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Abstract

Road safety has recently become a major concern in most modern societies. The de-

termination of sites that are more dangerous than others (black spots) can help in

better scheduling road safety policies. The present paper proposes a methodology to

rank sites according to their hazardousness. The model is innovative in at least two re-

spects. Firstly, it makes use of all relevant information per accident location, including

the total number of accidents, the number of fatalities, as well as the number of both

light and severe injuries. Secondly, the model includes the use of a cost function to

rank the sites with respect to their total expected cost to the society. Bayesian estima-

tion for the model via a Markov Chain Monte Carlo (MCMC) approach is proposed.

Accident data from 519 intersections in Leuven (Belgium) are used to illustrate the

proposed methodology. Furthermore, different cost functions are used in the paper in

order to show the sensitivity of the proposed method on the use of different costs per

injury type.

Keywords: Gibbs sampling; Markov Chain Monte Carlo; Empirical Bayes; Road acci-

dents; Multivariate Poisson distribution
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1 Introduction

During recent years, road safety has become a major concern for many governments. Indeed, for

most European countries, road accidents constitute a large problem and cost to the society. In

the first place, there are the non-material costs associated with road accidents, including the pain,

the suffer, the reduced joy of life, and the personal damage in so far it does not affect the wealth

but rather the welfare of the victim (Lindenbergh, 1998). Secondly, there are the material costs

associated with road accidents, including direct and indirect costs. The direct costs are related

to the accident itself, such as administrative costs (e.g. police and emergency services), material

damage (e.g. damage to cars, road infrastructure, buildings, etc.), medical costs (e.g. hospital,

rehabilitation, prothesis, etc.), and costs related to resulting traffic jams. The indirect costs are

caused by the fact that the victim is not able to participate in the economic life for some period,

i.e. either temporarily (due to illness) or definite (when the victim has died). In Belgium, this total

cost to the society of traffic accidents is estimated at 3.72 billion Euros per year (Dielemann, 2000).

Social interest therefore lies mainly in preventing traffic accidents. However, this is not at

all an easy task. In fact, it is well-known that a traffic accident is usually caused by the failure

of one or more of a multitude of factors, including the safety condition of the vehicle, the safety

condition of the road (and its environment) and finally the safe behavior of the driver (Haddon,

1970). Reducing the number of traffic accidents therefore requires an integrated approach (known

as shared responsibility). For example, this can be carried out by improving the active and passive

safety of cars, by sensitizing and enforcing car drivers to be more careful and by reducing the

hazardousness of roads. The latter involves identifying sites with large accident risk so as to make

the necessary infrastructure changes for reducing the risk of the site. Furthermore, methods that

can measure and produce comparable results concerning the risk of each site are of special interest

for designing new roads or to enforce rules. Such rules imply the existence of criteria that assess

that a specific site is hazardous. Such criteria can be comparative, i.e. to find the r, say, most

hazardous roads, or they might be based on threshold values and hence all the roads passing the

threshold are to be considered for changes. In practice, these criteria can be combined using relative

information about the cost of such repairs. But the main goal remains evident, i.e., the need for

quantifying the risk of specific sites.

In this paper, we will concentrate on so-called black spots, i.e. dangerous locations where many

accidents occur. These situations are, to a great extent, the result of the infrastructure, or the

way in which it is being used. Treating black spots is a well-known and frequently used means of

improving road safety. In this study, we will focus on intersections, which are classified as black

spots after an assessment of the level of risk, both in terms of the number and the gravity of the

accidents. At some intersections, risk will be higher than what one would expect for a similar

location. Other approaches define black zones (instead of black spots) as spatial concentrations of

interdependent high-frequency accident locations (see Flahaut et al., 2003; Thomas, 1996).
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From a statistical point of view, we will treat road accidents, almost by definition, as random

events. In fact, they are indeed the unintentional result of human behavior (OECD, 1997). As

a result, it is impossible to predict the exact circumstances of a single accident. However, in

the literature, it is commonly assumed that there is an underlying mean accident rate for each

individual intersection. In fact, one can find a high variety in statistical models in the literature for

analyzing black spot data, but compelling arguments can be found to support the assumption that

accident counts follow the Poisson probability law. In this context, to correct for the extra Poisson

variation mostly present in accident counts, authors used negative binomial regression models, as

for example in Persaud (1990), Hauer (1997) and Abdel-Aty and Radwan (2000). Other authors

used generalized Poisson (Kemp, 1973) and logarithmic models (Andreassen and Hoque, 1986).

Hauer and Persaud (1987) introduced the Poisson-gamma generalized linear model, allowing the

Poisson mean to vary between locations. A comprehensive and elaborate overview of black spot

identification techniques is found in Hauer and Persaud (1987), Hauer (1996), Nassar (1996) and

Geurts and Wets (2003).

More recently, Bayesian techniques have been used to tackle problems in traffic safety. Although

the problem of hazardous intersection identification has been widely discussed in literature, the

interest in Bayesian methods in this domain only originated in the eighties. Ever since, many

applications used in some way an Empirical Bayes approach. For instance, Hauer (1986) presented

the Empirical Bayes approach as a better estimate of the expected number of accidents, because

of the enhanced accuracy of the estimates. Hauer and Persaud (1987) examined the performance

of some identification procedures. Empirical Bayes methods were used to estimate proportions

of correctly and falsely identified deviant road sections. Belanger (1994) applied Empirical Bayes

methods to estimate the safety of four-legged un-signalized intersections. The results were used

to identify black spot locations. Hauer (1996) reviewed the development of procedures to identify

hazardous locations in general. Vogelesang (1996) gives a comprehensive overview of Empirical

Bayes methods in road safety research.

