
Made available by Hasselt University Library in https://documentserver.uhasselt.be

Parallel-Correctness and Transferability for Conjunctive Queries under

Bag Semantics

Peer-reviewed author version

KETSMAN, Bas; NEVEN, Frank & VANDEVOORT, Brecht (2025)

Parallel-Correctness and Transferability for Conjunctive Queries under Bag

Semantics. In: Acm Transactions on Computational Logic, 26 (2) (Art N° 7).

DOI: 10.1145/3712291

Handle: http://hdl.handle.net/1942/45425

Parallel-Correctness and Transferability for ConjunctiveQueries under Bag
Semantics

BAS KETSMAN, Vrije Universiteit Brussel, Belgium

FRANK NEVEN and BRECHT VANDEVOORT, Hasselt University, Belgium

Single-round multiway join algorithms first reshuffle data over many servers and then evaluate the query at hand in a parallel and

communication-free way. A key question is whether a given distribution policy for the reshuffle is adequate for computing a given

query. This property is referred to as parallel-correctness. Another key problem is to detect whether the data reshuffle step can be

avoided when evaluating subsequent queries. The latter problem is referred to as transfer of parallel-correctness. This paper extends

the study of parallel-correctness and transfer of parallel-correctness of conjunctive queries to incorporate bag semantics. We provide

semantical characterizations for both problems, obtain complexity bounds and discuss the relationship with their set semantics

counterparts. Finally, we revisit both problems under a modified distribution model that takes advantage of a linear order on compute

nodes and obtain tight complexity bounds.

CCS Concepts: • Information systems→ Query languages; Parallel and distributed DBMSs.

Additional Key Words and Phrases: Conjunctive queries, distributed evaluation, bag semantics

1 INTRODUCTION

The rise of parallel data management systems like, for instance, Spark [21] and Hadoop [12], inspired a line of research

on the foundations of parallel complexity of query evaluation. Several papers investigate trade-offs between the number

of rounds and the amount of communication of parallel algorithms for join queries (e.g., [1–3, 6, 15, 16]). Among these,

the Hypercube algorithm [3, 6, 9] is a single-round algorithm that works in two phases. The first phase is a distribution

phase (where data is repartitioned or reshuffled over the servers) that is followed by a computation phase, where each

server contributes to the query answer in isolation, by evaluating the query at hand over the local data without any

further communication.

Ameloot et al. [5] introduced a framework for reasoning about generic one-round Hypercube-style algorithms for

the evaluation of join queries. In this model, the distribution phase is modeled through a distribution policy specifying

how the facts in the input relations are distributed among the machines. They defined two problems:

• Parallel-Correctness: Given a distribution policy and a query, can we be sure that the corresponding generic

one-round algorithm will always compute the query result correctly, no matter the actual data?

• Parallel-Correctness Transfer: Given two queries Q and Q′, can we infer from the fact that Q is computed

correctly under the current distribution policy, that Q′ is computed correctly as well?

Ameloot et al. [5] obtained tight complexity bounds for (unions of) conjunctive queries (with disequalities) for the

above problems. In addition, they considered subcases that lower the complexity by either restricting the structure of

queries or restricting the family of allowed distribution policies. Furthermore, it was shown (in the journal version and

also in [4]) that transferability of parallel-correctness for conjunctive queries is incomparable with query containment.

Geck et al. [10] consider the complexity of parallel-correctness for (unions of) conjunctive queries with negation. As a

by-product it is shown that the containment problem for conjunctive queries with negation is coNEXPTIME-complete.

Parallel-correctness has also been studied in the context of non-oblivious distribution policies. Indeed, Geck et al. [11]

introduce a declarative framework for expressing distribution constraints, like co-partitioning constraints, and study

their implication problem. The obtained results yield bounds on deciding parallel-correctness for conjunctive queries

1

HTTPS://ORCID.ORG/0000-0002-4032-0709
HTTPS://ORCID.ORG/0000-0002-7143-1903
HTTPS://ORCID.ORG/0000-0001-7212-4625

Ketsman et al.

in the presence of such distribution constraints. Furthermore, Sundarmurthy et al. [19] study parallel-correctness for

co-hash distribution schemes.

Finally, Ketsman, Albarghouthi and Koutris [13] introduce a framework to reason about multi-round evaluation of

Datalog programs and consider parallel-correctness for Datalog programs. Understanding the optimization of single-

round algorithms is still important as every multi-round algorithm is a sequence of single-round steps and results from

the single-round case can be transferred to or used as inspiration for studying multi-round algorithms.

Whereas the bulk of the research related to conjunctive queries focuses on set semantics, a more accurate approxi-

mation of SQL semantics is the bag semantics where multiplicities of the same tuples are taken into account. Moreover,

bag semantics is particularly relevant for aggregate operators. In this paper, we therefore revisit parallel-correctness

and parallel-correctness transfer under bag semantics.

As in [5], we consider conjunctive queries (CQs), allowing disequalities. Parallel-correctness under set semantics is

characterized in terms of a property of minimal valuations. In brief, a CQ is parallel-correct with respect to a distribution

policy if and only if for everyminimal valuation for that query there is at least one compute node containing all the facts

required for that valuation. Using the latter characterization, Ameloot et al. [5] obtained that testing parallel-correctness

for CQs is Π
𝑝

2
-complete. In Section 3, we prove the Highlander Lemma stating that under bag semantics a CQ is

parallel-correct with respect to a distribution policy if and only if for every valuation (not only the minimal ones)

there is exactly one compute node containing all facts required for that valuation. Using the latter characterization, we

obtain that testing for parallel-correctness under bag semantics is coNP-complete. While parallel-correctness under

bag semantics implies parallel-correctness under set semantics, the converse is not true. We obtain that when CQs are

strongly minimal and distribution policies are non-replicating, parallel-correctness coincides for set and bag semantics.

In a setting where multiple queries need to be evaluated, it is relevant to study whether parallel-correctness carries

over from one query to another. That is, whether two queries can be evaluated after another without an intermediate

reshuffling of the data. The latter can be relevant w.r.t. ordering of queries to improve query evaluation. For instance, in

the setting of automatic data partitioning, an optimizer tries to automatically partition the base data across multiple

nodes to achieve overall optimal performance for a given workload of queries (see, e.g., [17, 18]). In this setting,

partitionings are thus instance dependent and not known in advance.

We say that parallel-correctness transfers from a query Q to a query Q′ when Q′ is parallel-correct under every
distribution policy 𝑷 under which Q is parallel-correct. We prove the Sandwich Lemma that provides a semantic

characterization for parallel-correctness transfer under bag semantics in terms of a sandwich property for valuations. Like

in the case for parallel-correctness, when comparing to set semantics, the characterization considers all valuations instead

of only the minimal ones. On the other hand, as a consequence of the Highlander Lemma, the structure of queries can put

additional requirements on distribution policies that are bag-parallel-correct. Therefore, our semantic characterization

takes into account facts that are implied by a valuation w.r.t. a given query. Using the latter characterization, we obtain a

decision procedure in EXPTIME for testing parallel-correctness transfer under bag semantics. In addition, we show that

transferability under set and bag semantics is incomparable in general but coincides for strongly minimal conjunctive

queries and non-replicating distribution policies.

The setting we have considered up to now allows every (distributed) compute node to contribute to the query result.

