

Captive breeding of the critically endangered European weatherfish: A refuge for conservation-sensitive parasites?

Vanhove MPM, Auwerx J, Kmentová N, Martel A, Nelson A, Terrier N, Van Wichelen J, Tiziana Gobbin,

XII ISFP

Biodiversity crisis

Biodiversity crisis
Bias towards vertebrates

→ Need for actions!

Conservation

Among possible conservation action:

- Breeding and reintroduction
- Relocation / Translocation

Gopher tortoise (Gopherus polyphemus)

Black rhinoceros (Diceros bicornis)

Californian condor (*Gymnogyps californianus*)

Conservation

Commonly, (species-specific) parasites are intentionally removed during conservation actions targeting their hosts

California condor louse (Colpocephalum californici)

Gophertortoise tick (Amblyomma tuberculatum)

Amblyomma personatum Dermacentor rhinocerinus

→ increases the extinction risk of parasites
→ conservation-induced extinction

Gopher tortoise (Gopherus polyphemus)

Black rhinoceros (Diceros bicornis)

Californian condor (*Gymnogyps californianus*)

Parasite extinction

Extinction of parasite species is not good news!

Parasites

 Provide many ecosystem services linking food webs regulating host populations reducing impact of toxic pollutants


. . .

Have an intrinsic value
 Are part of genetic and species diversity
 Represent a (large) portion of evolutionary history

Dilemma of conserving parasites

Protect endangered free-living species at the risk of causing parasite decline/extinction?

OR

Protect endangered parasite species at the risk of decreasing host fitness?

Conservation of one species should NOT hamper the conservation of other species!

→ We have a case study showcasing this

European weatherfish

European weatherfish (Misgurnus fossilis)

Decreased in large parts of its native range (habitat loss, pollution, invasion of 2 Asian congeners)

European weatherfish

Belgium: critically endangered (few small populations left)

Since 2021: protection plan in Flanders

Ex-situ breeding

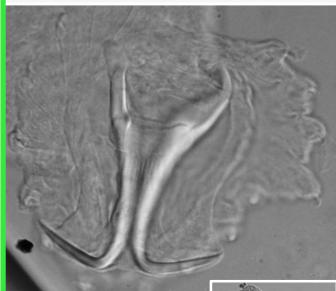
- to restock existing Flemish populations
- to establish new ones in suitable habitats

Vlaanderen

is wetenschap

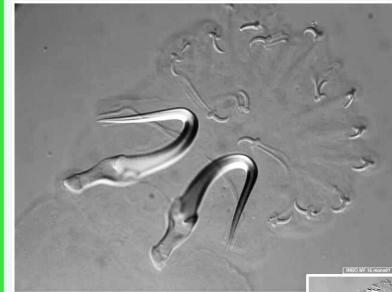
INSTITUUT

NATUUR- EN


What about their parasites?

18 fish from 2024 (9 adults + 9 juveniles) 9 fish from 1881-1973 (9 adults)

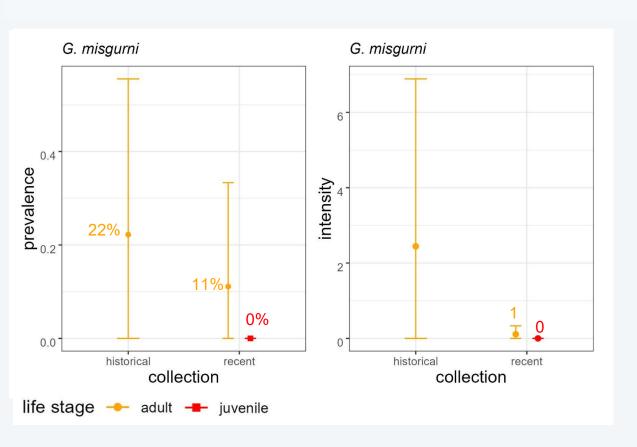
Gyrodactylus misgurni (Gyrodactylidea)


Historical collection (& 1 recent specimen)

Actinocleidus cruciatus (Dactylogyridea)

