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Abstract 

Objective: 

The most recent edition of the International Clinical Practice Guideline for the Prevention and 

Treatment of Pressure Ulcers/Injuries was released in 2019. Shortly after, in 2020, the first edition of 

the SECURE Prevention expert panel report, focusing on device-related pressure ulcers/injuries, was 

published as a Special Issue in the Journal of Wound Care. A second edition followed in 2022. This 

article presents a comprehensive summary of the current understanding of the causes of pressure 

ulcers/injuries (PUs/PIs) as detailed in these globally recognized consensus documents.  

Method: 

The literature reviewed here specifically addresses the impact of prolonged soft tissue deformations 

on the viability of cells and tissues in the context of PUs/PIs related to bodyweight or medical devices.  

Results: 

Prolonged soft tissue deformations initially result in cell death and tissue damage on a microscopic 

scale, potentially then leading to development of clinical PUs/PIs over time. That is, localized high 

tissue deformations, or mechanical stress concentrations, can cause microscopic damage within 

minutes, but it may take several hours of continued mechanical loading for this initial cell and tissue 

damage to become visible and clinically noticeable. Superficial tissue damage primarily stems from 

excessive shear loading on fragile or vulnerable skin. In contrast, deeper PUs/PIs, known as deep tissue 

injuries, typically arise from stress concentrations in soft tissues at body regions over sharp or curved 

bony prominences, or under stiff medical devices in prolonged contact with the skin.  

Conclusion: 

This review article promotes deeper understanding of the pathophysiology of PUs/PIs, indicating that 

their primary prevention should focus on alleviating the exposure of cells and tissues to stress 

concentrations. This goal can be achieved either by reducing the intensity of stress concentrations in 

soft tissues, or by decreasing the exposure time of soft tissues to such stress concentrations. 

 

Keywords:  

Pressure ulcer aetiology, cell and tissue biomechanics, mechanobiology, the vicious cycle of injury, 

sustained tissue deformations.  
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1. Biomechanical pathophysiological understanding is paramount for enhancing awareness 

The latest Clinical Practice Guideline on the Prevention and Treatment of Pressure Ulcers/Injuries was 
published in 2019, summarizing the aetiology of pressure ulcers/injuries (PUs/PIs) with a focus on 
effects of sustained soft tissue deformations and stresses on cell and tissue viability (Gefen et al., 
2019a; Gefen et al., 2022a). Shortly after, in 2020, the first edition of the SECURE1 Prevention expert 
panel report, focusing on device-related pressure ulcers/injuries, was published as a Special Issue in 
the Journal of Wound Care (Gefen et al., 2020a). A second edition followed in 2022 (Gefen et al., 
2022b). The biomechanical aetiology of PUs/PIs caused by bodyweight forces or by contact forces 
from a skin-contacting medical device is in fact, the same. The cells and tissues are suffering localized 
damage resulting from prolonged mechanical loading in various forms such as compression, tension, 
or shear, typically combined. Soft tissue tolerance to these deformations varies by the tissue type and 
quality, and is further influenced by factors like microclimate, perfusion, age, health status, and 
systemic or localized conditions. Key factors in PUs/PIs development include impaired mobility and 
sensation (Gefen et al., 2022a,b).  