However, the use of hierarchical Bayesian models in traffic safety is less widespread. Schlüter

et al. (1997) deal with the problem of selecting a subset of accident sites based on a probability

assertion that the worst sites are selected first. They propose different criteria for site selection. To

estimate accident frequencies, a hierarchical Bayesian Poisson model has been used. Christiansen

et al. (1992) developed a hierarchical Bayesian Poisson regression model to estimate and rank

accident sites using a modified posterior accident rate estimate as a selection criterion. Davis and

Yang (2001) combined hierarchical Bayes methods with an induced exposure model to identify

intersections where the crash risk for a subgroup is relatively high. Point and interval estimates of

the relative crash risk for older drivers were obtained using the Gibbs sampler.

In this paper, we will argue that when decisions have to be taken so as to spend money for

improving the quality of particular sites, it would be interesting to find a method which can examine

the risk of the sites in a comparative way and to find the sites with higher risk. Problems that occur
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to this direction are due to the different observational period for different sites and to the different

length of the examined roads. Moreover, data concerning the traffic of each site are needed so as to

make fair comparisons2. Statistical methods must account for the sources of this variability. In this

context, ranking procedures based on a hierarchical Bayesian approach have been proposed. Those

methods can handle the uncertainty and the great variability of the data and produce a probabilistic

ranking of those sites. The approach has been applied to ranking problems in various application

domains, like educational institutions or hospitals (see, e.g. Goldstein and Spiegelhalter, 1996) as

well as in traffic safety (Schlüter et al., 1997). Recently, Tunaru (2002) proposed an hierarchical

Bayesian approach for ranking accidents sites based on a bivariate Poisson-lognormal distribution.

We extend this approach by considering a more realistic model for the accident behavior taking

into account (1) the number of accidents, (2) the number of fatalities, and (3) the number of light

and severely injured casualties for a given time period for each site. This is done by using a 3-

variate Poisson distribution which allows for covariance between the variables. The parameters of

the model are estimated via Bayesian estimation facilitated by Markov Chain Monte Carlo (MCMC)

methods.

In order to combine all the data into a single number that will be used for ranking the sites,

we will make use of a cost function that measures the cost of an accident according to the number

of fatalities, heavy and light injured casualties. However, we want to point out that it is not the

objective of this paper to propose optimal values for the costs of each type of casualty. Indeed,

since there are ethical problems on defining such cost function, the methodology will be provided

using a general function. However, for the purpose of illustration, we will use two widely different

cost functions, one proposed by Baum and Hohnscheid (2001) and approved by OECD, as well as

another that is adopted by the Flemish government (see Ministry of Transportation, 2001).

The remaining of the paper proceeds as follows. In section 2 we develop the proposed model.

The data are described in section 3. In section 4, we apply the model to the data set and we discuss

thoroughly the results. Finally concluding remarks can be found in section 5.

2 The Model

Suppose that the data consist of n different sites. The number of accidents for the i-th site is denoted

by Xi, while the i-th site has been monitored for a time period ti. We assume that the number of

accidents for this site follows a Poisson distribution with parameter λiti. Note that according to

this definition, ti is not necessarily the time but it can also incorporate different lengths for the sites

and/or different traffic flows. In any case, it is an offset that makes the different sites comparable

by cancelling out all other information that may lead to differences. Thus λi’s, i = 1, . . . , n are the

2Note that traffic flows for each site are important in so far that the focus is on estimating the relative

risk of different sites. However, when the focus is on saving the maximum number of lives, then traffic flows

are not needed
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pure accident rates for the n sites per unit of time, length or traffic intensity.

For each site, we have also the triplets (Yi, Zi,Wi) that correspond to the number of fatalities,

the number of lightly injured persons and the number of severely injured persons, respectively. We

assume that jointly and conditional on the number of accidents Xi, they follow a 3-variate Poisson

distribution.

Multivariate extensions of the simple Poisson distribution have been proposed in the literature

and since the name has been used for different probability functions, it has caused a lot of confusion.

In this paper, we make use of a model that allows for pairwise covariances for each pair of variables,

instead of the usual model that assumes the same covariance term for all the pairs and has been

examined in Tsionas (1999) and Karlis (2003). Our model differs from the model of Johnson et al.

(1997), which assumes more (but unrealistic) structure. Derivation details for our model can be

found in the appendix.

In the sequel, we call as 3-variate Poisson distribution the joint probability function given by

P (y1, y2, y3) =
s1
∑

k=0

s2
∑

r=0

s3
∑

s=0

e−θ12θk
12

k!

e−θ13θr
13

r!

e−θ23θs
23

s!

e−θ1θy1−k−r
1

(y1 − k − r)!

e−θ2θy2−k−s
2

(y2 − k − s)!

e−θ3θy3−r−s
3

(y3 − r − s)!

where s1 = min(y1, y2), s2 = min(y1 − k, y3), s3 = min(y2 − k, y3 − r). The above distribution will

be denoted as 3 − Poisson(θ1, θ2, θ3, θ12, θ13, θ23). It can be seen (see Appendix for details) that

the marginal distributions are univariate Poisson distributions, i.e. Y1 ∼ Poisson(θ1 + θ12 + θ13),

Y2 ∼ Poisson(θ2 + θ12 + θ23), Y3 ∼ Poisson(θ3 + θ13 + θ23) and the covariance between Yi and Yj

is given by the corresponding parameter θij . In other words, the above model allows for different

correlations between each pair of variables, which is clearly a more realistic assumption in the

context of traffic accident injuries. To our knowledge, the above distribution has not been used in

any application. One can define analogously multivariate Poisson distributions, for details see the

Appendix.

For our application, we assume that

(Yi, Zi,Wi) | Xi = xi ∼ 3 − Poisson(µ1ixi, µ2ixi, µ3ixi, λ12xi, λ13xi, λ23xi)

Hence, µ·i reflects the rate for fatalities, light injuries and severe injuries per accident for the site

i, while λij are the covariance parameters for each pair of variables.