Indeed, as is the case for the Hypercube algorithm, the result of the distributed query evaluation is the union of the

results over all compute nodes. In this setting and under bag-semantics, the Highlander Lemma of Section 3 implies that

the space of valuation for a conjunctive query should be perfectly partitioned over all compute nodes. That is, every

valuation should occur in exactly one compute node. The latter can lead to situations where for particular queries the

2

Parallel-Correctness and Transferability for ConjunctiveQueries under Bag Semantics

only bag-parallel-correct distribution policies are those that assign all facts to one single node. To remedy this situation,

we consider the setting of ordered networks where every compute node is assigned a number and for every valuation

only the node with the smallest number containing all facts required for that valuation can contribute to the query

result. While both settings do not differ under set semantics, the new setting is more natural for bag semantics. We

characterize parallel-correctness as well as transferability under bag semantics in this new setting and obtain tight

complexity bounds.

In this paper, we make the following contributions:

(1) The Highlander Lemma provides a semantic characterization of bag-parallel correctness. We obtain tight bounds

for the complexity of deciding bag-parallel-correctness. We show that bag-parallel-correctness always implies

set-parallel-correctness but not vice-versa and obtain that they coincide for strongly minimal queries and

non-replicating distribution policies.

(2) The Sandwich Lemma provides a semantic characterization of bag-parallel correctness transfer. We obtain

an EXPTIME upper bound for deciding bag-parallel correctness transfer. We show that transfer of parallel-

correctness under bag and set semantics is incomparable. In addition, we show that they coincide for strongly

minimal queries and non-replicating distribution policies.

(3) We introduce the ordered network model and again provide tight complexity bounds for parallel-correctness

and transfer.

The current paper is an extended version of [14] featuring all the proofs, more examples, and a discussion of the

relationship with query containment.

Outline. This paper is structured as follows. In Section 2, we introduce the necessary definitions. In Section 3 and

Section 4, we consider parallel-correctness and parallel-correctness transfer under bag semantics. We revisit both

problems under a modified distribution model that takes advantage of a linear order on compute nodes in Section 5.

Finally, we conclude in Section 6.

2 DEFINITIONS

2.1 Queries and instances

We assume an infinite set dom of data values that are representable by strings over a fixed alphabet. A database schema

D is a finite set of relation names 𝑅 where every 𝑅 has arity 𝑎𝑟 (𝑅). A fact 𝑅(𝑑1, . . . , 𝑑𝑘) is over a database schemaD and

a universe𝑈 ⊆ dom where 𝑅 ∈ D, 𝑘 = 𝑎𝑟 (𝑅) and 𝑑1, . . . , 𝑑𝑘 ∈ 𝑈 . We use Facts(D,𝑈) to denote the set of all facts over

database schema D and universe 𝑈 ⊆ dom. We note that 𝑈 can be infinite. We sometimes abbreviate Facts(D, dom)
as Facts(D).

An annotated fact 𝒇𝒂 is a tuple (𝒇 ,𝑚) with 𝒇 a fact and 𝑚 ∈ N+ the multiplicity of 𝒇 . Here N+ denotes the set

of strictly positive integers. A bag of facts 𝐹 is a set of annotated facts. Every fact 𝑓 may appear at most once as an

annotated fact in 𝐹 . That is, (𝒇 ,𝑚) ∈ 𝐹 and (𝒇 ′,𝑚′) ∈ 𝐹 implies 𝒇 ≠ 𝒇 ′. Intuitively, the multiplicity 𝑚 of a fact 𝒇

indicates the number of times 𝒇 appears in the bag. We denote the set of facts appearing in 𝐹 by Facts(𝐹) and the

multiplicity of a fact 𝒇 in the bag 𝐹 by mul𝐹 (𝒇). For convenience, we abuse notation and extend mul𝐹 (𝒇) to arbitrary

facts by setting mul𝐹 (𝒇) = 0 when 𝒇 ∉ Facts(𝐹). We next define the notion of bag union and subbag. We overload

notation by using the same symbols as for set union and subset. It should always be clear from the context whether we

refer to bags or to sets. For two bags of facts 𝐹 and𝐺 , the bag union, denoted𝐻 = 𝐹 ∪𝐺 , is defined as Facts(𝐹) ∪Facts(𝐺)
3

Ketsman et al.

and mul𝐻 (𝒇) = mul𝐹 (𝒇) + mul𝐺 (𝒇) for each fact 𝒇 ∈ Facts(𝐻). Furthermore, 𝐹 is a subbag of 𝐺 , denoted 𝐹 ⊆ 𝐺 , if

mul𝐹 (𝒇) ≤ mul𝐺 (𝒇) for each fact 𝒇 ∈ Facts(𝐹). By |𝐹 |, we denote the number of facts in 𝐹 , that is,
∑
𝒇 ∈Facts (𝐹) mul𝐹 (𝒇).

A database instance 𝐼 , instance for short, over a database schema D is a bag of facts, with Facts(𝐼) ⊆ Facts(D). We

use adom(𝐼) to denote the set of data values occurring in 𝐼 .

A query Q over input schema D1 and output schema D2 is a generic mapping from instances over D1 to instances

over D2. A query Q is monotone if Q(𝐼 ′) ⊆ Q(𝐼) for every pair of instances 𝐼 and 𝐼 ′ with 𝐼 ′ ⊆ 𝐼 .

2.2 Conjunctive queries

Assume an infinite set of variables var, disjoint from dom. An atom over a database schema D is of the form 𝑅(x),
with 𝑅 ∈ D and x = (𝑥1, . . . , 𝑥𝑘) a tuple of variables in var with 𝑘 = 𝑎𝑟 (𝑅).

A conjunctive query Q over input schema D is an expression of the form

𝑇 (x) ← 𝑅1 (y1), . . . , 𝑅𝑚 (ym), 𝛽1, . . . , 𝛽𝑝

where every 𝑅𝑖 (yi) is an atom over D,𝑇 (x) is an atom, called the head atom, with𝑇 ∉ D, and every 𝛽𝑖 is a disequality

of the form 𝑧 ≠ 𝑧′ (with 𝑧 a variable different from 𝑧′). Every variable 𝑥 ∈ x needs to appear in at least one yi. We

require that every variable occurring in a disequality occurs in at least one yi. Furthermore, we refer to 𝑇 (x) as headQ ,
to the set {𝑅1 (y1), . . . , 𝑅𝑚 (ym)} as bodyQ and to the set of all variables occurring in Q as 𝑣𝑎𝑟𝑠 (Q).

We denote by CQ≠
the set of all conjunctive queries (allowing disequalities) and by CQ the set of conjunctive queries

without disequalities. A conjunctive query with disequalities is without self-joins if all of its atoms have distinct relation

names. A conjunctive query with disequalities Q is full if every variable occurring in Q appears in the head atom.

A valuation for a conjunctive query Q ∈ CQ≠
is a total function 𝑉 : 𝑣𝑎𝑟𝑠 (Q) → dom that is consistent with the

disequalities in Q. More specifically: for every 𝑧 ≠ 𝑧′ in Q it holds that 𝑉 (𝑧) ≠ 𝑉 (𝑧′). Valuations naturally extend to

atoms and sets of atoms. We refer to 𝑉 (bodyQ) as the set of facts required by 𝑉 .

A valuation 𝑉 satisfies a conjunctive query Q ∈ CQ≠
on instance 𝐼 if 𝑉 (bodyQ) ⊆ Facts(𝐼). In that case, 𝑉 derives

the annotated fact 𝒇𝒂 = (𝑉 (ℎ𝑒𝑎𝑑Q),𝑚), with

𝑚 =
∏

𝒇 ∈𝑉 (bodyQ)
mul𝐼 (𝒇) .