Mechanical loads impacting skin and soft tissues include bodyweight forces and external forces from 
contact with surfaces or devices. These loads have both normal (perpendicular to skin) and shear 
(parallel to skin) components. Pressure is the normal force per unit area, while shear stress is the shear 
force per unit area. Friction, related to shear stresses, describes the sliding potential of surfaces, such 
as skin against a medical device (Shaked and Gefen, 2013; Schwartz et al. 2018a). Tissue response to 
mechanical loads results in localized tissue strains2 and stresses, with excessive or prolonged exposure 
damaging cell structures and hindering transport within tissues (Gefen et al., 2022a,b). This leads to 
cell death, inflammatory responses, increased interstitial pressures and potentially ischaemic tissue 
conditions (Gefen, 2018a,b; Gefen & Gershon, 2018). The impact of mechanical loads on cells and 
tissues depends on anatomical structure, tissue properties, and applied force magnitudes and 
distributions. Changes in morphology and mechanical properties due to factors like ageing or chronic 
injury affect tissue response to loading (Gefen, 2014; Gefen 2017). Internal tissue strain/stress 
responses are irregular, varying across different locations and depending on the specific tissue 
environment. Normal forces on weight-bearing body parts or from medical devices are likewise non-
uniform, with inherent associated shear forces (Reger, 1990; Linder-Ganz et al., 2007, 2008). Imaging 
techniques like MRI, CT, ultrasound, and finite element (FE) modelling assess internal tissue 
deformations and predict cell and tissue damage risks. Understanding PU/PI aetiology and effective 
interventions always rely on knowledge of internal tissue responses to mechanical loads, not just 
external appearances (Gefen & Levine, 2007; Gefen et al., 2022a,b). Importantly, generic threshold 
values for cell and tissue damage as function of the cell/tissue strain/stress levels cannot be provided 
due to the numerous individual factors which affect cell/tissue tolerance to loading and the extent 
and rate of cell and tissue damage buildup, as will be reviewed in this article (Gefen & Clark, 2019).  

Understanding the aetiology of PUs/PIs is paramount for enhancing clinical awareness of this 
prevalent healthcare issue. By exploring the underlying causes described in this review article, 
healthcare professionals can develop a more comprehensive understanding, through education and 
training programs aimed to explain how these wounds develop and progress. This, in turn, empowers 
clinicians to more easily and quickly identify at-risk patients, apply preventative measures earlier and 
more effectively, and tailor treatment plans to address the root causes of PUs/PIs at their own 

 
1 SECURE= Skin, Education, Champion, Understanding, Report, Evaluate. 
2 Strains are engineering metrics to quantify dimensionless (i.e., percentage) deformations that occur in a material element 

subjected to forces, and are measured as the ratio of the change in size or shape to the original size of the material element. 
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institution and care environment. Furthermore, enhanced knowledge of PU/PI aetiology fosters 
critical thinking regarding newly offered wound care equipment and products for which claims are 
made to have clinical effectiveness in PU/PI prevention (such as in potential presentations by sales 
representatives). Deeper understanding also drives a proactive and motivated rather than reactive 
and rote approach to PU/PI prevention, ultimately improving patient outcomes and reducing 
healthcare costs associated with managing forming and existing PUs/PIs. Therefore, integrating 
education and training programs on PU/PI aetiology in healthcare settings is crucial for improving 
patient safety and quality of care, and for promoting better overall clinical outcomes (Gefen et al., 
2019b). This article hence promotes deeper understanding of the biomechanical pathophysiology 
aspects of PUs/PIs, using language accessible to non-technical readers, in order to enhance clinical 
awareness of the individual susceptibility to deformation-inflicted tissue damage, as discussed further.  

2. The responses of skin and deeper soft tissues to sustained mechanical loads and wetness 

The primary cause of PUs/PIs is exposure to sustained mechanical loads on soft tissues, often near 
bony prominences or from medical devices such as ventilation masks or pulse oximeters. These 
devices, stiffer than skin, cause focal deformations and stress concentrations (Levy et al., 2017a; Lustig 
et al. 2018). Tissue damage, characterized by cell death, most typically occurs with sustained 
deformation from bodyweight or external forces (Figure 1). The magnitude of internal mechanical 
load and the duration of application are critical for tissue damage, where both high-magnitude short-
term loads and low-magnitude long-term loads can cause irreversible damage (Reswick & Rogers, 
1976; Salcido et al., 1994; Breuls et al., 2003a,b; Linder-Ganz et al., 2006; Stekelenburg et al., 2006; 
Gawlitta et al., 2007a,b; Gefen et al., 2008a). Damage resulting from a brief, intense mechanical load, 
termed ‘impact damage’, is not considered to cause PUs/PIs (Gefen et al., 2019a, 2022a). The historical 
tissue damage threshold by Reswick & Rogers (1976) indicated an inverse relationship between 
pressure magnitudes and durations but required corrections for extreme loading times. Specifically, 
high loads can cause immediate microscopic damage, while very low loads extended over time may 
not lead to damage (Gefen, 2009a,b). Tissue damage thresholds cannot be generically quantified due 
to individual anatomical and tolerance variabilities (Gefen, 2009a,b; Lachenbruch et al., 2013; Zeevi et 
al. 2018; Gefen et al., 2020a). 