Note that empirical evidence supports the assumption that there is positive correlation between

the three variables Yi, Zi, Wi. This is natural since it reflects the severity of the accidents on location

i. So, instead of assuming independence between the three variables, by imposing three independent

Poisson distributions, we propose a model that takes into account those correlations between the

variables, and hence it can model the interdependencies in a more realistic way.

Since we have assumed site specific rates for all the variables of interest, it is not easy to proceed

with classical estimation methods, as for example with the maximum likelihood method. In order

to avoid this overparametrization problem, we will proceed from the Bayesian perspective, which is
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the typical procedure for this kind of data. In fact, we will describe an Empirical Bayes approach

where the prior parameters will be specified by the data.

2.1 Bayesian Approach

Our model has the form

Xi ∼ Poisson(λiti)

(Yi, Zi,Wi) | Xi = xi ∼ 3 − Poisson(µ1ixi, µ2ixi, µ3ixi, λ12xi, λ13xi, λ23xi)

The likelihood can be written in the complicated form

L(X,Y, Z,W | λ, µ1, µ2, µ3, ρ) =
n

∏

i=1

P (yi, zi, wi|xi)P (xi)

=
n

∏

i=1

e−λiti(λiti)
xi

xi!

s1
∑

k=0

s2
∑

r=0

s3
∑

s=0

e−λ12ixi(λ12ixi)
k

k!
×

e−λ13ixi(λ13ixi)
r

r!

e−λ23ixi(λ23ixi)
s

s!
×

e−µ1ixi(µ1ixi)
yi−k−r

(yi − k − r)!

e−µ2ixi(µ2ixi)
zi−k−s

(zi − k − s)!

e−µ3ixi(µ3ixi)
wi−r−s

(wi − r − s)!

where s1 = min(yi, zi), s2 = min(yi − k,wi), s3 = min(zi − k,wi − r).

Full Bayesian inference is not easy for this likelihood as it involves multiple summations. There-

fore, a Markov Chain Monte Carlo (MCMC) technique based on Gibbs sampling with data aug-

mentation will be used in order to explore the posterior distribution of the parameters of interest.

A byproduct of this approach is that we can obtain at the same time the posterior distribution of

every summary function of the parameters, including ranks. This is exactly the key ingredient of

our approach as it enables ranking the sites according to some criteria and/or calculation of the

posterior distribution of any cost function.

The vector of parameters can be represented as θ = (λ,µ1,µ2,µ3,λ12,λ13,λ23), where the vec-

tors represented by boldface letters represent the corresponding parameters for all the observations,

i.e. λ = (λ1, . . . , λn) and similarly for the other vectors.

For each parameter, we will assume a Gamma prior and we also assume that the prior distri-

butions are independent. Thus, the prior distribution for the entire vector of parameters p(θ) will

be a product of 7n Gamma densities. The choice of prior parameters can be based on either diffuse

Gamma densities or an Empirical Bayes approach (described in section 2.3).

More formally, let x ∼ Gamma(a, b) denote the Gamma distribution with density f(x) =

xa−1baexp(−bx)/Γ(a). Then, the priors are
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λi ∼ Gamma(a1, b1)

µ1i ∼ Gamma(a2, b2)

µ2i ∼ Gamma(a3, b3)

µ3i ∼ Gamma(a4, b4)

λ12i ∼ Gamma(a5, b5)

λ13i ∼ Gamma(a6, b6)

λ23i ∼ Gamma(a7, b7)

i = 1, . . . , n for all parameters.

Let X denotes the totality of the data. Using these priors the posterior takes the form of

p(θ | X) ∝ L(X,Y, Z,W | θ)p(θ)

=
n

∏

i=1

e−λiti(λiti)
xi

xi!

s1
∑

k=0

s2
∑

r=0

s3
∑

s=0

e−λ12ixi(λ12ixi)
k

k!

e−λ13ixi(λ13ixi)
r

r!

e−λ23ixi(λ23ixi)
s

s!
×

e−µ1ixi(µ1ixi)
yi−k−r

(yi − k − r)!

e−µ2ixi(µ2ixi)
zi−k−s

(zi − k − s)!

e−µ3ixi(µ3ixi)
wi−r−s

(wi − r − s)!
×

[Γ(a1)]
−1λa1−1

i b1
a1exp(−b1λi)[Γ(a2)]

−1µa2−1
1i b2

a2exp(−b2µ1i) ×

[Γ(a3)]
−1µa3−1

2i b3
a3exp(−b3µ2i)[Γ(a4)]

−1µa4−1
3i b4

a4exp(−b4µ3i) ×

[Γ(a5)]
−1λa5−1

12i b5
a5exp(−b5λ12i)[Γ(a6)]

−1λa6−1
13i b6

a6exp(−b6λ13i) ×

[Γ(a7)]
−1λa7−1

23i b7
a7exp(−b7λ23i)

The predictive distribution can be found by

P (X,Y, Z,W ) =

∫

θ
L(X,Y, Z,W | θ)p(θ)dθ

which is not of a useful form. The unconditional joint density of (Yi, Zi,Wi) is not recognizable

to belong to any of the known 3-variate discrete distributions. However, marginally, each of the

(Yi, Zi,Wi) will have a univariate Neyman distribution (see Douglas, 1980). The marginal predictive

distribution will be a mixture of Neyman univariate distributions, which again is of unknown form.

We omit the details as they are not useful for our scope.

2.2 MCMC details

The key ingredient for constructing the MCMC approach is the data augmentation offered by the

multivariate reduction approach that is used to construct the multivariate Poisson distribution.

We will make use of the following representation of a multivariate Poisson distribution, known as

multivariate reduction (see e.g. Johnson et al., 1997, details in the Appendix).
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We start from a series of independent Poisson variables X1, . . . , X6 each one following inde-

pendently a Poisson distribution, i.e, Xi ∼ Poisson(θi), i = 1, . . . , 6 and then we create the new

variables

Y1 = X1 +X4 +X5,

Y2 = X2 +X4 +X6,

Y3 = X3 +X5 +X6

One can see that X4 appears in both Y1 and Y2 and thus it is the term that measures the

covariance of Y1 and Y2. A similar interpretation holds for X5 and X6. Thus, θ4 is the covariance

parameter between Y1 and Y2 and so on. According to the above model, we may have only positive

covariances. However, for count data negative covariances are rather rare.