For convenience, we also say that 𝑉 derives the fact 𝒇 = 𝑉 (ℎ𝑒𝑎𝑑Q) if 𝑉 satisfies Q on 𝐼 . The result of 𝑉 on an instance

𝐼 , denoted [Q,𝑉] (𝐼), is the bag of annotated facts derived by𝑉 on instance 𝐼 . This bag is empty when𝑉 does not satisfy

Q on 𝐼 . When 𝑉 does satisfy Q on 𝐼 , the set Facts([Q,𝑉] (𝐼)) is always a singleton. The result Q(𝐼) of a conjunctive
query Q ∈ CQ≠

on 𝐼 is defined as the bag union over all results of satisfying valuations for Q on 𝐼 :

Q(𝐼) =
⋃
𝑉 ∈V

[Q,𝑉] (𝐼)

withV the set containing all valuations that satisfy Q on 𝐼 .

2.3 Networks, data distribution and policies

A network N is a nonempty finite set of values from dom, called nodes.

A distribution policy specifies how a database, possibly already distributed, is reshuffled by determining which fact is

sent to which server. Formally, a distribution policy 𝑷 = (𝑈 , rfacts𝑷) for a database schema D and a networkN consists

4

Parallel-Correctness and Transferability for ConjunctiveQueries under Bag Semantics

of a universe 𝑈 and a total function rfacts𝑷 : N → 2
Facts (D,𝑈)

mapping each node 𝜅 ∈ N onto a set of facts from

Facts(D,𝑈). A node 𝜅 ∈ N is responsible for a fact 𝒇 ∈ Facts(D,𝑈) under 𝑷 if 𝒇 ∈ rfacts𝑷 (𝜅).

Example 2.1. For an example of a distribution policy over database schema D = {𝑅 (2) , 𝑆 (2) } and network N =

{𝜅1, 𝜅2}, consider 𝑷 = (𝑈 , rfacts𝑷) with𝑈 = {𝑎, 𝑏},

rfacts𝑷 (𝜅1) = {𝑅(𝑎, 𝑏), 𝑆 (𝑏, 𝑎), 𝑅(𝑎, 𝑎), 𝑅(𝑏,𝑏), 𝑆 (𝑎, 𝑎), 𝑆 (𝑏, 𝑏)},

and

rfacts𝑷 (𝜅2) = {𝑅(𝑏, 𝑎), 𝑆 (𝑎, 𝑏), 𝑅(𝑎, 𝑎), 𝑅(𝑏,𝑏), 𝑆 (𝑎, 𝑎), 𝑆 (𝑏,𝑏)}.

Notice that in this example the facts 𝐹 = {𝑅(𝑎, 𝑎), 𝑅(𝑏, 𝑏), 𝑆 (𝑎, 𝑎), 𝑆 (𝑏, 𝑏)} are assigned by 𝑷 to both nodes.

For an instance 𝐼 , the function loc-inst𝑷 ,𝐼 maps each node 𝜅 ∈ N to the bag of facts it is responsible for. More formally,

(𝒇 ,𝑚) ∈ loc-inst𝑷 ,𝐼 (𝜅) iff (𝒇 ,𝑚) ∈ 𝐼 and 𝒇 ∈ rfacts𝑷 (𝜅). We refer to 𝐼 as the global instance and to loc-inst𝑷 ,𝐼 (𝜅) as the
local instance at node 𝜅.

Example 2.2. Given instance 𝐼 = {(𝑅(𝑎, 𝑏), 1), (𝑅(𝑏, 𝑎), 2), (𝑆 (𝑎, 𝑏), 2)} and distribution policy 𝑷 from Example 2.1,

loc-inst𝑷 ,𝐼 (𝜅1) = {(𝑅(𝑎, 𝑏), 1)}, and

loc-inst𝑷 ,𝐼 (𝜅2) = {(𝑅(𝑏, 𝑎), 2), (𝑆 (𝑎, 𝑏), 2)}.

As distribution policies are defined on facts, either all copies of a certain fact are sent to a specific server or none are.

The latter happens for instance when using hash functions to define distribution policies as is the case for instance for

Hypercube [3, 6, 9].

Next, we define the one-round distributed evaluation induced by 𝑷 . Query Q is evaluated at each node 𝜅 separately,

after which the bag union of all results is taken:

[Q, 𝑷] (𝐼) =
⋃
𝜅∈N
Q(loc-inst𝑷 ,𝐼 (𝜅)).

Example 2.3. Taking as query Q, 𝑂 (𝑦) ← 𝑅(𝑥,𝑦), 𝑆 (𝑦, 𝑧), and distribution policy 𝑷 and database instance 𝐼 from

Examples 2.1 and 2.2, respectively, we get

[Q, 𝑷] (𝐼) = {(𝑂 (𝑎), 4)}.

2.4 Classes of distribution policies

To reason about the complexity of problems involving distribution policies (which are just defined as functions), we

need to consider a representation mechanism for these policies. For this, we first discuss the classes Pfin and𝔓nondet as

introduced by Ameloot et al. [5] and then describe the class𝔓det .

The class Pfin is defined over distribution policies with a finite universe. Intuitively, Pfin allows to express all

distribution policies over a finite universe, but uses the most naive and exhaustive representation mechanism: explicit

enumeration. Formally, a policy 𝑷 = (𝑈 , rfacts𝑷) belongs to Pfin if 𝑈 is a finite set. Such policies are represented by an

explicit enumeration of the data values in𝑈 and an explicit enumeration of all pairs (𝜅,𝒇) where 𝒇 ∈ rfacts𝑷 (𝜅).
A more general way to describe classes of distribution policies by an arbitrarily succinct representation is by means

of a “test algorithm” that allows to decide 𝒇 ∈ rfacts𝑷 (𝜅) with time bound ℓ𝑘 , where ℓ is the length of the input and 𝑘

a constant. We call this class 𝔓nondet . More precisely, a policy 𝑷 = (𝑈 , rfacts𝑷) over network N is in P𝑘
𝑛𝑜𝑛𝑑𝑒𝑡

if it is

specified by a pair (𝑛,A𝑃), with 𝑛 a natural number in unary representation and A𝑃 a non-deterministic algorithm.

5

Ketsman et al.

The value 𝑛 is used to give an upper bound to the length of data values in universe 𝑈 and on the names of nodes in

N . More specifically, the universe 𝑈 consists of all data values representable by a string of length at most 𝑛 and the

networkN consists of all nodes representable by strings of length at most 𝑛. A fact 𝑓 is in rfacts𝑷 (𝜅) for a given node 𝜅

if A𝑃 has an accepting run of at most | (𝜅,𝒇) |𝑘 steps on input (𝜅,𝒇). We define𝔓nondet as the set {P𝑘nondet | 𝑘 ≥ 2}. We

remark that each policy in Pfin can thus be described in P2

nondet .

The complexity of deciding set-parallel-correctness is so high that complexity bounds are retained even when

considering policies in P𝑘nondet . For bag-parallel-correctness this is not the case and considering policies from P𝑘nondet
artificially increases the complexity of the decision problem. Therefore, for bag-parallel-correctness, we use the class

P𝑘det , which is defined next. A policy 𝑷 = (𝑈 , rfacts𝑷) is in P𝑘det if it can be specified by a tuple (N , 𝑛,A𝑃) where N
is an explicit enumeration of the nodes in the network, 𝑛 is a natural number in unary representation and A𝑃 is a

deterministic algorithm. The universe 𝑈 of 𝑷 is the set of values representable by strings of length at most 𝑛. Given a

fact 𝒇 and node 𝜅 , algorithm A𝑃 decides in at most | (𝜅,𝒇) |𝑘 steps whether 𝒇 ∈ rfacts𝑷 (𝜅). We define𝔓det as the set of

policies {P𝑘det | 𝑘 ≥ 2}.
Since each distribution policy implicitly induces a network and each query implicitly defines a database schema, we

often omit the explicit notation for networks and schemas.