In supported postures such as sitting or lying in bed, the distribution of internal soft tissue stresses 
near bony prominences (e.g., the ischial tuberosities or sacrum) often exhibits a crater or funnel shape, 
indicating that the highest soft tissue stresses are concentrated near the most curved (‘sharp’) bony 
surface facing the support surface; soft tissue stresses gradually decrease as distance from the bone 
increases (Linder-Ganz et al., 2007, 2008, 2009). This is because the soft tissues surrounding the bony 
prominence experience a downward compression force transferred through the bone, creating a 
depression or indentation in the overlying tissues (resulting from the steep stiffness gradient between 
the bone and soft tissues), which resembles a crater. This internal soft tissue distortion configuration 
is causing a risk of deep PU/PI development, as these soft tissues adjacent to the curved bone surfaces 
and the cells within are subjected to prolonged and concentrated mechanical loading in a localized 
subdermal tissue region. The soft tissue loading state can intensify again near the surface of the body, 
depending on the level of the frictional forces acting on the skin and the nature and stiffness of the 
support surface, which introduces the possibility of a ‘sandwich’ PU/PI mechanism where the injury 
concurrently progresses from the bone internally towards the body surface, and from the skin 
externally into the depth of the tissues (Ohura et al., 2007). 

Minimizing interface pressures and shear stresses reduces the PU/PI risk (Brienza et al., 2001; Peko-
Cohen et al., 2019; Amrani & Gefen, 2020; Gefen et al., 2020a; Lustig et al., 2020; Peko et al., 2020). 
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However, pressure measurements alone are not reliable for tissue breakdown risk predictions, as 
similar pressures may result in different internal tissue loads depending on individual anatomies 
(Gefen & Levine, 2007; Gefen, 2008a; Sopher & Gefen, 2011; Linder-Ganz et al. 2007, 2008; Brienza et 
al., 2018). Shear stresses, in combination with pressures, exacerbate the deformation-induced tissue 
damage (Knight et al., 2001; Linder-Ganz & Gefen, 2007; Shilo & Gefen, 2012). Specifically, sustained 
shear stresses in soft tissues can lead to capillary distortions in the affected region to an extent that 
impairs the capillary ability to effectively perfuse the loaded soft tissues. In addition, excessively high 
shear stresses can damage the endothelial cell lining of the capillaries, compromising their integrity 
and increasing the vascular permeability, which further contributes to the oedematous-related tissue 
damage (Figure 1) (Linder-Ganz & Gefen, 2007; Van Damme et al., 2019). 

Stress concentrations at bony prominences can damage deep tissues before superficial damage 
appears (Todd & Thacker, 1994; Oomens et al., 2003; Linder-Ganz et al., 2004; Gefen et al., 2005; Akins 
et al., 2016; Linder-Ganz et al., 2007, 2008; Brienza et al., 2018; Amrani & Gefen, 2020; Lustig et al., 
2020; Peko et al., 2020). Superficial shear stresses from frictional forces disrupt the skin barrier 
function, with wetness increasing risks of skin tears and infections (Sopher & Gefen, 2011; Schwartz 
et al., 2018a; Gefen, 2020a; Gefen & Ousey, 2020). Skin micro-topography changes with sustained 
pressure and wetness, affecting friction and risk of skin breakdown (Sopher & Gefen, 2011; Shaked & 
Gefen, 2013; Dobos et al., 2015; Schwartz et al., 2018a; Gefen, 2020a; Gefen et al., 2020a; Gefen & 
Ousey, 2020). If damage occurs, affected soft tissues may undergo abnormal biomechanical changes, 
such as localized rigor-mortis in muscles and fibrous scar tissues, contributing to strain/stress 
concentrations and load inhomogeneity (Gefen et al., 2005; Gefen, 2009c; Sopher et al., 2011; Levy et 
al. 2013, 2014). 