In our model, the above idea assumes that there are some latent variables δ1i, δ2i, δ3i, T1i, T2i, T3i

from which we construct the working variables Yi = T1i + δ1i + δ2i, Zi = T2i + δ1i + δ3i,Wi =

T3i + δ2i + δ3i. The variables δji, j = 1, 2, 3 reflect site characteristics that introduce correlation to

the working variables. The data augmentation being used is based on considering the unobservable

quantities δji, j = 1, 2, 3 , i = 1, . . . , n as parameters and then to proceed by updating their values

according to their posterior distribution. For the other parameters, one may use the standard

Gamma conjugate priors to facilitate the computations. A similar data augmentation has been

used by Karlis and Meligkotsidou (2003) for a multivariate Poisson model including regressors.

Let κ = (δ11, . . . , δ1n, δ21, . . . , δ2n, δ31, . . . , δ3n) be the unobserved data. Augmenting κ to the

observed data, the joint posterior of the complete data is of the form

p(θ,κ | data) =
n

∏

i=1

e−λiti(λiti)
xi

xi!

e−λ12ixi(λ12ixi)
δ1i

δ1i!

e−λ13ixi(λ13ixi)
δ2i

δ2i!

e−λ23ixi(λ23ixi)
δ3i

δ3i!
×

e−µ1ixi(µ1ixi)
yi−δ1i−δ2i

(yi − δ1i − δ2i)!

e−µ2ixi(µ2ixi)
zi−δ1i−δ3i

(zi − δ1i − δ3i)!

e−µ3ixi(µ3ixi)
wi−δ2i−δ3i

(wi − δ2i − δ3i)!
×

[Γ(a1)]
−1λa1−1

i b1
a1exp(−b1λi)[Γ(a2)]

−1µa2−1
1i b2

a2exp(−b2µ1i) ×

[Γ(a3)]
−1µa3−1

2i b3
a3exp(−b3µ2i)[Γ(a4)]

−1µa4−1
3i b4

a4exp(−b4µ3i) ×

[Γ(a5)]
−1λa5−1

12i b5
a5exp(−b5λ12i)[Γ(a6)]

−1λa6−1
13i b6

a6exp(−b6λ13i) ×

[Γ(a7)]
−1λa7−1

23i b7
a7exp(−b7λ23i)

Now, the conditional posteriors can be derived (· denotes the remaining parameters) as

δ1i | · ∝
λδ1i

12i

δ1i!(yi − δ1i)!(zi − δ1i)!

(

1

µ1iµ2i

)δ1i

δ2i | · ∝
λδ2i

13i

δ2i!(yi − δ2i)!(wi − δ2i)!

(

1

µ1iµ3i

)δ2i

δ3i | · ∝
λδ3i

23i

δ3i!(zi − δ3i)!(wi − δ3i)!

(

1

µ2iµ3i

)δ3i
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λi | · ∼ Gamma(a1 +Xi, b1 + ti), i = 1, . . . , n

µ1i | · ∼ Gamma(a2 + Yi − δi, b2 +Xi), i = 1, . . . , n

µ2i | · ∼ Gamma(a3 + Zi − δi, b3 +Xi), i = 1, . . . , n

µ3i | · ∼ Gamma(a4 +Wi − δi, b4 +Xi), i = 1, . . . , n

λ12i | · ∼ Gamma(a5 + δ1i, b5 +Xi), i = 1, . . . , n

λ13i | · ∼ Gamma(a6 + δ2i, b6 +Xi), i = 1, . . . , n

λ23i | · ∼ Gamma(a7 + δ3i, b7 +Xi), i = 1, . . . , n

Simulation from the Gamma conditionals is straightforward, however, simulation from the pos-

terior density of δji, j = 1, 2, 3 is not easy. Yet, a simple table look-up method suffices since in

each case δji can take only finite values from 0 to s. Suppose the general case where we want to

simulate a random variable from a distribution with probability function

P (Y = y | ψ, x1, x2) ∝
ψy

y!(x1 − y)!(x2 − y)!
,

x1, x2 ∈ {0, 1, . . .}, y = 0, . . . ,min(x1, x2), ψ > 0. This is of the same form as our conditionals.

Since the required probabilities are in a finite range, they can be computed via a recursive scheme.

The scheme is as follows: since the calculation of the normalizing constant is not trivial, start with

P ′(0) = 1 and then use the relationship P ′(k + 1) = P ′(k) ρ
k+1(x1 − k)(x2 − k), k = 0, . . . , si − 1.

Then, rescale the probabilities in order to sum to 1 and one obtains the conditional probabilities

needed for the simulation via table look-up.

The choice of the hyperparameters aj , bj , j = 1, . . . , 7 can be either diffuse priors in order

to reflect our ignorance or they can be obtained in an Empirical Bayes way from the data. For

practical reasons, it is advocated to use informative priors for λji, because diffuse priors can have

serious effects on the convergence properties of the chain. Especially, for small counts the chain

can be trapped in 0 values for the pseudoparameters λji.

One can see that the Bayesian estimation is split in two parts. The first part, involves only esti-

mation of Poisson parameters and this can be easily accomplished via standard conjugate analysis.

The second part, involves Bayesian estimation for a multivariate Poisson distribution.

MCMC offers the opportunity to derive the posterior distribution of any function of the param-

eters. For our case, the function of interest is the expected cost Ci for the i-th site. For decision

purposes this cost, measured as a function of the expected accidents and fatalities and/or injuries,

can have a large impact as it measures the hazard of a site taking into account all these aspects.