3 PARALLEL-CORRECTNESS

Intuitively, the notion of parallel-correctness relates to whether the distributed execution of a query with relation to a

specific distribution policy produces the correct result. That is, whether the distributed execution produces the same

result as when the query was evaluated on the global instance.

3.1 Definition and results for set-parallel-correctness

We distinguish between parallel-correctness under the set and under the bag semantics. The former was introduced in

[5], and we refer to it as set-parallel-correctness. We next generalize the notion to bag semantics and call it bag-parallel-

correctness. Recall that Facts(𝐹) denotes the set of facts occurring in the bag 𝐹 .

Definition 3.1. Let Q be a query and 𝑷 a distribution policy. Then,

• Q is bag-parallel-correct on instance 𝐼 under 𝑷 if Q(𝐼) = [Q, 𝑷] (𝐼);
• Q is set-parallel-correct on instance 𝐼 under 𝑷 if Facts(Q(𝐼)) = Facts([Q, 𝑷] (𝐼)); and,
• Q is bag-parallel-correct (resp., set-) under 𝑷 if Q is bag-parallel-correct (resp., set-) on all instances 𝐼 under 𝑷 .

Example 3.2. Let 𝑷 , 𝐼 and Q be as in Examples 2.1, 2.2, and 2.3, respectively. Query 𝑄 is bag-parallel-correct

on 𝐼 under 𝑷 , since 𝑄 (𝐼) = {(𝑂 (𝑎), 4)}, and therefore also set-parallel-correct on 𝐼 under 𝑷 , since Facts(𝑄 (𝐼)) =
{𝑂 (𝑎)} = Facts([Q, 𝑷] (𝐼)). Furthermore, it can be easily verified that 𝑄 is in fact set-parallel-correct under 𝑃 (not

depending on a specific 𝐼). Query 𝑄 is not bag-parallel-correct under 𝑃 , as witnessed for example by the instance

𝐼 ′ = {(𝑅(𝑎, 𝑎), 1), (𝑆 (𝑎, 𝑎), 1)}. Indeed, Q(𝐼 ′) = {(𝑂 (𝑎), 1)} while [Q, 𝑷] (𝐼 ′) = {(𝑂 (𝑎), 2)}.

We now formally define the decision problems related to parallel-correctness. In the following, C denotes a query

class, P denotes a class of distribution policies, and 𝑥 ∈ {set, bag}. Then, define the following problem definitions:

PCI𝑥 (C,P, I)
Input: Query Q ∈ C, distribution policy 𝑷 ∈ P, instance 𝐼
Question: Is Q 𝑥-parallel-correct on 𝐼 under 𝑷?

6

Parallel-Correctness and Transferability for ConjunctiveQueries under Bag Semantics

PC𝑥 (C,P)
Input: Query Q ∈ C, distribution policy 𝑷 ∈ P
Question: Is Q 𝑥-parallel-correct under 𝑷?

We recall the following result by Ameloot et al. [5]:

Theorem 3.3 ([5]). Problems PCI𝑠𝑒𝑡 (C,P) and PC𝑠𝑒𝑡 (C,P) are Π𝑝

2
-complete for every query class C ∈ {CQ,CQ≠}

and for every policy class P ∈ {P𝑓 𝑖𝑛} ∪𝔓𝑛𝑜𝑛𝑑𝑒𝑡 .

The upper bounds given by the above theorem follow rather directly from the semantic characterization given

in the next lemma. To this end, we need the notion of minimal valuations. For Q in CQ≠
, a valuation 𝑉 is minimal

if there is no valuation 𝑉 ′ for Q that derives the same head fact with a strict subset of body facts, that is, such that

𝑉 ′ (bodyQ) ⊊ 𝑉 (bodyQ) and𝑉 ′ (headQ) = 𝑉 (headQ). Recall from the definitions that𝑉 (bodyQ) always refers to a set
of facts, regardless of the considered semantics.

Lemma 3.4 ([5]). Let Q be in CQ≠. Then Q is set-parallel-correct under distribution policy 𝑷 = (𝑈 , rfacts𝑷) if and only
if for every minimal valuation 𝑉 for Q over𝑈 , there is a node 𝜅 ∈ N such that 𝑉 (bodyQ) ⊆ rfacts𝑷 (𝜅) .

3.2 Bag-parallel-correctness

We now discuss the problem of deciding bag-parallel-correctness. To start, we obtain a property that characterizes

bag-parallel-correctness in direct analogy to Lemma 3.4. The characterization for bag-parallel-correctness is again

related to valuations but is more strict than the condition of Lemma 3.4 in two different ways. First, the condition

should now hold for all valuations not just the minimal ones. Second, the condition requires that, for each valuation,

there can be only one node harboring all the required facts for that valuation.

To prove the next lemma, we introduce the notion of support. For Q ∈ CQ≠
and distribution policy 𝑷 , we say

that node 𝜅 supports valuation 𝑉 for Q, if 𝑉 (bodyQ) ⊆ rfacts𝑷 (𝜅). By Sup𝑷 (Q,𝑉), we denote the set of all nodes that
support 𝑉 under 𝑷 .

Lemma 3.5 (Highlander Lemma
1
). For Q ∈ CQ≠ and a distribution policy 𝑷 = (𝑈 , rfacts𝑷) overN , Q is bag-parallel-

correct under 𝑷 if and only if |Sup𝑷 (Q,𝑉) | = 1, for every valuation 𝑉 for Q.

Proof. (If). Let 𝐼 be an arbitrary instance. By assumption, for every valuation 𝑉 for Q there is exactly one node 𝜅𝑉

for which Sup𝑷 (Q,𝑉) = {𝜅𝑉 }. As Q is monotone it follows that [Q, 𝑷] (𝐼) ⊆ Q(𝐼). It remains to argue Q(𝐼) ⊆ [Q, 𝑷] (𝐼).
Specifically, we show that for every fact 𝒇 ,

(𝒇 ,𝑚) ∈ Q(𝐼) implies (𝒇 ,𝑚′) ∈ [Q, 𝑷] (𝐼), with𝑚 =𝑚′. (1)

For this, let V𝒇 be the set of all valuations that satisfy Q on 𝐼 and derive 𝒇 . In other words, V𝒇 contains every

valuation 𝑉 where 𝑉 (headQ) = 𝒇 and 𝑉 (bodyQ) ⊆ 𝐼 . By definition,𝑚 =
∑
𝑉 ∈V𝒇

| [Q,𝑉] (𝐼) |. Then, (𝒇 ,𝑚′) ∈ [Q, 𝑷] (𝐼)

1
“There can be only one.” https://en.wikipedia.org/wiki/Highlander_(film)

7

https://en.wikipedia.org/wiki/Highlander_(film)

Ketsman et al.

for an𝑚′ > 0 as |Sup𝑷 (Q,𝑉) | > 0. Furthermore,

𝑚′ =
∑︁
𝜅∈N

∑︁
𝑉 ∈V𝒇

| [Q,𝑉] (loc-inst𝑷 ,𝐼 (𝜅)) | (2)

=
∑︁

𝑉 ∈V𝒇

| [Q,𝑉] (loc-inst𝑷 ,𝐼 (𝜅𝑉)) | (as Sup𝑷 (Q,𝑉) = {𝜅𝑉 } for all 𝑉) (3)

=
∑︁

𝑉 ∈V𝒇

| [Q,𝑉] (𝐼) | (4)

=𝑚. (5)

Notice that (4) follows as for each compute node 𝜅 , either 𝜅 has no copy of a fact, or 𝜅 has as many copies as there are

in instance 𝐼 . Therefor, if a valuation satisfies Q locally, it will derive as many copies of the head fact as it would derive

on instance 𝐼 . This concludes the proof of (1), and thus of the (if) direction.

