘standard’ DG-functor

b
∞
⊗a − : D∞(a) → D∞(b)

which (for algebras) is introduced in [Lef03, § 4.1.1]. We recall the following basic result.

Lemma 2.4. For A∞-categories a, b and a quasi-fully faithful A∞-functor f : a → b, the induced

functor b
∞
⊗a − : D∞(a) → D∞(b) is fully faithful. Moreover, this functor restricts to a fully

faithful Fourier–Mukai functor Perf(a) → Perf(b).

Proof. By the same argument as in the proof of [Lef03, Lemme 4.1.1.6] there is a quasi-
isomorphism

b
∞
⊗a a(X,−) → b(fX,−) (3)

for X ∈ Ob(a), functorial in X. In other words there is a pseudo-commutative diagram

where the vertical arrows are the Yoneda embeddings X 	→ a(X,−), Y 	→ b(Y,−). The full
faithfulness of the lower arrow follows by dévissage. The claim about Perf follows immediately
from (3). �

The following lemma is a variant on Lemma 2.4 and could have been deduced from it.

Lemma 2.5. Assume that a is a pre-triangulated A∞-category [BLM17] such that H0(a) is
Karoubian and classically generated by T ∈ Ob(a). Put R = a(T, T ). The A∞-functor

f : a → D∞(R◦) : X 	→ a(T,X)

defines a quasi-equivalence

a → Perf(R◦)

or, equivalently, an equivalence of triangulated categories

H0(a) ∼= Perf(R◦). (4)

Proof. We must prove (4). We have H0(f)(T ) = R. By hypothesis H0(a) is classically generated
by T and by the previous discussion Perf(R◦) is classically generated by R. Moreover, because
the Yoneda functor is quasi-fully faithful, H0(f) is fully faithful when restricted to T . The rest
follows by dévissage. �

3. Geometric realization of a filtered A∞-algebra

Let (R,m∗) denote a finite-dimensional A∞-algebra equipped with a (decreasing) filtration
F ∗ := {F pR}p≥0. This means that {F pR}p≥0 is a decreasing filtration of the underlying
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(finite-dimensional) graded vector space of R satisfying the compatibility conditions

mp(F i1 ⊗ · · · ⊗ F ip) ⊂ F i1+···+ip (5)

for all p and all i1, . . . , ip.
Assume FnR = Fn = 0 for some n ≥ 0. In this case we may define the (modified) Auslander

A∞-category Γ = ΓR,F ∗ of (R, F ∗). The objects of Γ are the integers 0, . . . , n− 1 and we set

Γ(j, i) := Fmax(j−i,0)/Fn−i. (6)

By setting Γi,j = Γ(j, i), we can represent Γ schematically via the matrix

(Γi,j) =

⎛
⎜⎜⎜⎜⎜⎝

R F 1 F 2 · · · Fn−1

R/Fn−1 R/Fn−1 F 1/Fn−1 · · · Fn−2/Fn−1

R/Fn−2 R/Fn−2 R/Fn−2 · · · Fn−3/Fn−2

...
...

...
. . .

...
R/F 1 R/F 1 R/F 1 R/F 1 R/F 1

⎞
⎟⎟⎟⎟⎟⎠ (7)

so that composition is given by matrix multiplication.
The grading on R induces a grading on Γ. Because of condition (5), the higher multiplications

on R also induce higher multiplications on Γ. Indeed,

max(ip+1 − i1, 0) ≤ max(i2 − i1, 0) + · · · + max(ip+1 − ip, 0), (8)

so

mp(Fmax(i2−i1,0) ⊗ · · · ⊗ Fmax(ip+1−ip,0)) ⊂ Fmax(ip+1−i1,0). (9)

In addition,

max(i2 − i1, 0) + · · · + max(ik − ik−1) + (n− ik)

+ max(ik+2 − ik+1, 0) + · · · + max(ip+1 − ip, 0)

≥ max(i2 − i1, 0) + · · · + max(ik−1 − ik−2) + (n− ik−1) ≥ n− i1, (10)

so mp passes to the quotients

mΓ
p : Γi1,i2 ⊗ Γi2,i3 ⊗ · · · ⊗ Γip−1,ip ⊗ Γip,ip+1 → Γi1,ip+1 (11)

making Γ into an A∞-category.