A simple form of this cost can be

Ci = β1(µ1i + λ12i + λ13i)λi + β2(µ2i + λ12i + λ23i)λi + β3(µ3i + λ13i + λ23i)λi

for some coefficients βi, i = 1, 2, 3 where the three parts corresponds to expected cost of fatalities,

light injuries and severe injuries correspondingly. At each iteration of the chain, the values of the
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costs can be calculated and their posterior distributions can be obtained. The costs can then be

used to rank the sites according to their expected total cost to the society.

So, if r
(j)
i denotes the rank of the site at the j-th iteration, then one can construct the posterior

distributions of the ranks as well, or any posterior summary of them. In other words, if the criterion

for taking corrective actions is to allocate funds to the most dangerous sites, the posterior mean

ranks offer such a classification. Otherwise, if the criterion is based on whether the expected cost

is above a given threshold, then the posterior distribution of the costs are of interest. In both

cases, the results of the analysis can be used for decision making. Perhaps, the most important

contribution of such a ranking is the fact that we take into account the uncertainty for the ranking

since it is not based on deterministic criteria. Thus, it allows for comparing different sites taking

into account the randomness in collecting and reporting the data.

2.3 Empirical Bayes

Proceeding in an Empirical Bayes spirit, the parameters of the prior distribution have to be obtained

from the data. Using the derivation of the model, we can proceed by using the results concerning

Empirical Bayes estimation for a simple Poisson model derived by Gaver and O’Muircheartaigh

(1987). Alternatively, one can use the joint probability function to derive moment based Empirical

Bayes estimates for the prior distributions.

Since we have 14 prior parameters, we need 14 equations from the data in order to get those

prior values via moment matching. In order both to simplify the problem but, at the same time, to

use some prior information useful for implementation reasons, we elicited only 11 prior parameters

from the data while we put b5 = b6 = b7 = 1. Those parameters affect the prior of the covariance

terms and thus, in order to avoid trapping the chain in zero values while we generate the posterior

distributions of δi, we use a rather small variance for the priors associated with the covariance

parameters.

For the remaining parameters, we used the marginal means and variances (8 equations) as well

as the three covariances. This system is sufficient to provide values for all the prior parameters.

Note that values for the other three prior parameters b5 = b6 = b7 can be elicited in this way, but

we believe that this is an unnecessary complication. Note also that in cases where the system of 11

equations does not have solutions in the admissible range (the prior parameters as being parameters

of the Gamma density ought to be positive) we tried to satisfy the mean relationships so as the

priors to have the correct means.

3 The data

For this study, the official Belgian traffic accident records for the city of Leuven (Belgium) have

been used. The Federal Government organizes the systematic registration of accidents involving
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injuries. The objective is the gathering of interesting data that allows the analysis of accidents

to get better insight into traffic safety problems on both the federal and regional level. Data is

systematically registered for each traffic accident involving fatalities or injured victims on public

roads in Belgium 3.

The motivations to investigate accidents at intersections for a small university city are twofold.

First of all, since Leuven is a university town, many students live and travel in the inner city. The

manifest presence of this subgroup results in very specific traffic patterns. Second, Leuven is not

only a university city, but also a center of economic activity that brings along an ever-increasing

stream of commuter traffic. For these reasons, the local government is working on a mobility

plan. The objective is to extend basic mobility and to preserve and strengthen the accessibility

for all means of transport. At the same time, car traffic should be controlled and the safety level

should increase, together with the quality of life and environment. To achieve these targets, a safe

infrastructure should be provided. In fact, a selection of dangerous road sections will be made and

investments will be done according to a priority list (for details, see ”Mobiliteitsplan voor de Stad

Leuven” (in Dutch), 2002, http://www.leuven.be).

This study is based on the data set of traffic accidents for the years 1991 to 1998 on intersections

in the city of Leuven. The intersections can be split into three groups, according to their localization.

The inner city is characterized by some star-shaped arterial roads, and other smaller roads, that are

mostly of the same type. The ring road is a larger secondary road with some very large intersections,

where the arterial roads are leaving the inner city. Also smaller intersections are to be found on

the ring road, typically having no traffic lights. The road network outside the ring road is quite

diverse. There are some built-up areas, secondary roads to surrounding cities and approaches to

and exits from the major highways.

In total, 2323 accidents at 519 intersections were identified, with accident counts ranging from 1

to 62. For each intersection, the number of accidents in the given periodXi is counted. Furthermore,

a distinction is made according to the gravity of the accidents. For each intersection i, Yi denotes

the number of fatalities (including road users who died in the hospital within 30 days after the

accident), Wi is the number of heavily injured persons, being every road user who got injured in

a crash accident and whose condition involves an admission for at least 24 hours in the hospital.

Every road user who got injured in a car accident, but to whom the specification of fatally or

heavily injured road user does not apply, is counted in the third group of light injuries, denoted by

Zi.

Some remarks about the data set should be added, however. First, since data is available only

for intersections where accidents happened, all results should be interpreted conditional on the

3It should be mentioned, however, that underreporting may affect the results. This is caused by the fact

that some people involved in an accident fail to call the police and by the fact that not all accident forms

are sent to the National Institute of Statistics. The latter is especially true for accidents involving only one

road user, light accidents and accidents involving weak road users, like pedestrians.
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occurrence of accidents. This is also the reason why no explanatory variables are used, because

they would not be generally significant. Second, abstraction is made of the order of the accidents

over the years. Third, the model does not consider spatial correlations among intersections. In

fact, one could argue that neighboring sites might have an influence on the safety between each

other. Distances and geographical neighborhood should be measured in order to take correlations

into account. This complex extension is not worked out in this paper. Although these restrictions

might limit somewhat the practical use of the data set, it is certainly useful and instructive to

illustrate the modelling approach followed in this paper.