(Only-if). Let Q be bag-parallel-correct for 𝑷 and let 𝑉 be an arbitrary valuation for Q. We argue that |Sup𝑷 (Q,𝑉) | = 1.

For this, we first show:

For all valuations𝑊 for Q, Sup𝑷 (Q,𝑊) ≤ 1. (6)

For its proof, assume towards a contradiction that for some valuation𝑊 for Q, |Sup𝑷 (Q,𝑊) | > 1. This means that

there are at least two distinct nodes 𝜅1, 𝜅2 ∈ Sup𝑷 (Q,𝑊). Let 𝐼 = {(𝒈, 1) | 𝒈 ∈ 𝑊 (bodyQ)} and 𝒇 = 𝑊 (headQ).
We argue that [Q, 𝑷] (𝐼) derives too many copies of 𝒇 . Indeed, by definition of 𝐼 it follows that 𝐼 = loc-inst𝑷 ,𝐼 (𝜅1) =
loc-inst𝑷 ,𝐼 (𝜅2). So, 0 < mulQ(𝐼) (𝒇) = mulQ(loc-inst𝑷 ,𝐼 (𝜅1)) (𝒇) = mulQ(loc-inst𝑷 ,𝐼 (𝜅2)) (𝒇). It follows that mulQ(𝐼) (𝒇) <
mulQ(loc-inst𝑷 ,𝐼 (𝜅1)) (𝒇) +mulQ(loc-inst𝑷 ,𝐼 (𝜅2)) (𝒇) ≤ mul [Q,𝑷] (𝐼) (𝒇), which is the desired contradiction.

Given (6), it remains to argue that 𝑉 satisfies Q on at least one node. To this end, let 𝐼 = {(𝒈, 1) | 𝒈 ∈ 𝑉 (bodyQ)},
𝒇 = 𝑉 (headQ), and letV𝒇 be the set of all valuations that satisfy Q on 𝐼 and derive 𝒇 . By construction, (𝒇 ,𝑚) ∈ Q(𝐼)
for some𝑚 ≥ 1. By assumption, as 𝑷 is bag-parallel-correct for Q, Q(𝐼) = [Q, 𝑷] (𝐼). And therefore, (𝒇 ,𝑚) ∈ [Q, 𝑷] (𝐼)
with

mulQ(𝐼) (𝒇) = mul [Q,𝑷] (𝐼) (𝒇) . (7)

In particular, | [Q,𝑉] (𝐼) | ≥ 1, which implies

mulQ(𝐼) (𝒇) >
∑︁

𝑊 ∈V𝒇 \{𝑉 }
| [Q,𝑊] (𝐼) |. (8)

Again, we notice that for each node 𝜅 ∈ N , either 𝜅 has no copy of a fact, or 𝜅 has as many copies as there are in

instance 𝐼 . Thus, if a valuation satisfies Q locally, it will derive as many copies of the head fact as it would derive on

instance 𝐼 . Formally, we have that for all valuations𝑊 for Q and all nodes 𝜅 in network N of 𝑷 :

| [Q,𝑊] (loc-inst𝑷 ,𝐼 (𝜅)) | =
{
| [Q,𝑊] (𝐼) | if𝑊 (bodyQ) ⊆ loc-inst𝑷 ,𝐼 (𝜅); and
0 otherwise.

(9)

Now, to argue that |Sup𝑷 (Q,𝑉) | = 1, the proof proceeds by contradiction. That is, we assume |Sup𝑷 (Q,𝑉) | = 0.

(Recall that (6) already implies |Sup𝑷 (Q,𝑉) | ≤ 1.)

8

Parallel-Correctness and Transferability for ConjunctiveQueries under Bag Semantics

Then,

mul [Q,𝑷] (𝐼) (𝒇) =
∑︁

𝑊 ∈V𝒇

∑︁
𝜅∈N
| [Q,𝑊] (loc-inst𝑷 ,𝐼 (𝜅) |

=
∑︁

𝑊 ∈V𝒇 \{𝑉 }

∑︁
𝜅∈N
| [Q,𝑊] (loc-inst𝑷 ,𝐼 (𝜅) | (as |Sup𝑷 (Q,𝑉) | = 0)

≤
∑︁

𝑊 ∈V𝒇 \{𝑉 }
| [Q,𝑊] (𝐼) | (follows from (6) and (9))

< mulQ(𝐼) (𝒇) (follows from (8)).

Then, the desired contradiction follows from (7). □

Example 3.6. We argued in Example 3.2 that Q is not bag-parallel-correct for the given distribution policy 𝑷 by

exhibiting a concrete counterexample instance. The same conclusion can be obtained through an application of

the Highlander Lemma (Lemma 3.5). Indeed, take the valuation 𝑉 = {𝑥 → 𝑎,𝑦 → 𝑎, 𝑧 → 𝑎} for Q which has

Sup𝑷 (Q,𝑉) = {𝜅1, 𝜅2}, and therefore |Sup𝑷 (Q,𝑉) | > 1.

We next obtain the complexity of deciding bag-parallel-correctness. The upper bound follows rather directly from

Lemma 3.5. The lower bound is a reduction from the complement of 3-SAT.

Theorem 3.7. PC𝑏𝑎𝑔 (C,P) is coNP-complete for every query class C ∈ {CQ,CQ≠} and every policy class P ∈
{Pfin} ∪𝔓det , even over networks with only two nodes.

Proof. Since Pfin ∈ 𝔓det , and CQ ⊆ CQ≠
, it suffices to show that PC𝑏𝑎𝑔 (CQ≠,𝔓det) is in coNP and that

PC𝑏𝑎𝑔 (CQ,Pfin) is coNP-hard.

(Upper bound). Observe due to Lemma 3.5 that (Q, 𝑷) ∉ PC𝑏𝑎𝑔 (CQ≠,𝔓det) implies the existence of a valuation 𝑉 for

Q over the universe of 𝑷 , where either (𝑖) |Sup𝑷 (Q,𝑉) | = 0 or (𝑖𝑖) |Sup𝑷 (Q,𝑉) | ≥ 2. To show that PC𝑏𝑎𝑔 (CQ≠,𝔓det)
is in coNP, it suffices to construct a verification algorithm that tests (𝑖) and (𝑖𝑖) for a given certificate valuation 𝑉

in polynomial time. Towards this algorithm, recall that 𝔓det = (N , 𝑛,A𝑃), and that 𝑉 is consistent by definition

(cf. Section 2.2). The algorithm keeps track of a counter that is initially set to 0. For every 𝜅 ∈ N , the algorithm tests

whether (𝜅,𝒇) is accepted by A𝑃 for every 𝒇 ∈ 𝑉 (bodyQ). If all tests (for fixed 𝜅) succeed, the counter is increased. At
the end, the program rejects if its counter is set to 1 (i.e., (𝑖) and (𝑖𝑖) fail), and accepts otherwise. Since N is part of the

input, and A𝑃 is a deterministic polynomial time algorithm by definition, it is easy to see that the sketched program

has the desired properties.

(Lower bound). The proof is by reduction from the coNP-complete 3-unsat problem (i.e., the complement of 3-satisability),

which accepts all propositional formulas in 3-CNF that are not satisfiable. Specifically, 𝜓 is a conjunction of clauses

𝐶1 ∧𝐶2 ∧ · · · ∧𝐶𝑘 , with each clause consisting of three literals𝐶 𝑗 = (ℓ1𝑗 ∨ ℓ2𝑗 ∨ ℓ3𝑗). Here, a literal ℓ𝑖 𝑗 is either a variable
𝑥 ∈ var or a negated variable ¬𝑥 . Let 𝑛 denote the number of different variables occurring in𝜓 .