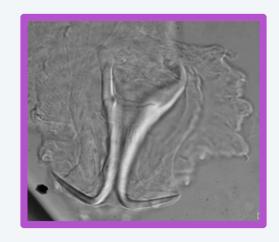
Historical & recent collection

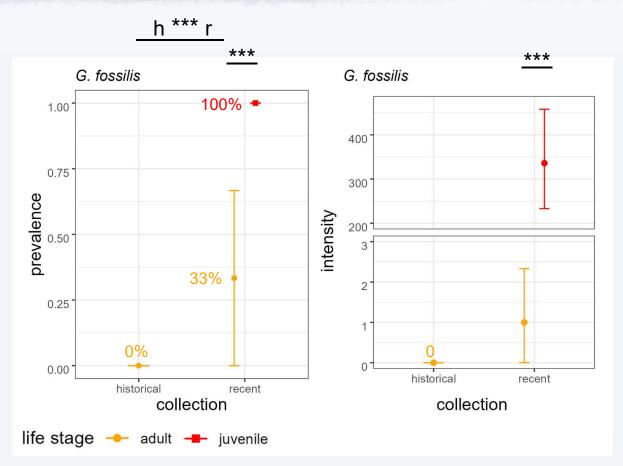
Gyrodactylus fossilis (Gyrodactylidea)


Recent collection

Extinction risk in Czech Republic & Slovakia

Baruš et al., 1997

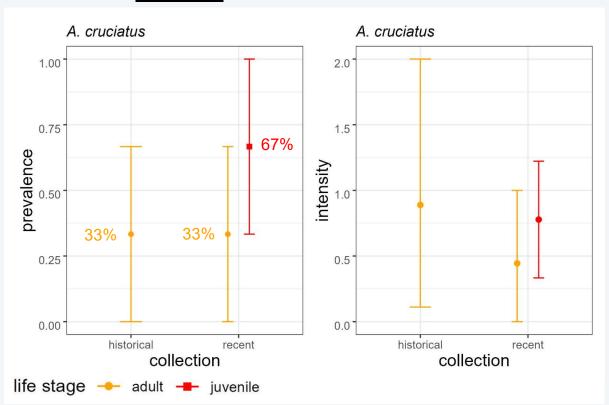

HELMINTH CLASS/IUCN CATEGORY Helminth species	Host species	River basin ¹	Proposed IUCN category for Czech / Slovak Rep. ²
MONOGENEA/CRITICAL			
Ancyrocephalus cruciatus (Wedl, 1857)	M. fossilis	F. O. D	EN / CR
Dactylogyrus chondrostomi Malevitskaja, 1941³	C. nasus	D	CR / SU
Dactylogyrus dirigerus Gusev, 1966	C. nasus	D	CR / SU
Dactylogyrus ergensi Molnár, 1964	C. nasus	D	CR/SU
Dactylogyrus nybelini Markevitch, 19333	C. nasus	D	CR / SU
Dactylogyrus simplicimalleata Bychowsky, 19613	P. cultratus	D	CR / VU
Gyrodactylus fossilis Lupu et Roman, 1956	M. fossilis	E. O. D	EN / CR
Gyrodactylus macrocornis Ergens, 1963	C. nasus	D	CR / SU
Gyrodactylus misgurni, Ling Mo-en 1962	M. fossilis	D	helminth not recorded / CR
Gyrodactylus paraminimus Ergens, 1966	C. nasus	D	CR / SU
Paradiplozoon vojteki (Pejčoch, 1968)	P. cultratus	D	CR / VU