For this study, ti = 1 for all i = 1, . . . , n, since all accident sites are intersections (so there is no

different segment length per site), the time periods of the data are the same and we do not possess

traffic flow information. The influence of different traffic flows on the results will be discussed later

in the next section.

4 Results

For the dataset concerning Leuven, we applied the proposed methodology to both the entire dataset

of 519 intersections and to a smaller dataset concerning the 44 intersections on the ring. The latter

intersections are the most dangerous since usually the speed in the ring (70 km/h) is much larger

and thus the accidents more severe. For improving the presentation, we will use both data sets.

The smaller dataset will be used to illustrate the approach with respect to the quantities of interest,

while the larger dataset will be used for elaborating the ranking procedure.

4.1 Computational Details

A first problem in the data was the fact that counts related to fatalities and severe injuries were

rather small. The variance to the mean ratio was slightly smaller than 1 indicating that their

marginal distribution is not overdispersed relative to the Poisson distribution. This caused a prob-

lem in moment matching for deriving the prior parameters. In order to proceed in such cases, we set

the overdispersion parameter of the Gamma prior equal to 1, i.e. bi = 1, i = 2, 3, 4, 5, 6, 7. The other

prior parameters for the ring dataset are the Empirical Bayes estimates a1 = 0.856, a2 = 0.00245,

a3 = 1.181, a4 = 0.02687, a5 = 0.1135, a6 = 0.01537, a7 = 1.0087 and b1 = 0.07042359.

We run the MCMC for a burn-in period of 1000 iterations and then we sampled every 10th

value. From the autocorrelation plots, no interesting autocorrelations existed. We found that the

chain converged easily and that the sampled values are indeed independent draws from the target

posterior density 4.

4Details about convergence properties are available on request, but we omit them to save space.
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4.2 Posterior densities for the parameters of interest

The most interesting aspect of this MCMC approach, is the fact that one can obtain posterior

summaries for several quantities of interest by running a simple chain. For example, in figure 1 one

can see the posterior distributions of λi’s (i.e. the mean number of accidents) for all 44 sites on the

ring. From the figure, it is clear that there are sites (4, 27, 28, 30, 31 and 32) with much higher

accident rates than others.

Figure 1: Boxplots of the posterior densities for λ for all 44 sites on the ring of Leuven
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More interesting conclusions can be found in Figure 2. In fact, this figure depicts the posterior

distribution for the parameters µ2, which is the rate of light injuries per accident for each site. One

can observe that the rate is relatively the same across all sites, which implies that the light injuries

rate is homogeneous across those intersections. Of course, the observed values are much different

as they refer to different number of accidents.

One of the advantages of MCMC is that we can obtain posterior distributions for any function

of the parameters. So, in figure 3 one can see the posterior distribution of µ2/µ3, i.e. the ratio

of light injuries versus severe injuries. In fact, we have plotted the numbers in logarithmic scale.

It is interesting to see that the majority of the sites have a homogeneous behavior, but that there

are some sites for which the ratio is much smaller. This implies that the ratios of light to severe

injuries are smaller and thus those differences reflect differences on the kind of accidents at those

sites. For example, the fact that the severe injuries are higher may imply more severe collisions on
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Figure 2: Boxplots of the posterior densities for µ2 for all 44 sites on the ring of Leuven
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those intersections.

4.3 Ranking sites using a cost function

As mentioned in the introduction, one of the strong points of the proposed methodology is the

ability to rank accident sites based on a combination of criteria, i.e. the number of fatalities, heavy

and light injuries for each site, instead of using only one of them. However, in order to combine the

information contained in those three variables, we need a cost function that in some sense assigns

a cost to each variable, i.e. assigns a weight to each type of injury.

Once again, we want to stress that assigning costs to different injury types is a rather contro-

versial issue for a variety of reasons, including ethical arguments (e.g. can we assign a cost to a

human life?) or economic arguments (what are the quantities that have to be measured in order to

estimate the cost for a severely injured person?). For illustrative purposes, we will use two different

cost functions in terms of the weights assigned to each injury type, mainly in order to allow for a

sensitivity analysis of the proposed methodology.

The first cost function was proposed by Baum (2001) and has been approved by the Organiza-

tion for Economic Cooperation and Development (OECD). It measures the cost of accidents in a

particular site by the following cost function

Ci = E(Yi) + 0.075E(Wi) + 0.0035E(Zi)
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Figure 3: Boxplots of the posterior densities for µ2/µ3 for all 44 sites on the ring of Leuven
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in million Euros. The function is based on economic arguments and includes all the expenses related

to a death or an injury. It is interesting to show how much different are the weights assigned to

each part of the equation. In fact, under this cost setting, a death is 14 times more expensive (and

hence more important for the calculations) compared to a severe injury.

Figure 4 depicts the posterior distribution of the cost for each site taking into account all

available parameters. We have used log-scale in order to improve the quality of the graph. The

posterior distributions have very large right tails. For some sites the cost is clearly much larger

than for other sites, e.g. for intersections 12, 31 and 32.

Using the above cost function, individual sites can be ranked. Let the vector cr contain the

costs for each site at the r-th MCMC iteration. Then, one can assign a rank to each site according

to its cost value and transform the vector cr to a vector Rr which contains the ranks for all the

sites. The posterior distribution for the rank of each site can then easily be constructed. In figure

5 one can see those posterior rankings. Sites 12, 31 and 32 are ranked as the worst and they differ

very much from the rest. However, there are some interesting points that must be mentioned.

There are a lot of sites with similar rankings, the variability for those sites is quite large. In fact,

these are sites of similar behavior and the differences are due to random variability. From the

graph, one can identify some sites that show a resistant difference by the others but the ranking of
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Figure 4: Boxplot of the posterior densities for the cost, using the cost function of

Baum(2001)in logscale
-8

-6
-4

-2
0

2

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44PSfrag replacements

lo
g(

co
st

)

site

the remaining is just a random perturbation and thus of no interest. The latter is very important

when the decision to be made is based on the relative ranking (perhaps the mean ranking) of those

sites and there is only a budget for a predetermined number of sites. Then, there is a danger that

some sites are not different but the decision can be made on ground of random variability at the

iterations. Concluding, the approach proposed offers the opportunity to examine whether there are

sites that are significantly worse than others.