Remark 3.1. The same construction also yields the A∞-algebra
⊕

i,j Γi,j , which encodes the same
data as Γ. The above construction is similar in spirit to [KL15, § 5]. If R is concentrated in degree
0 and F is the radical filtration, we obtain a subalgebra of Auslander’s original algebra [Aus99],
which is nowadays often referred to as the Auslander–Dlab–Ringel algebra (see, for example,
[CE18]).

As Γ0,0 = R, by thinking of R as an A∞-category with one object we have a fully faithful
strict A∞-functor

R → Γ

whence we obtain the following result by Lemma 2.4.

Corollary 3.2. There is a fully faithful functor

Γ
∞
⊗R − : Perf(R) → Perf(Γ).
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Proposition 3.3. Let R̄ = R/F 1. There are n quasi-fully-faithful A∞-functors

Perf(R̄) → Perf(Γ)

giving rise to a semi-orthogonal decomposition

Perf(Γ) = 〈Perf(R̄), . . . ,Perf(R̄)︸ ︷︷ ︸
n

〉.

Proof. For i = 0, . . . , n− 1 let
Pi = Γ(i,−)

and Pn = 0. For i = 0, . . . , n− 1 the element Pi ∈ D∞(Γ) corresponds to the (i+ 1)th column in
(7) and we have obvious inclusion maps

ψi : Pi+1 → Pi.

Put

Si := coneψi =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

F i/F i+1

F i−1/F i

...
R/F 1

0
...
0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

(12)

(in particular, Sn−1 = Pn−1). By the Yoneda lemma we see that

Hom∗
D∞(Γ)(Pj , Si) = H∗(Si(j)) =

{
0, if j > i,

H∗(R̄), if j = i.
(13)

We also find using the long exact sequence for the distinguished triangle

Pi+1 → Pi → Si →
that

End∗
D∞(Γ)(Si, Si) = Hom∗

D∞(Γ)(Pi, Si) = H∗(R̄). (14)

We now have by (13) semi-orthogonal decompositions

〈Pi, . . . , Pn−1〉 = 〈〈Si〉, 〈Pi+1, . . . , Pn−1〉〉,
which, by induction, yield a semi-orthogonal decomposition

Perf(Γ) = 〈〈S0〉, . . . , 〈Sn−1〉〉.
Using (12) and the compatibility conditions (5) for the filtration F ∗, we check that the Si are,
in fact, A∞ − Γ − R̄-bimodules. Thus, we have DG functors

Si

∞
⊗R̄ − : D∞(R̄) → D∞(Γ)

and the corresponding exact functors

Si

∞
⊗R̄ − : D∞(R̄) → D∞(Γ),

which send R̄ to Si and therefore are fully faithful by (14) and Lemma 2.4. Thus, they establish
equivalences

Perf(R̄) ∼= 〈Si〉
finishing the proof. �

1259

https://doi.org/10.1112/S0010437X22007540 Published online by Cambridge University Press

https://doi.org/10.1112/S0010437X22007540


T. Raedschelders, A. Rizzardo and M. Van den Bergh

Let us call an A∞-algebra A geometric if there is a fully faithful Fourier–Mukai functor (in
the sense of Definition 2.2) f : Perf A ↪→ Db(coh(X)) for X a smooth and projective k-scheme,
such that in addition f has a left and a right adjoint.

In the following corollary, we make use of Orlov’s powerful gluing result, which in our setting
may be formulated as follows (see also Remark 2.1).

Theorem 3.4 [Orl16, Theorem 4.15]. Given A∞-algebras A,B,C with C proper and a semi-
orthogonal decomposition

Perf C = 〈Perf A,Perf B〉.

If A and B are geometric, then so is C.

Corollary 3.5 (Geometric realization). Let R be a finite-dimensional A∞-algebra equipped
with a finite descending filtration such that R̄ = R/F 1R is geometric. Then there exists a fully
faithful Fourier–Mukai functor Perf R ↪→ Db(coh(X)) where X is a smooth projective k-scheme.

Proof. Combining Proposition 3.3 with Theorem 3.4 we obtain that there exists a fully faithful
Fourier–Mukai functor

Perf Γ ↪→ Db(coh(X)),

where X is a smooth projective k-scheme. Then we pre-compose this functor with the fully
faithful Fourier–Mukai functor

Perf R ↪→ Perf Γ

of Corollary 3.2. �
Corollary 3.6. Assume R is an A∞-algebra such that H∗(R) is finite dimensional and con-
centrated in degrees ≤ 0, and moreover H0(R) is geometric. Then there exists a fully faithful
Fourier–Mukai functor Perf R ↪→ Db(coh(X)), where X is a smooth projective k-scheme.