The microclimate between the skin and the support surface or any skin-contacting medical device or 
object plays an important role in the development of superficial PIs. Microclimate refers to the 
temporal and spatial temperature and humidity of the skin. The characteristics of an optimal 
microclimate are still a matter of ongoing research, but it is evident that with an increase in 
temperature and humidity, the skin becomes weaker and more vulnerable to mechanical damage 
(Gefen, 2011; Kottner et al. 2018; Amrani et al., 2020). Excessively dry skin is also undesirable, as dry 
skin becomes more brittle and liable to cracking and tears. Wetness of the interface of the skin with 
any contacting objects therefore dominantly influences the ability of the skin to stay intact when 
subjected to sustained mechanical loading (Nacht et al., 1981; Gerhardt et al., 2008; Gefen, 2011; 
Shaked & Gefen, 2013; Schwartz et al., 2018a; Zeevi et al., 2018; Schwartz & Gefen, 2020). The skin 
also tends to increase in its coefficient of friction (COF) in contact with other surfaces when exposed 
to warm and moist conditions, likely due to perspiration (Klaassen et al. 2017; Schwartz et al., 2018a). 
The evaporation of perspiration from the body surface further depends on the local and ambient 
humidity conditions (Gefen, 2011). The COF value ultimately affects the magnitude of frictional forces 
acting on the body, and hence the skin and subdermal tissue deformations resulting from any frictional 
sliding movements between the skin and a support surface, a medical device or other contacting 
objects (Sopher & Gefen, 2011; Shaked and Gefen, 2013; Schwartz et al. 2018a; Zeevi et al. 2018). 
Overall, there are strong links between the microclimate conditions and the frictional forces that apply 
at a certain body region (through the COF), affecting both the surface and the internal soft tissue 
loading states and therefore the biomechanical conditions of all the cells contained in these tissues 
(Gefen et al., 2020a; Gefen & Ousey, 2020; Zeevi et al., 2018; Schwartz & Gefen, 2020).  

3. Deformation-inflicted soft tissue damage and the individual susceptibility 
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There are fundamental differences between the aetiology of superficial PUs/PIs affecting skin, versus 
those PUs/PIs that originate and form in the deeper soft tissues (Kottner et al. 2011). Superficial 
PUs/PIs are primarily caused by excessive shear exposure at the skin surface whereas deeper PUs/PIs 
predominantly result from stress concentrations in soft tissues near bony prominences (Gefen 
2007a,b, 2008c, 2009c; Agam & Gefen, 2007; Linder-Ganz & Gefen, 2009; Linder-Ganz et al. 2009; 
Shabshin et al. 2010; Lahmann & Kottner, 2011; Sopher et al. 2011; Shoham & Gefen, 2012; Gefen et 
al., 2013; Peko Cohen et al. 2018).  

The damage cascade in PUs/PIs, illustrated in Figure 1a, includes the sequential cell and tissue damage 
associated with direct deformation (1st factor), damage associated with the inflammatory response 
(2nd factor), and damage induced by ischaemia (3rd factor) (Gefen et al., 2022a,b). The additive nature 
of these damages (depicted in Figure 1b) highlights the importance of minimization of the exposure 
to sustained tissue deformations and of early detection of cell and tissue damage for effective PU/PI 
prevention. In the context of the theoretical framework described in Figure 1, the patient-specific 
internal anatomy, including the sharpness or curvature of bony prominences, the adjacent soft tissue 
morphologies and the mechanical and thermal properties of these tissues will altogether dictate the 
state of internal tissue deformations, strains and stresses and the thermodynamic state of the 
distorted tissues. The individual cell and tissue repair capacity and the transport properties at the cell 
and tissue scales will further determine the ability of the body to reverse and repair a forming cell and 
tissue damage. The progression of the damage, along with the progression of healing, will constitute 
the time for a PU/PI to develop in the individual and the extent and severity to which it will develop. 