Another interesting case is the cost function adopted by the Flemish government in Belgium

(Ministry of Transportation, 2001). This function has the form

Ci = 5E(Yi) + 3E(Wi) + E(Zi)

which in fact assigns weights (5, 3, 1) to deaths, severe and light injuries respectively. This cost

function is somewhat different from the previous in so far that it does not result in a total cost figure

(i.e. an amount), but returns an overall score based on the scores for each injury type (i.e. a plain

number). The differences with the function of Baum are clear. This function clearly downweights

the deaths. The rational for this is that, as a result of the definition of the different injury types

(see section 3), deaths and heavy injuries are more closely related than light injuries. The ranking

based on this function also can be seen in figure 6.

An interesting observation when comparing figures 5 and 6 is that some sites are recognized as
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Figure 5: Boxplots of the ranking the sites, using the cost function of Baum(2001)
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dangerous by both approaches. In fact, the variability on the Flemish cost function is somewhat

lower and offers an easier ranking of the sites, but it is apparent that the sites are almost ranked

in a similar way. We will pursue more this issue in the next subsection when examining the entire

dataset.

4.4 Sensitivity analysis of cost parameters

Both cost functions, introduced in the previous section, enable to put different (absolute or relative)

weights on each accident type. As a result, we expect the ranking of intersections to be somewhat

different according to the weights assigned to each accident type. Road safety decision makers will

therefore be highly interested in the sensitivity of those rankings with respect to the parameter

choices being made. Indeed, if different parameter choices result in totally different rankings, then

policy makers should evaluate carefully the impact of their decisions before allocating large budgets

to remedy the, say r, most dangerous intersections. In general, it sounds reasonable that the results

will not coincide. However, if only the first r most dangerous sites are to be identified, we expect

the methods to agree more or less on the same sites. In other words, if some sites are inherently

dangerous, we expect them to be identified regardless of the cost function being used.

For example, in figure 7 the ranks for each site on the ring are plotted against each other for

both cost functions, from 1 (most dangerous) to 44 (least dangerous). At least two conclusions
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Figure 6: Boxplots of the ranking the sites, using the Flemish approach
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can be drawn from this figure. Firstly, if both approaches would yield the same rankings, we

would intuitively expect all points to lie on a straight line. This is not the case. However, this

can be explained by the different variability of the rankings. Yet, in the case of a perfect match

between the rankings, the two rankings must create a monotone curve, which in some sense can be

seen in figure 7. Secondly, figure 7 shows that the most dangerous intersections (situated in the

lower left corner of the graph) coincide more than the least dangerous intersections (situated in the

upper right corner of the graph), indicating that there is much more agreement between both cost

functions towards the identification of the top-most dangerous sites, instead of less dangerous sites.

In order to validate this assumption, we used the entire dataset from Leuven, including all the

519 sites to rank them according to both cost functions. For instance, assume that one is interested

in finding the r most dangerous intersections. Figure 8 shows the percentage agreement between

the ranking of the two approaches, i.e. the percentage of sites that appear by both approaches in

the list of the r most dangerous sites, as a function of r (only plotted up to r = 300 for clarity).

Figure 8 shows that, for the dataset of Leuven, both cost functions disagree quite heavily on the

top-10 most dangerous intersections (only 50 to 60% of the most dangerous sites are considered

identical by both methods).
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Figure 7: Ranks using the two different cost functions
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However, both cost functions agree on the most dangerous site overall5. When r increases above

60, the agreement between both functions increases again and reaches almost 100% for values of

r > 160 up to 519. This graph clearly shows that policy makers should be careful in selecting the

right value for r, i.e. the number of dangerous sites to allocate money. Indeed, when r is set too

low, dangerous sites as identified by both cost functions, will be left untouched. In contrast, when

r is set too high, some sites will be selected as dangerous although they are classified as dangerous

by one cost function and as not or less dangerous by another.

4.5 What about covariates?

In this paper, we did not deal with covariates in our model. In some sense, this may sound strange.

However, we have decided not to include covariates for two reasons. Firstly, our scope was on

the ranking of the intersections. The use of covariate information would imply that we take into

account the differences due to these covariates and thus the rankings would not be useful anymore.

Secondly, all intersections included in the model are conditional on the fact that at least one accident

happened. Therefore, in no case we would have a balanced design to include covariate effects.

5One should be careful, however, in interpreting such graph since the percentage disagreement is naturally

higher for small values of r than for larger values. For example, if only one out of three sites for a value of

r = 3 is different, this will result in an agreement of only 66%.
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Figure 8: Percentage of agreement for ranking the r most hazard sites using the two different

cost functions
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Nevertheless, since it is known both from the literature and from practice that the most dan-

gerous intersections are often situated on ring roads, in figure 9 we have plotted on the Y-axis the

mean rankings based on the OECD cost function for the sites with respect to their locations. One

can see that indeed the sites situated on the ring road of Leuven are much more dangerous (i.e.

their mean ranking is higher), perhaps due to the larger speed of the vehicles on the ring compared

with the speed in built-up areas. Intersections situated in the suburbs or in the inner city are

ranked lower and there are no interesting differences between them. In fact, it is known by traffic

policy makers in Leuven that those intersections on the ring road are more dangerous, especially

those where the ring intersects with some major roads connecting the city center with the suburbs

outside the ring.

5 Concluding Remarks

The problem of ranking sites or identifying black spots is perhaps a difficult one, especially since

accidents are rare events and thus the observed data are not necessarily a good indication, i.e.

they are merely draws from an underlying density distribution. From the point of view of policy

making, this problem can have tremendous impact on the society, not only because it can reduce

the accidents on a particular site but, at the same time, one may allocate budgets that could be

given to another site, more dangerous, in fact.