Proof. Without loss of generality we may assume that R is minimal. We now apply Corollary 3.5
with the filtration F pR =

⊕
i≥p R−i. �

Remark 3.7. As H0(R) is assumed to be a finite-dimensional algebra, the following lemma may
be helpful for checking geometricity of H0(R) in order to apply Corollary 3.6:

Lemma 3.8. Assume that A is a finite-dimensional k-algebra. The following are equivalent:

(i) A is geometric;
(ii) A is smooth (i.e. p dimAe A <∞);
(iii) A/ radA is separable over k and gl dimA <∞.

Proof.

(i)⇒(ii) This is [Orl16, Theorem 3.25].
(ii)⇒(iii) The fact that A/ radA is separable over k is [RR22, Theorem 3.6], which in turn comes

from a MathOverflow answer by Rickard [Ric16]. Finite global dimension is classical.
(iii)⇒(i) This is [Orl16, Corollary 5.4]. �

Remark 3.9. If k is algebraically closed, one can even assume that the scheme X in Corollary 3.6
has a full exceptional collection. Indeed, using the radical filtration F pH0(R) = radpH0(R) for
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the finite-dimensional algebra H0(R), we see that there is a fully faithful functor

ΓH0(R),F ∗
∞
⊗H0(R) − : Perf(H0(R)) → Perf(ΓH0(R),F ∗)

and a semi-orthogonal decomposition

Perf(ΓH0(R),F ∗) = 〈Perf(H0(R)/ radH0(R)), . . . ,Perf(H0(R)/ radH0(R))〉 (15)

= 〈Perf(k), . . . ,Perf(k)〉. (16)

In particular, each copy Ai = Perf(H0(R)) in the semi-orthogonal decomposition

Perf(Γ) = 〈Perf(H0(R)), . . . ,Perf(H0(R))〉 = 〈A1, . . . ,An〉 (17)

admits a fully faithful functor Ai → Ci for some category Ci with a full exceptional collection.
We claim this implies there is also a fully faithful functor

Perf(Γ) = 〈Perf(H0(R), . . . ,Perf(H0(R)〉 → C (18)

for some category C with a full exceptional collection. Indeed, first assume n = 2, then we can
base change the (perfect) gluing A1–A2-bimodule M (responsible for (17)) to a perfect C1–C2-
bimodule, say M ′. The corresponding gluing C of C1 and C2 along M ′ then has a semi-orthogonal
decomposition

C = 〈C1,C2〉 (19)

and, by construction, C has a full exceptional collection. Moreover, one can check that the induced
functor

Perf(Γ) = 〈A1,A2〉 → C (20)

is still fully faithful. For n > 2, we proceed by induction.
Finally, by applying [Orl16, Theorem 5.8], there exists a fully faithful Fourier–Mukai functor

Perf(Γ) → Db(coh(X)), (21)

for some smooth projective k-scheme X with a full exceptional collection.

4. A∞-deformations of schemes and objects

In this section we review some material on A∞-deformations of schemes and the corresponding
results for deformations of objects. For the benefit of the reader, we collect the results we need in
the rest of the paper, in the generality that we need in this situation. A more general treatment
of this can be found in [RVdBN19, §§ 6 and 8].

Definition 4.1. Let X be a k-linear category and M be a k-central X -bimodule. The
Hochschild complex C•(X ,M) is defined as

Ci(X ,M) =
∏

X0,...,Xp∈Ob(X )

Hom(X (Xp−1, Xp) ⊗k · · · ⊗k X (X0, X1),M(X0, Xp))

with the usual differential (see [Mit72]).
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The Hochschild cohomology HH•(X ,M) is the cohomology of the Hochschild complex
C•(X ,M).

Remark 4.2. Let X be a k-linear category, A be a k-algebra, and M be a k-central X -bimodule.
There is a morphism

C•(X ,M) → C•(X ⊗k A,M⊗k A)

η 	→ η ∪ 1

where η ∪ 1 is defined by

η ∪ 1(x1 ⊗ a1, . . . , xn ⊗ an) = ±η(x1, . . . , xn) ⊗ a1 · · · an

for suitable composable arrows x1, . . . , xn in X , where the sign is given by the Koszul convention.