G. misgurni

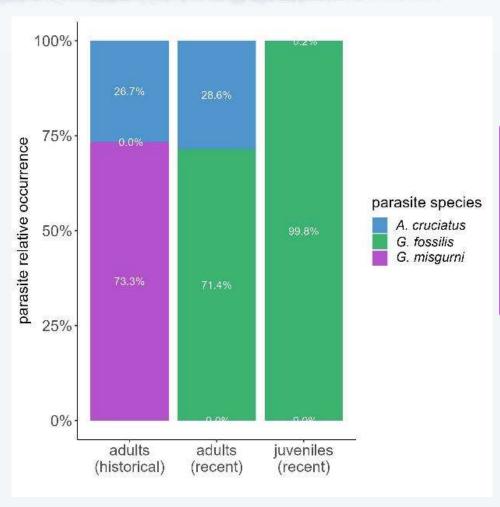
On historical (adult) host specimens, except 1 individual on a recent fish (no stats)

G. fossilis

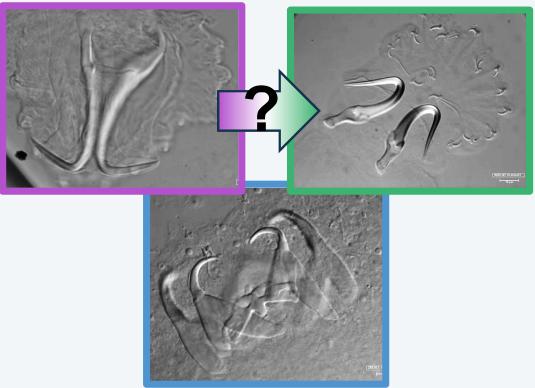

Only on recent host specimens

All juveniles were infected and by much higher numbers than adults (mean 336 vs 1)

- → It may not have been present in Belgium in the past
- → Juvenile/adult difference in infection may be explained by their different diet



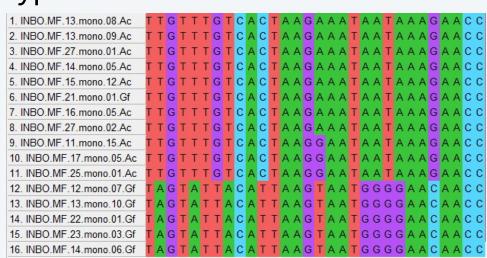
A. cruciatus


Despite similar prevalence, recent specimens had higher numbers than historical ones.

→ it thrives in aquaculture

Hypothesis: *G. fossilis* filled the vacant niche of *G. misgurni*

Molecular characterization


A. cruciatus G. fossilis

18S-ITS1: 3 haplotypes ITS1: 4 haplotypes

28S: 3 haplotypes 28S: 3 haplotypes

COI: 2 haplotypes COI: 3 haplotypes

Good resource for barcoding and eDNA detection

Winning pair

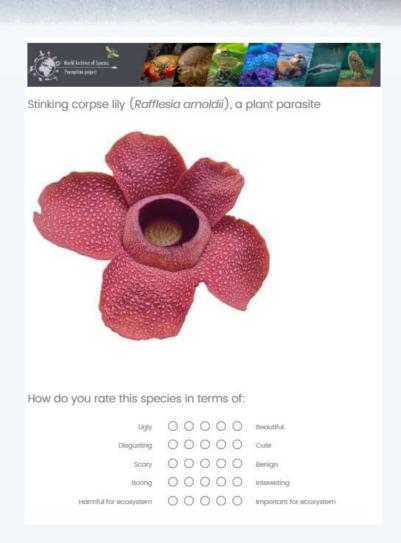
Normally, under moderate abundance, monogeneans do not kill their hosts

→ not necessary to actively remove them during conservation actions

Without parasite removal, conservation actions for hosts can benefit parasites, too!

→ Integrate parasitological assessments into conservation good practices

Ichthyo-parasitological team @ Hasselt University (B) **Royal Belgian Institute of Natural Sciences (B)**


tiziana.gobbin@uhasselt.be https://tizianapaolagobbin.wordpress.com

WASP-Parasite

World Archives of Species Perception, spin-off on parasites

https://tinyurl.com/wasp-parasite

Conservation

Most conservation programs are ignoring parasite

Iberian lynx (*Lynx pardinus*)
From "critically endangered" (2002)
to "vulnerable" (2023)

Iberian lynx louse (*Felicola isidoroi*)
From "unkown" (2002)
to "never seen again" (2023)