We construct a query Q ∈ CQ and distribution policy 𝑷 ∈ Pfin based on𝜓 and show that𝜓 ∈ 3-unsat if, and only if,

(Q, 𝑷) ∈ PC𝑏𝑎𝑔 (CQ,Pfin).
For the construction of Q, we take for every 𝑖 ∈ [1, 𝑛] a variable 𝑥𝑖 and 𝑥𝑖 . Intuitively, 𝑥𝑖 represents a variable from

𝜓 while 𝑥𝑖 represents its negation ¬𝑥𝑖 . For convenience, we overload the notation of ℓ𝑗𝑘 : if ℓ𝑗𝑘 represents a negated

9

Ketsman et al.

variable ¬𝑥𝑖 , then ℓ𝑗𝑘 denotes the variable 𝑥𝑖 . Now let Q be as follows:

headQ = 𝐻 ();𝑎𝑛𝑑,

bodyQ = {Neg(𝑥𝑖 , 𝑥𝑖) | 𝑖 ∈ [1, 𝑛]} ∪ {C𝑗 (ℓ𝑗1 , ℓ𝑗2 , ℓ𝑗3) | 𝑗 ∈ [1, 𝑘]}.

Next, we define 𝑷 . Let B = {0, 1}. Let N = {𝜅1, 𝜅2} be a network with two distinct nodes, and let𝑈 = B. We construct

𝑷 as follows:

{(𝜅1,Neg(𝒃)) | 𝒃 ∈ B2} ∪ {(𝜅1,𝐶 𝑗 (𝒃)) | 𝒃 ∈ B3} ∪

{(𝜅2,Neg(0, 1)), (𝜅2,Neg(1, 0))} ∪ {(𝜅2,𝐶 𝑗 (𝒃)) | 𝒃 ∈ B3 \ {0, 0, 0}}

The intuition behind the construction is that every valuation for Q satisfies Q on node 𝜅1. On node 𝜅2, only valuations

that encode a valid truth assignment for𝜓 can satisfy Q. It is easy to see that the construction is polynomial. It remains

to argue that𝜓 ∈ 3-unsat if, and only if, (Q, 𝑷) ∈ PC𝑏𝑎𝑔 (CQ,Pfin).

(If). Let𝜓 ∉ 3-unsat. Then, a satisfying truth assignment 𝛽 exists for𝜓 . Let 𝑉 be the accompanying valuation for Q,
that is, 𝑉 (𝑥𝑖) = 𝛽 (𝑥𝑖), and 𝑉 (𝑥𝑖) = ¬𝛽 (𝑥𝑖), for all variables 𝑥𝑖 in𝜓 . We next observe that 𝑉 (bodyQ) ⊆ rfacts𝑷 (𝜅1) and
𝑉 (bodyQ) ⊆ rfacts𝑷 (𝜅2). (Which follows directly from the construction of 𝑷). Now, it follows from Lemma 3.5 that

(Q, 𝑷) ∉ PC𝑏𝑎𝑔 (CQ,Pfin).

(Only-If). Let 𝜓 ∈ 3-unsat. We use Lemma 3.5 to show (Q, 𝑷) ∈ PC𝑏𝑎𝑔 (CQ,Pfin). For this, we first observe that

|Sup𝑷 (Q,𝑉) | ≥ 1 for every valuation𝑉 over universe𝑈 , since𝑉 (bodyQ) ⊆ rfacts𝑷 (𝜅1). Second, towards a contradiction,
assume |Sup𝑷 (Q,𝑉) | > 1, which implies𝑉 (bodyQ) ⊆ rfacts𝑷 (𝜅2), for some𝑉 . Now let 𝛽 be the truth assignment for𝜓

corresponding to 𝑉 , that is 𝛽 (𝑥𝑖) = 𝑉 (𝑥𝑖), for every variable 𝑥𝑖 ∈ 𝜓 . Then it is easy to observe from the construction

that 𝛽 is a well-defined truth assignment for𝜓 , and that 𝛽 evaluates to 1 (because 𝜅2 accepts only satisfying clauses),

which is the desired contradiction. □

3.3 Relationship between set- and bag-parallel-correctness

We next address the relationship between set- and bag-parallel-correctness. The implication in the following proposition

follows immediately from Lemma 3.4 and Lemma 3.5. A counterexample for the converse is given in Example 3.9.

Proposition 3.8. Bag-parallel-correctness implies set-parallel-correctness for queries in CQ≠, but not vice-versa.

Example 3.9. For an example showing that the reverse direction of Proposition 3.8 does not hold, consider query Q:
𝑇 (𝑥) ← 𝑅(𝑥). Let 𝑷 = (𝑈 , rfacts𝑷) be a distribution policy over networkN = {𝜅1, 𝜅2}, with rfacts𝑷 (𝜅1) = rfacts𝑷 (𝜅2) =
{𝑅(𝑎), 𝑅(𝑏)}, and𝑈 = {𝑎, 𝑏}.

We observe that Q has only two valuations under𝑈 which in addition are minimal:𝑉𝑎 = {𝑥 ↦→ 𝑎} and𝑉𝑏 = {𝑥 ↦→ 𝑏}.
Since Sup𝑷 (Q,𝑉1) = Sup𝑷 (Q,𝑉2) = {𝜅1, 𝜅2} it follows immediately from Lemma 3.4 and Lemma 3.5 that Q is set-

parallel-correct, but not bag-parallel-correct, under 𝑷 .

Interestingly, we can identify a class of CQ≠
-queries and a class of distribution policies for which the notions of set-

and bag-parallel-correctness coincide. First, we introduce the necessary definitions.

A query in CQ≠
is strongly minimal if all its valuations are minimal. We consider the family of non-replicating

distribution policies that do not replicate any fact onto multiple nodes. More formally, a distribution policy 𝑷 =

(𝑈 , rfacts𝑷) over a network N is non-replicating if and only if rfacts𝑷 (𝜅1) ∩ rfacts𝑷 (𝜅2) = ∅ for every pair of nodes

𝜅1, 𝜅2 ∈ N with 𝜅1 ≠ 𝜅2.

10

Parallel-Correctness and Transferability for ConjunctiveQueries under Bag Semantics

Theorem 3.10. For a strongly minimal query Q in CQ≠ and a non-replicating distribution policy 𝑷 , Q is bag-parallel-

correct under 𝑷 iff Q is set-parallel-correct under 𝑷 .

Proof. It follows from Proposition 3.8 that bag-parallel-correctness of Q under 𝑷 implies set-parallel-correctness.

We show the reverse direction through Lemma 3.5. For this, let𝑉 be an arbitrary valuation for Q. Since Q is set-parallel-

correct under 𝑷 , and 𝑉 is minimal (due to strong minimality of Q), it follows from Lemma 3.4 that |Sup𝑷 (Q,𝑉) | ≥ 1.

Since 𝑷 is non-replicating, the latter implies |Sup𝑷 (Q,𝑉) | = 1. □

Notice that in the constructed counterexample from Example 3.9, the query Q is strongly minimal, but 𝑷 is replicating.

In the following example we show that, for Theorem 3.10, the condition that Q is strongly minimal can not be dropped.

Example 3.11. Consider queryQ:𝑇 (𝑥) ← 𝑅(𝑥), 𝑅(𝑦), and networkN = {𝜅1, 𝜅2}. Let 𝑷 = (𝑈 , rfacts𝑷) be a distribution
policy over𝑈 = {𝑎, 𝑏} and N , with rfacts𝑷 (𝜅1) = {𝑅(𝑎)} and rfacts𝑷 (𝜅2) = {𝑅(𝑏)}. Notice that 𝑷 is non-replicating.