Definition 4.3. Let X be a k-linear A∞-category and A be a k-algebra. The tensor product
X ⊗A is the A∞-category with the same objects as X and morphisms X (−,−) ⊗k A. The
codifferential bX⊗kA is given by the Taylor coefficients

b1X⊗kA(s(x⊗ a)) = b1X (sx) ⊗ a,

bnX⊗kA(s(x1 ⊗ a1), . . . , s(xn ⊗ an)) = ±bnX (sx1, . . . , sxn) ⊗ a1 · · · an

for suitable composable arrows, where the sign is given by the Koszul convention.

For the rest of this section, unless specified otherwise, X denotes a quasi-compact separated
k-scheme.

Definition 4.4. If M ∈ D(OX), then the Hochschild cohomology of M is defined as

HH∗(X,M) := Ext∗X×X(iΔ,∗OX , iΔ,∗M)

where iΔ : X → X ×X is the diagonal map.

Definition 4.5. Let X =
⋃n

i=1 Ui be an affine covering. For I ⊂ {1, . . . , n} let UI =
⋂

i∈I Ui.
Let I be the set {I ⊂ {1, . . . , n} | I �= ∅}. Then X is defined to be the category with objects I
and Hom-sets

X (I, J) =

{
OX(UJ), I ⊂ J,

0, otherwise.
(22)

Roughly this allows us to think of Mod(X ) as the category of presheaves associated with an
affine covering of X. This construction has many good properties, some of which are summarized
in the following.

Lemma 4.6. There is a fully faithful embedding

w : D(Qch(X)) → D(X )

and a corresponding fully faithful embedding for bimodules

W : Dδ(Qch(X)) → D(X ⊗k X ◦),

where Dδ(Qch(X)) = iΔ,∗D(Qch(X)) is the category with the same objects as D(Qch(X)) and
morphisms

HomDδ(Qch(X))(M,N) = HomD(Qch(X×X))(iΔ,∗M, iΔ,∗N).

Moreover, for a quasi-coherent sheaf M on X we have

HH∗(X,M) ∼= HH∗(X ,W (M)). (23)
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For A a (not necessarily commutative) k-algebra, there exists an A-equivariant version of w:

w : D(Qch(OX ⊗k A)) → D(X ⊗k A),

which is also a fully faithful embedding.

Proof. For the construction of the embeddings w and W see [RVdBN19, § 8.3]. The proof of
the equivalence (23) is also sketched in [RVdBN19, § 8.3], for a full proof see [LVdB05]. The
A-equivariant version is constructed in [RVdBN19, § 8.5]. �

We also need a deformed version of X . We give the definition in this case, but the general
construction can be found in [RVdBN19, § 6].

Definition 4.7. Let M be a k-central X -bimodule and η ∈ HHn(X ,M). Let X̃ be the
DG-category X ⊕ Σn−2M: its objects are the objects of X , morphisms are given by X (−,−) ⊕
Σn−2M(−,−), and composition is coming from the composition in X and the action of X on M.

Lift η ∈ HHn(X ,M) to a Hochschild cocycle, which we also denote by η. We can think of η
as a map (ΣX )⊗n → Σ(Σn−2M) of degree one.

We define as Xη the A∞-category X̃ with deformed A∞-structure given by

bXη
:= bX̃ + η,

where b(−) denotes the codifferential on the corresponding bar construction giving the
A∞-structure, and where we view η as a map of degree one (ΣX )⊗n → Σ(Σn−2M) and extend
it to a map η : (ΣXη)⊗n → ΣXη by making the unspecified component zero. Clearly we have
H∗(Xη) = X̃ ; the only nontrivial Taylor coefficients of the codifferential bXη are bXη ,2 and bXη ,n.

Remark 4.8. For η a cocycle in C•(X ,M) and η ∪ 1 the corresponding cocycle in C•(X ⊗k

A,M⊗k A) we have that (X ⊗k A)η∪1 = Xη ⊗k A.

Definition 4.9. Let U ∈ Mod(X ). A colift of U to Xη is a pair (V, φ), where V ∈ D∞(Xη) and
φ is an isomorphism of graded H∗(Xη)-modules H∗(V) ∼= HomX (H∗(Xη),U).