Cell and tissue death can be caused by either direct mechanical damage, or by biochemical stress 
associated with lack of supply of essential molecules and impaired clearance of metabolic waste 
products. In this context, two physiologically-relevant deformation thresholds exist for soft tissues 
subjected to sustained mechanical loading. One is a lower threshold leading to partial obstruction of 
the vasculature which may induce ischaemia (Linder-Ganz & Gefen, 2007; Shilo & Gefen, 2012) and/or 
lymphatic impediments (Gray et al., 2016), and the other is a higher threshold, leading to direct 
deformation-inflicted damage which causes cell death within short time frames, in the order of 
minutes (Ceelen et al., 2008; Linder-Ganz et al., 2006; Gefen, 2008b; Gefen et al., 2008a,b; Loerakker 
et al., 2010, 2011a,b; Oomens, 2010). Ischaemia, as a result of sustained deformations of soft tissues 
will lead to hypoxia, reduced nutrient supply and impaired removal of metabolic waste products. 
Deprivation of nutrients and decrease in the pH level towards a more acidic extracellular environment, 
due to accumulation of metabolic waste products, will eventually lead to cell death and tissue damage, 
however, cells are able to survive for considerable times, in the order of hours, by shifting to an 
anaerobic metabolism (Bader et al., 1986; Gawlitta et al., 2007a,b; Linder-Ganz & Gefen, 2007). 
Prolonged exposure to ischaemic conditions, including an acidic extracellular environment (i.e., low 
pH), have shown to slow collective cell migration, particularly of fibroblasts, in cell culture models 
(Topman et al., 2012) which may compromise the body’s attempts to repair microscale damage, and 
hence, contribute to an overall accelerated rate of tissue damage in PIs (Gefen, 2018b; Gefen, 2019). 
The time duration during which cells and tissues can endure ischaemia without occurrence of 
irreversible damage differs for the tissue types that are potentially involved in PIs, that is, skeletal 
muscle, adipose and skin. Muscle tissues are more susceptible to mechanical damage than skin 
(Salcido et al., 1994; Stekelenburg et al., 2006). Skin is considerably stiffer than muscle or adipose 
tissues, and therefore, deforms to a lesser extent in most clinically-relevant scenarios. In animal 
experiments, the first signs of ischaemic damage are found in skeletal muscle after two to four hours 
of sustained tissue deformations (Bader et al., 1986; Linder-Ganz et al., 2006; Gawlitta et al., 2007a,b; 
Loerakker et al., 2011a,b).  
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Sustained skeletal muscle deformations at strains greater than 50% will almost immediately (within 
minutes) lead to tissue damage at a microscopic scale (Gefen et al., 2008a). At these strain levels, 
there is a strong correlation between the magnitude of the strain and the amount of damage inflicted 
to the muscle cells/fibres. This direct deformation-inflicted damage to cells is the result of: (i) Loss of 
integrity and structural support provided to the cell body by the cytoskeleton; (ii) Over-stretching of 
the plasma membrane, which increases when the structural support provided to the membrane by 
the cytoskeleton diminishes; and (iii) Internal signalling pathways related to these excessive cell 
deformations that cause apoptotic cell death (Breuls et al., 2003a,b; Stekelenburg et al., 2006, 2007, 
2008; Slomka & Gefen, 2011, 2012; Leopold & Gefen, 2013; Gefen & Weihs, 2016). Mechanobiology 
work in the research group of the author, focusing on the cell scale, has further indicated that 
mechanically stimulating cells, by applying low-level, non-damaging mechanical deformations/strains, 
accelerates collective cell migration into damage sites in laboratory cell cultures (Toume et al. 2017; 
Katzengold et al., 2020, 2021). Given that PUs/PIs form when the rate of cell and tissue death is greater 
than the corresponding rate of tissue regeneration (i.e., through cell proliferation, migration and 
differentiation), contemporary mechanobiology research has already identified several optimal 
features of stimuli to promote repair processes, particularly concerning the migration of cells into a 
damage site at the onset of a micro-scale PU/PI (Toume et al. 2017; Katzengold, 2020,2021). 