We observe that 𝑷 is set-parallel-correct for Q. Indeed, there are only two minimal valuations for Q over 𝑈 :

𝑉𝑎 = {𝑥 ↦→ 𝑎,𝑦 ↦→ 𝑎} and 𝑉𝑏 = {𝑥 ↦→ 𝑏,𝑦 ↦→ 𝑏}. Furthermore, 𝑉𝑎 is supported by 𝜅1 while 𝑉𝑏 is supported by 𝜅2. The

result then follows from Lemma 3.4.

For non-minimal valuation 𝑉 = {𝑥 ↦→ 𝑎,𝑦 ↦→ 𝑏}, we observe that |Sup𝑷 (Q,𝑉) | = ∅. Thus 𝑷 cannot be bag-parallel-

correct for Q (due to Lemma 3.5).

4 TRANSFERABILITY

Parallel-correctness transfers from a query Q to a query Q′ when Q′ is parallel-correct under every distribution policy

𝑷 under which Q is parallel-correct. This means in particular that query Q′ can always be evaluated after query Q
without an intermediate, possibly expensive, reshuffling of the data. The present section studies parallel-correctness

transfer under bag semantics.

4.1 Definition and results for transferability under set semantics

The notion of parallel-correctness transfer was introduced by Ameloot et al. [5]. We next distinguish between transfer-

ability under set and bag semantics.

Definition 4.1. For two queries Q and Q′ over the same input schema, bag-parallel-correctness transfers from Q to Q′

if Q′ is bag-parallel-correct under every distribution policy for which Q is bag-parallel-correct. In this case, we write

Q
bag

−−−→ Q′. Set-parallel-correctness transferability is defined similarly and denoted by Q set−−→ Q′.

Lemma 4.2 ([5]). For queries Q,Q′ ∈ CQ≠, set-parallel-correctness transfers from Q to Q′ if for each minimal val-

uation 𝑉 ′ for Q′ there is a minimal valuation 𝑉 for Q where 𝑉 ′ (bodyQ′) ⊆ 𝑉 (bodyQ) and adom(𝑉 ′ (bodyQ′)) =
adom(𝑉 (bodyQ)).

4.2 Transferability under bag semantics

We start by observing that for Boolean queries Q, 𝑄′ ∈ CQ≠
, Q

bag

−−−→ Q′ implies that Q′ is set-contained in Q. Indeed,
when Q′ is not set-contained in Q, there is a valuation 𝑉 ′ for Q′ with the property that Q′ (𝑉 ′ (body𝑄 ′)) ≠ ∅ and
Q(𝑉 ′ (body𝑄 ′)) = ∅. But then the distribution policy over a two-node network assigning all facts to one node and

precisely the facts 𝑉 ′ (body𝑄 ′) to the other node is trivially bag-parallel-correct for Q while it is not for Q′. This
observation can be further generalized by considering for arbitrary conjunctive queries Q ∈ CQ≠

their “Booleanisation”,

11

Ketsman et al.

defined as the conjunctive query obtained by removing from Q all variables from its head. In the following lemma,

we write Q ⊆𝐵 Q′ for conjunctive queries Q and Q′ to denote set-contained of the “Booleanisation” of Q in the

“Booleanisation” of Q′.

Lemma 4.3. For queries 𝑄,𝑄 ′ ∈ CQ≠, Q
bag
−−−→ Q′ implies Q′ ⊆𝐵 Q.

Proof. The proof is by contraposition where we show that Q′ ⊈𝐵 Q implies Q ̸
bag

−−−→ Q′. The former means that

there is an instance 𝐼 such that |Q′ (𝐼) | ≠ ∅ and |Q(𝐼) | = ∅. Now consider a distribution policy over a two-node network

with one node, say 𝜅1, made responsible for all facts (including those in 𝐼); and another node, say 𝜅2, made responsible

for only the facts occurring in 𝐼 . By choice of 𝐼 , query Q′ is not bag-parallel-correct on 𝑷 (a direct consequence of the

Highlander Lemma), while query Q clearly is bag-parallel-correct, implying Q ̸
bag

−−−→ Q′. □

Boolean containment, however, does not imply transferability. Indeed, Q′ ⊆𝐵 Q only ensures for every valuation 𝑉 ′

for 𝑄 ′ that there is a valuation 𝑉 for 𝑄 with 𝑉 (body𝑄) ⊆ 𝑉 ′ (body𝑄 ′). More precisely, the latter implies that for every

distribution policy for which 𝑄 is bag-parallel-correct, every valuation of 𝑄 ′ can be supported by at most one node; but

does not guarantee that every valuation of Q′ is supported by a node as is illustrated in the following example.

Example 4.4. Consider queries

Q : 𝐻 () ← 𝑅(𝑥, 𝑥)

and

Q′ : 𝐻 () ← 𝑅(𝑥, 𝑥), 𝑅(𝑥,𝑦), 𝑅(𝑦, 𝑥), 𝑥 ≠ 𝑦.

Then Q′ ⊆𝐵 Q. We next argue that Q ̸
bag

−−−→ Q′. Take for example the distribution policy 𝑷 over two nodes 𝜅1, 𝜅2 with

𝜅1 made responsible for all facts of the form 𝑅(𝑎, 𝑎) and 𝜅2 made responsible for all facts of the form 𝑅(𝑎, 𝑏) with 𝑎 ≠ 𝑏.

Since 𝜅1 supports all valuation of Q, and it is the only node supporting such valuations, Q is clearly bag-parallel-correct

for 𝑷 . On the other hand, none of the valuations for Q′ is supported by 𝑷 , hence Q′ is not bag-parallel-correct for 𝑷 .

We remark that set-contained for queries with inequalities is Π
𝑝

2
-complete [20].

The observative reader may wonder if transferability under bag-semantics perhaps also requires set-containment in

the other direction, as this would guarantee that every valuation for Q′ is supported by at least one of the nodes of the

network. This property however is unnecessarily strong. The following example highlights how, depending on the

structure of the query, different valuations must be supported by the same compute node for distribution policies under

which the query is bag-parallel-correct. In particular, the example shows that the assignment of a fact to a particular

node can imply that other facts should be assigned to that same node as well.

Example 4.5. Consider the query Q : 𝐻 (𝑥) ← 𝑅(𝑥,𝑦), 𝑅(𝑥, 𝑧). Let 𝑷 be a distribution policy under which Q is

bag-parallel-correct. Assume 𝑅(𝑎, 𝑎) ∈ rfacts𝑷 (𝜅) for some node 𝜅. Then, by Lemma 3.5, every fact of the form 𝑅(𝑎, 𝑐)
for any 𝑐 should belong to rfacts𝑷 (𝜅) as well. Furthermore, denoting the valuation {𝑥 ↦→ 𝑎,𝑦 ↦→ 𝑏, 𝑧 ↦→ 𝑐} by𝑊𝑎,𝑏,𝑐 ,

the following set of valuations {𝑊𝑎,𝑏,𝑐 | 𝑏, 𝑐 ∈ 𝑈 } for a fixed 𝑎 have to be supported by the same node.

We formally define the set of facts that are implied by a valuation w.r.t. a given query.