Proposition 4.10. Assume that M is an invertible X -bimodule and Xη is as in Definition 4.7.
The object U ∈ Mod(X ) has a colift to Xη if and only if cU (η) = 0, where cU is the characteristic
morphism

cU (η) : HHn(X ,M) → Extn
X (U ,M⊗X U)

obtained by interpreting η ∈ HHn(X ,M) as a map X → ΣnM inD(X ⊗k X ◦) and then applying
the functor −⊗X U to get a map U → ΣnM⊗X U .

Proof. This is a combination of [RVdBN19, Lemma 6.4.1] and [RVdBN19, Lemma 6.3.1]. �

5. Proof of Theorem 1.3

We now proceed to give a construction of an exact functor L : Db(coh(X)) → D∞(Xη), originally
given in [RVdBN19]. We summarize the construction in this particular case for the benefit of the
reader. More details in the general setting are in [RVdBN19, § 10].

Construction 5.1. Let X be a smooth projective scheme of dimension m ≥ 3, which has a tilting
bundle. Let M = ω⊗2

X ; by [RVdBN19, Lemma 9.6.1] we have HH2m(X,M) ∼= k, so that we can
pick 0 �= η ∈ HH2m(X,M). View η as an element of HH∗(X ,M), for M = W (M), via (23).
Construct the A∞-category Xη as in Definition 4.7.
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We are now in the situation of [RVdBN19, § 10.1] and we can define an exact functor

L : D(Qch(X)) → D(X dg
η )

as in [RVdBN19, (10.3)], where X dg
η is the unital DG-hull of Xη. Then we obtain our exact

functor (also denoted by L) as the composition

L : Db(coh(X)) ↪→ D(Qch(X)) L−→ D(X dg
η ) ∼= D∞(Xη).

where D∞(Xη) ∼= D∞(X dg
η ) ∼= D(X dg

η ) by [Lef03, Lemme 4.1.3.8] (cf. also Remark 2.1).

Lemma 5.2. Let T ∈ Db(coh(X)) and T = w(T ). Let L be the functor constructed in
Construction 5.1. The following is a distinguished triangle in D∞(Xη):

T α−→ L(T )
β−→ Σ−2m+2M−1 ⊗X T → . (24)

Proof. This is the distinguished triangle in [RVdBN19, Lemma 10.3] under the equivalence of
categories D(X dg

η ) ∼= D∞(Xη). �
Lemma 5.3. Let X be a smooth projective scheme of dimension m ≥ 3 that has a tilting bundle.
Then the exact functor

L : Db(coh(X)) → D∞(Xη)

of Construction 5.1 is non-Fourier–Mukai (see Definition 2.2).

Proof. This proof follows the proof of [RVdBN19, Lemma 11.4] (the argument is written there
for the case m = 3, but the proof is the same for a general m ≥ 3). We repeat it here for the
benefit of the reader.

Let T be a tilting bundle for X, A = EndX(T ) and T = w(T ). We can think of T as an
element in Mod(X ⊗k A). If L were a Fourier–Mukai functor with an A∞-lift � such that H0(�) ∼=
L, then byA∞-functoriality �(T ) could be viewed as an object in D∞(Xη ⊗k A) and, consequently,
L(T ) would be an element in D∞(Xη ⊗k A).

On the other hand, thanks to the distinguished triangle (24) we have

H∗(L(T )) = T ⊕ Σ−2m+2(M−1 ⊗X T ) = HomX (H∗(Xη), T ).

By construction, this isomorphism is compatible with the H∗(Xη)- and A-actions. Using
Remark 4.8 we obtain that L(T ) is a colift of T ∈ Mod(X ⊗k A) to D∞((X ⊗k A)η∪1) =
D∞(Xη ⊗k A).

By Proposition 4.10 the obstruction against the existence of such a colift is the image of
η ∪ 1 under the characteristic morphism

HH2m(X ⊗k A,M⊗k A) cT−→ Ext2m
X⊗kA(T ,M⊗k T ).