Diffusion of nutrients and clearance of waste products and hormones that regulate tissue metabolism 
may be hindered by sustained mechanical loading (Gefen, 2008b; Gefen et al., 2008b; Ruschkewitz & 
Gefen, 2010, 2011). Cell culture, tissue engineering and computational modelling works conducted by 
the group of the author suggested that localized sustained large tissue deformations in weight-bearing 
body regions under bony prominences translate to large cellular deformations at the micro-scale, 
thereby causing distortion of cellular organelles, e.g., considerable stretching of cellular plasma 
membranes (Slomka et al., 2009; Slomka & Gefen, 2010, 2011; Shoham & Gefen, 2012; Leopold et al., 
2011; Leopold & Gefen 2012a,b 2013; Ruschkewitz & Gefen 2010, 2011). The prolonged exposure to 
large tensional plasma membrane strains may interfere with normal cellular homeostasis, primarily 
by affecting transport processes through the plasma membrane which becomes more permeable 
when it is highly stretched. This has been visualized and quantified in cell cultures subjected to 
physiologically-relevant deformations for periods of 2-3 hours, using biomolecular fluorescent 
markers (Slomka & Gefen, 2012; Leopold & Gefen, 2013; Gefen & Weihs, 2016). The progression of 
cell death and tissue necrosis causes gradual local alterations of the mechanical properties of the 
injured tissues that can, in turn, change the distributions of strains and stresses in forms that are likely 
to exacerbate the evolving injury, e.g., through development of inflammatory oedema and localized 
rigor mortis in skeletal muscles (Edsberg et al., 2000; Linder-Ganz & Gefen, 2004; Gefen et al., 2005; 
Gefen, 2009c; Gefen, 2018a; Gefen, 2020b). Localized inflammatory edema, one of the earliest signs 
of cell death in PUs/PIs, is detectable via measurement of a biophysical marker called the 
biocapacitance of tissues (Gefen, 2018a; Gefen & Gershon, 2018; Peko Cohen & Gefen, 2019; Ross & 
Gefen, 2019; Gefen, 2020b; Peko & Gefen, 2020; Gefen & Ross, 2020). Reperfusion following 
prolonged ischaemia periods may further escalate the tissue damage as it involves release of 
damaging oxygen free radicals (Houwing et al., 2000; Peirce et al., 2000; Ikebe et al., 2001; Unal et al., 
2001; Reid et al., 2004; Tsuji et al., 2005). The nature of the vicious cycle of PUs/PIs is therefore 
cumulative: Sustained tissue deformations, localized inflammation and ischaemia are all contributing 
to the escalation. Exposure to sustained soft tissue deformations is the primary factor and driving 
force that triggers and progresses inflammatory and ischaemic-reperfusion damage pathways (Figure 
1).  