In the present paper, we developed a hierarchical Bayesian procedure for ranking sites. The
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Figure 9: Boxplots of the mean rankings of sites, with respect the position of sites
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procedure takes into account not only the fatalities, but also the injuries (severe and light) and

combines this information by means of a cost function in order to rank the sites.

The choice of this cost function, however, is not the purpose of the present paper. In fact,

we think that this issue is rather controversial. However, we used two different cost functions

for illustrative purposes and to perform a sensitivity analysis towards the results. The first cost

function is based on economic arguments and adopts absolute monetary values to express the cost

to the society of each accident type. The second cost function is based on pragmatic reasons for

decision taking and assigns relative weights to each accident type in order to prioritize budgets to

the most dangerous sites. In both cases, our approach can incorporate this kind of information

while ranking a site.

Perhaps, the most interesting insight offered by our model is that it does not only rank the

sites but it also takes into account the variability of this ranking. Hence, for decision making, one

can see whether the chosen sites are really the most dangerous or there are other sites with almost

similar characteristics.

From the methodological point of view, the model suggested in the present paper is based on a
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3-variate Poisson distribution with different covariances for each pair of variables. This approach

is rather new in the literature and this model is more realistic than the common covariance model

(see e.g. Tsionas, 1999) that assumes the same covariance for each pair.
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Appendix
The derivation of multivariate Poisson distributions is based on a general multivariate reduction

scheme. Assuming Yr, r = 1, ..., k, are independent univariate Poisson random variables, i.e.

Yr ∼ Poisson(θr), r = 1, ..., k, then the definition of multivariate Poisson models is made through

the vector Y ′ = (Y1, Y2, ..., Yk) and an m × k matrix A with zeroes and ones and no duplicate

columns. Specifically, the vector X ′ = (X1, X2, ..., Xm) defined as X = AY follows a multivariate

Poisson distribution. Note that, due to the reproductive property of the Poisson distribution, one

may allow A to take any positive integer value. Without loss of generality we restrict A to take

only 0 or 1 values.

Each element of X can be expressed as a linear combination of the variables Yi, i = 1, ..., k, with

coefficients zero and one. In this framework, the variability of the random vector X , which has

the m-variate Poisson distribution, is explained through the variability of k independent univariate

Poisson random variables. Note that the elements of X are dependent as indicated by the structure

of the matrix A .

The most general form of the multivariate Poisson distribution arises if the matrix A has the

form A = [A1,A2, . . .Am], where Aj , j = 1, . . . ,m is a sub-matrix of dimensions m ×





m

j



,

each column of Aj has exactly j ones and (m − j) zeroes and no duplicate columns exist. Thus,

Am is the column vector of 1s, while A1 becomes the identity matrix of size m×m.

The reduced models for m variables derived from A = [A1,Am] are frequently used in the

literature and the resulting distributions are commonly referred to as the multivariate Poisson

distributions (see e.g. Tsionas, 2001; Karlis, 2003) This class of models is the only one used

in practice even though the theoretical treatment of the model has already been described (e.g.

Mahamunulu, 1967). In this paper, we regard a more complicated structure of the matrix A . We

focus on the case where A = [A1,A2], for the analysis of multivariate data sets. This is done in

order not to impose too much structure to our data.

The above definition of the multivariate Poisson distribution provides a straightforward gener-

alization of the univariate case. Not only does each element of X marginally follow a univariate

Poisson distribution, but also the parameters of the joint distribution of X1, X2, ..., Xm have an

obvious interpretation, naturally extended from the univariate case.

For the general model we have

E(X) = AM

and

V ar(X) = AΣA
′

where M and Σ are the mean vector and the variance covariance matrix for the variables Y0, Y1, . . . , Yk

respectively. Σ is diagonal because of the independence of Yi’s and has the form

Σ = diag(θ1, θ2, . . . , θm)
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Similarly

M = (θ1, θ2, . . . , θm)′

Another interesting feature of this model is that it allows for covariance terms separately for

each pair of variables and thus it can be considered as a counterpart of the multivariate normal

distributions suitable for multivariate count data.

For the case of the trivariate Poisson model defined by the matrix A = [A1,A2] it takes the

form

X1 = Y1 + Y12 + Y13

X2 = Y2 + Y12 + Y23 (1)

X3 = Y3 + Y13 + Y23

where Yi ∼ Poisson(θi), i ∈ {1, 2, 3} and Yij ∼ Poisson(θij), i, j ∈ {1, 2, 3}, i < j. Now, the

random variables X1, X2, X3 follow jointly a trivariate Poisson distribution with parameter θ =

(θ1, θ2, θ3, θ12,θ13, θ23)
′. The mean vector of this distribution is AM=(θ1 + θ12 + θ13, θ2 + θ12 +

θ23, θ3 + θ13 + θ23)
′ and its variance-covariance matrix is given as

AΣA
′ =











θ1 + θ12 + θ13 θ12 θ13

θ12 θ2 + θ12 + θ23 θ23

θ13 θ23 θ3 + θ13 + θ23











.

The parameters θij , i, j = 1, 2, 3, i 6= j, have the straightforward interpretation of being the co-

variances between the variables Xi and Xj and, thus, we refer to them as the covariance param-

eters. The parameters θi, i = 1, 2, 3, appear only at the marginal means and we refer to them

as the mean parameters. The model with the common covariance term can be obtained by set-

ting AM=(θ1 + θ0, θ2 + θ0, θ3 + θ0)
′ and each covariance term equal to θ0. The mean and the

variance-covariance matrix for the m-variate Poisson distribution (m > 3) are defined in an analo-

gous manner. It is clear that this model is more flexible and reasonable for real applications than

the one with common covariance.
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