Let cT ,A be the composition

HH2m(X ,M)
η 
→η∪1−−−−→ HH2m(X ⊗k A,M⊗k A) cT−→ Ext2m

X⊗kA(T ,M⊗X T ).
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By the A-equivariant version of [RVdBN19, (8.14)] we have a commutative diagram

HH2m(X,M)

∼=W

��

cT,A
�� Ext2m

Qch(OX⊗kA)(T,M
L
⊗X T )

w∼=
��

HH2m(X ,M)
cT ,A

�� Ext2m
X⊗kA(T ,M

L
⊗X T )

of A-equivariant characteristic maps. The rightmost map is an isomorphism by [RVdBN19, (8.13)]
and the fact that the A-equivariant version of w is fully faithful (Lemma 4.6). The leftmost
map is an isomorphism by (23). By [RVdBN19, Proposition 8.9.2], the upper horizontal map is
also an isomorphism. It follows that, because we chose η �= 0, its image cT ,A(η) is also nonzero
and provides an obstruction to the existence of a colift. Thus, L cannot be a Fourier–Mukai
functor. �
Proof of Theorem 1.3. Let A be the smallest thick subcategory of D∞(Xη) containing the
essential image of Db(coh(X)) under L. It is clear that the corestricted functor

L : Db(coh(X)) → A

is still non-Fourier–Mukai.
Let a be the full sub-DG-category of D∞(Xη) spanned by Ob(A) and let T be a tilting

bundle for X. Then we have H0(a) = A. Let R = a(L(T ), L(T )). By Lemma 2.5 we have a
quasi-equivalence a → Perf(R◦). The composed functor

Db(coh(X)) L−→ A
∼=−→ Perf(R◦) (25)

is still non-Fourier–Mukai because quasi-equivalences are invertible up to homotopy [Lef03,
Théorème 9.2.0.4].

Let T = w(T ) be the left X -module associated with T and let M = W (M) be the
X -bimodule associated with M . By the discussion before [RVdBN19, (11.5)] we have a dis-
tinguished triangle of complexes of vector spaces (taking into account that in the current setting
the quantity n in [RVdBN19, (11.5)] is equal to 2m)

RHomX (Σ−2m+2M−1 ⊗X T , T ) → RHomXη(L(T ), L(T )) → RHomX (T , T ) → .

Using [RVdBN19, Lemma 9.4.1] this becomes

RHomX(Σ−2m+2M−1 ⊗X T, T ) → RHomXη(L(T ), L(T )) → RHomX(T, T ) →

which is equivalent to

Σ2m−2 RHomX(T,M ⊗X T ) → RHomXη(L(T ), L(T )) → RHomX(T, T ) → . (26)

The cohomology of RHomX(T,M ⊗X T ) is concentrated in degrees ≤ m. Whence the cohomol-
ogy of Σ2m−2 RHomX(T,M ⊗X T ) is concentrated in degrees ≤ m− (2m− 2) < 0 (as m ≥ 3).
It now follows from (26) that R is an A∞-algebra such that H∗(R) is finite dimensional and
concentrated in degrees ≤ 0 and moreover H0(R) = EndX(T ). As EndX(T )◦ is tautologically
geometric we obtain by Corollary 3.6 a fully faithful Fourier–Mukai functor

Perf(R◦) ↪→ Db(coh(Y )). (27)
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The functor (1) is now the composition of (25) and (27). To see that is non-Fourier–Mukai we
factor it as

Db(coh(X)) → Perf(R◦) ∼= Perf(R◦)̃ ⊂ Db(coh(Y )), (28)

where Perf(R◦)̃ is the essential image of (27). Note that because A∞-quasi-equivalences may be
inverted up to homotopy by [Lef03, Théorème 9.2.0.4], the inverse of Perf(R◦) ∼= Perf(R◦)̃ is also
a Fourier–Mukai functor. Now if the composition (28) were Fourier–Mukai, then so would be the
corestricted functor Db(coh(X)) → Perf(R◦)̃ . Hence, the composition

Db(coh(X)) → Perf(R◦)̃ ∼= Perf(R◦)

would also be a Fourier–Mukai functor; but this composition is equivalent to (25). This is a
contradiction. �
Remark 5.4. With a little bit more work one may show that the fact that (25) is non-
Fourier–Mukai is also true without the hypothesis that X has a tilting bundle. However the
tilting bundle is anyway needed for the rest of the construction.

Remark 5.5. If k is algebraically closed, then using Remark 3.9, one may show that Y can be
chosen to have a full exceptional collection.
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Lef03 K. Lefèvre-Hasegawa, Sur les A∞-catégories, PhD thesis, Université Paris 7 (2003).
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