Importantly, the cell and tissue damage buildup process described in Figure 1 should be seen as a 
bioengineering model of the complex PU/PI aetiology, and of course, models are always a 
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simplification of reality. In the real-world, the deformation-induced, inflammatory-response-related 
damage and ischaemic damage factors integrate, interact and potentiate each other in a process that 
is nonlinear and not serial. Accordingly, rather than viewing mechanical loading applied to soft tissues 
and tissue response as isolated events that occur sequentially, it should be recognized that the 
aforementioned aetiological factors operate concurrently and may amplify each other during the 
loading period and following it. For instance, increased mechanical loading on a localized tissue region 
can lead to simultaneous, excessive cell distortions and compromised tissue perfusion, exacerbating 
the metabolic dysfunction at the same time when cells start to die due to the direct influence of 
deformation. Similarly, shear loading acting in tandem with the rise in interstitial tissue pressures can 
further worsen the tissue damage, by disrupting cell integrity due to mechanical stresses while also 
concurrently contributing to obstruction of the microvasculature. Furthermore, if decreased tissue 
perfusion or low oxygenation and resulting ischaemia or hypoxic tissue conditions already exist in a 
patient who is at-risk for a PU/PI but who did not yet develop a clinical injury, e.g., due to a 
hemodynamic, vascular or respiratory disease (e.g., pneumonia), these will exacerbate the effects of 
sustained cell and tissue deformations in a supported posture or under a skin-contacting medical 
device. The complexity of the PU/PI aetiology stems from the interconnectedness and existence of 
such synergistic effects between these three primary factors (deformation, inflammation and 
ischaemia; Figure 1), which highlights the importance of considering multiple variables simultaneously 
when applying preventative measures. 

Ageing leads to considerable physiological changes such as increased connective tissue (including skin) 
stiffness, making the elderly inherently more susceptible to PUs/PIs. Chronic diseases may further 
exacerbate this risk, with factors like compromised hemodynamic status impairing tissue perfusion 
and increasing tissue vulnerability to ischaemic damage. Hyperglycaemia in diabetes hinders the 
repair capacity of tissues while also impacting tissue stiffness properties through changes to collagen 
structure and arrangement, leading to stiffer connective tissues that are (like in the ageing patient) 
less effective in dispersing stress concentrations through deformations. Additionally, poor nutritional 
status compromises the tissue repair capacities and weakens the protective barrier of the skin. In the 
context of an overall clinical status, these factors intertwine to increase the susceptibility to PUs/PIs, 
again highlighting the importance of comprehensive assessment and management strategies tailored 
to the individual patient in order to effectively mitigate their risk (Gefen, 2019). 

4. Future research directions and the expected technological progress in the context of our 
contemporary etiological understanding  

 
Examples of current PU/PI prevention technologies can be classified into ones that minimize exposure 
to sustained tissue deformations, versus those which target the biomarkers of early cell damage or 
death, to prevent progression of the damage. The first category of existing technologies, which 
concerns minimization of exposure to tissue deformations include support surfaces that enhance body 
immersion and envelopment and minimize shear (Levy et al. 2015a; Peko-Cohen & Gefen, 2017; Levy 
et al. 2018; Katzengold & Gefen 2018, 2019; Peko Cohen et al. 2018; Lustig et al., 2020) as well as 
prophylactic dressings which absorb shear deformations and reduce frictional forces (Levy et al. 
2015b; Levy & Gefen, 2016; Gefen et al. 2016; Levy & Gefen, 2017; Levy et al., 2017b; Schwartz et al., 
2018b; Burton et al., 2019a,b; Gefen et al., 2019b,c; Peko Cohen et al., 2019; Gefen et al., 2020b,c; 
Peko et al., 2020; Lustig and Gefen, 2021). The second category of technologies which focuses on 
biomarkers for early detection and intervention include, for example, biocapacitance measurements 
using a subepidermal moisture scanner which identifies biophysical changes in tissue properties 
caused by early inflammation to aid in early detection (Gefen, 2018a; Gefen & Gershon, 2018; Ross & 
Gefen, 2019; Peko & Gefen, 2019, 2020; Gefen & Ross, 2020; Gefen, 2020b), as well as polymeric 
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membrane dressings that prophylactically subdue the activity of nociceptive neurons to mitigate the 
impact and spread of inflammation (Gefen, 2018b,c; Cutting & Gefen, 2019; Schwartz & Gefen, 2020; 
Amrani et al., 2020; Dabas et al., 2024).  

Development of these and other technology-based options to detect and mitigate PI-specific tissue 
changes caused by exposure to sustained soft tissue deformations, and the resulting inflammation 
and ischaemia is a timely and feasible endeavour for scientists and biomedical engineers which is 
anticipated to reduce the burden of PIs going forward. Promising bioengineering innovation is 
expected to rely more heavily on mechanobiological information (Katzengold et al., 2020) and 
specifically, on biomarkers, such as those associated with wound odours relating to different 
pathogens that infect PIs (Ousey et al. 2017). In the near future, we are further expected to witness a 
growing use of big data, cloud computing and artificial intelligence (AI, e.g., machine learning) to 
analyse information that is detected automatically from a variety of sensors situated for monitoring 
the prevention and healing of PIs (Dabas et al., 2023).  

5. Summary and conclusions  

Sustained mechanical loads acting on soft tissues and leading to localized cell death and tissue damage 
are the fundamental factor and also, the triggering event in the biomechanical pathophysiology of 
PUs/PIs. Mechanical loads composed of prolonged compression, tension and shear, acting 
simultaneously and impacting both bodyweight-bearing soft tissue regions and areas in contact with 
medical devices, cause tissue strain and stress concentrations that result in deformation-induced cell 
death followed by inflammation and increased interstitial pressures within tissues, and ultimately, 
compromise the perfusion and lymphatic function. Understanding internal tissue responses to these 
sustained loads, assessed through imaging techniques and computer FE modelling, is crucial for 
effective PU/PI prevention. The research conducted by the author over decades highlights the 
complex interplay between mechanical forces, tissue response, and individual susceptibility in the 
development of PUs/PIs. Their work published so far also underscores the importance of minimizing 
sustained, localized tissue deformations and early detection of damage through advancements in 
medical technology. Future research directions are focused on developing innovative technologies 
targeting not only prevention but also early diagnosis and intervention, leveraging the 
mechanobiological insights and biomarkers. Embracing advancements in big data, cloud computing 
and AI holds promise for enhancing our understanding and management of PUs/PIs, ultimately 
reducing their burden on patients and healthcare systems. 

 

IRB/Ethic/consent statement: Given that this work is solely a literature review, an 

IRB/Ethics statement and patient consent information are unnecessary. 

 

Reflective questions: 

• How does understanding the biomechanical pathophysiology of pressure ulcers/injuries 

empower clinicians? 
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• What are the key findings regarding the effects of sustained mechanical loads on skin and 

soft tissues, as discussed in the contemporary literature? 

 

• How do factors such as age, health status, and individual anatomy influence the 

susceptibility to pressure ulcers/injuries? 

 

• What are the current technological advancements aimed at better preventing or treating 

pressure ulcers/injuries, and how do they align with our current aetiological understanding? 

 

• In what ways may emerging bioengineering research directions, including use of big data and 

artificial intelligence, contribute to management and reduction of pressure ulcers/injuries? 
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Figure captions 

Figure 1 
A schematic description of the vicious cycle of cell and tissue damage in pressure 
injuries (a), resulting from sustained mechanical deformations (the triggering event) 
which inflicts the primary, direct deformation damage (1st damage event: at time point 
tdeformation), then leading to secondary inflammatory-oedema related damage (2nd 
damage event, at time point tinflammatory) and finally to tertiary ischaemic damage (3rd 
damage event, at time point tischaemic). Each of these three damage factors contributes 
to the cumulative cell and tissue damage which develops in an escalated manner as a 
result of the added contributions of the above factors (b). Numerical scales cannot be 
provided due to the individual factors which affect the extent and rate of cell and tissue 
damage accumulation, as explained in the text. Importantly, the bioengineering model 
depicted here is, like all models, a simplification of reality. In ‘real-world’ patients, there 
are nonlinear and concurrent interactions of factors of cell and tissue deformation 
events and related direct-deformation-induced damage, inflammatory response to the 
cell damage and death, and development of ischaemia. This underscores the 
importance of considering these multiple variables simultaneously when implementing 
preventative measures.  
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