Definition 4.6. Let 𝑉 be a valuation for Q ∈ CQ≠
. A fact 𝒇 is implied by 𝑉 w.r.t. Q if for every distribution policy

𝑷 = (𝑈 , rfacts𝑷), with adom(𝑉 (bodyQ)) ⊆ 𝑈 under which Q is bag-parallel-correct, and for every node 𝜅 in the

network of 𝑷 : 𝑉 (bodyQ) ⊆ rfacts𝑷 (𝜅) implies 𝒇 ∈ rfacts𝑷 (𝜅). We denote the set of facts implied by 𝑉 w.r.t. Q by

ImpFacts(𝑉 ,Q).
12

Parallel-Correctness and Transferability for ConjunctiveQueries under Bag Semantics

Notice that ImpFacts(𝑉 ,Q) is well-defined as there is always a distribution policy under which 𝑄 is bag-parallel-

correct: namely, the policy which is defined over a single-node network and maps all facts to a single node. Furthermore,

ImpFacts(𝑉 ,Q) ⊆ rfacts𝑷 (𝜅) whenever 𝑉 (bodyQ) ⊆ rfacts𝑷 (𝜅) for every distribution policy 𝑷 under which Q is

bag-parallel-correct.

We are now ready to characterize bag-parallel-correctness transfer. The lemma plays a role similar to the Highlander

Lemma and requires that every valuation for the second query is sandwiched between a valuation for the first query

and the implied facts.

Lemma 4.7 (Sandwich lemma). Bag-parallel-correctness transfers from Q to Q′ if and only if for each valuation 𝑉 ′ for

Q′ there is a valuation 𝑉 for Q such that 𝑉 (bodyQ) ⊆ 𝑉 ′ (bodyQ′) ⊆ ImpFacts(𝑉 ,Q).

Proof. (If). Let 𝑷 = (𝑈 , rfacts𝑷) be an arbitrary distribution policy such that Q is bag-parallel-correct under 𝑷 . Let

𝑉 ′ be an arbitrary valuation for Q′ over𝑈 . We argue that |Sup𝑷 (Q′,𝑉 ′) | = 1 which by Lemma 3.5 implies that Q′ is bag-
parallel-correct under 𝑷 as well. By assumption there is a valuation𝑉 for Q over𝑈 such that𝑉 (bodyQ) ⊆ 𝑉 ′ (bodyQ′) ⊆
ImpFacts(𝑉 ,Q). Then, by Lemma 3.5, Sup𝑷 (Q,𝑉) = {𝜅} for some node 𝜅 and ImpFacts(𝑉 ,Q) ⊆ rfacts𝑷 (𝜅). Therefore,
𝑉 ′ (bodyQ′) ⊆ rfacts𝑷 (𝜅). So, |Sup𝑷 (Q′,𝑉 ′) | ≥ 1. However, as 𝑉 (bodyQ) ⊆ rfacts𝑷 (𝜅) and Sup𝑷 (Q,𝑉) = {𝜅},
|Sup𝑷 (Q′,𝑉 ′) | = 1.

(Only-If). The proof is by contraposition. In particular, we show that bag-parallel-correctness does not transfer from Q to

Q′ if the condition of the lemma fails for some valuation𝑉 ′ for Q′. We distinguish two cases: the case when no valuation

𝑉 for Q exists with 𝑉 (bodyQ) ⊆ 𝑉 ′ (bodyQ′), and the case when for each valuation 𝑉 , with 𝑉 (bodyQ) ⊆ 𝑉 ′ (bodyQ′),
we have that 𝑉 ′ (bodyQ′) ⊈ ImpFacts(𝑉 ,Q).

Case 1: there is no valuation 𝑉 with 𝑉 (bodyQ) ⊆ 𝑉 ′ (bodyQ′). We construct the policy 𝑷 over a two-node network

{𝜅1, 𝜅2} and universe 𝑈 consisting of all domain values used by 𝑉 ′, with rfacts𝑷 (𝜅1) = Facts(D,𝑈) and rfacts𝑷 (𝜅2) =
𝑉 ′ (bodyQ′). Then, Sup𝑷 (𝑄 ′,𝑉 ′) = {𝜅1, 𝜅2} and Lemma 3.5 implies that 𝑷 is not bag-parallel-correct for Q′. In contrast,

every valuation for Q is supported only on node 𝜅1 (as none of them are included in 𝑉 ′ (bodyQ′)) which implies that 𝑷

is bag-parallel-correct for Q. We conclude that bag-parallel-correctness does not transfer from Q to Q′.

Case 2: for each valuation 𝑉 , 𝑉 (bodyQ) ⊆ 𝑉 ′ (bodyQ′) implies 𝑉 ′ (bodyQ′) ⊈ ImpFacts(𝑉 ,Q). From the previous case,

we can assume the existence of a valuation 𝑉 with 𝑉 (bodyQ) ⊆ 𝑉 ′ (bodyQ′). Then, by definition of ImpFacts(𝑉 ,Q),
𝑉 ′ (bodyQ′) ⊈ ImpFacts(𝑉 ,Q) implies that there must be a policy 𝑷 (over some networkN) such that Q is bag-parallel-

correct under 𝑷 and 𝑷 has a node 𝜅 with 𝑉 (bodyQ) ⊆ rfacts𝑷 (𝜅) and 𝑉 ′ (bodyQ′) ⊈ rfacts𝑷 (𝜅). From Lemma 3.5, it

follows that for all other nodes 𝜅′, that is 𝜅′ ∈ N \ {𝜅}, 𝑉 (bodyQ) ⊈ rfacts𝑷 (𝜅′), and thus 𝑉 ′ (bodyQ′) ⊈ rfacts𝑷 (𝜅′).
Hence, 𝑷 is not bag-parallel-correct for Q′ and, consequently, bag-parallel-correctness does not transfer from Q to

Q′. □

Notice that the inclusion between 𝑉 (bodyQ) and 𝑉 ′ (bodyQ′) in Lemma 4.7 is in the opposite direction as in

Lemma 4.2, since the inclusion now asserts that 𝑉 ′ is supported by at most one node instead of at least one.

We formally define the respective decision problems for 𝑥 ∈ {set, bag}. By C and C′ we denote query classes.

PC-Trans𝑥 (C, C′)
Input: Query Q ∈ C, query Q′ ∈ C′

Question: Does 𝑥-parallel-correctness transfer from Q to Q′?
13

Ketsman et al.

{𝑅 (𝑎, 𝑎), 𝑅 (𝑎,𝑏), 𝑅 (𝑎, 𝑐) }

{𝑅 (𝑎,𝑏), 𝑅 (𝑎, 𝑐) }{𝑅 (𝑎, 𝑎), 𝑅 (𝑎,𝑏), 𝑅 (𝑎, 𝑐) }

{𝑅 (𝑎, 𝑎), 𝑅 (𝑎, 𝑐) }{𝑅 (𝑎, 𝑎), 𝑅 (𝑎,𝑏) }

{𝑅 (𝑎, 𝑎), 𝑅 (𝑎,𝑏) }{𝑅 (𝑎, 𝑎) }

{𝑅 (𝑎, 𝑎), 𝑅 (𝑎,𝑏), 𝑅 (𝑎, 𝑐) }

{𝑅 (𝑎,𝑏), 𝑅 (𝑎, 𝑐) }{𝑅 (𝑎, 𝑎), 𝑅 (𝑎,𝑏), 𝑅 (𝑎, 𝑐) }

{𝑅 (𝑎, 𝑎), 𝑅 (𝑎,𝑏) }{𝑅 (𝑎, 𝑎), 𝑅 (𝑎, 𝑐) }

Fig. 1. Visual depiction of two IF-proof-trees for query Q of Example 4.5 over𝑈 with {𝑎,𝑏, 𝑐 } ⊆ 𝑈 .

Recall that under set semantics PC-Trans𝑠𝑒𝑡 (CQ≠,CQ≠) is Π𝑝

3
-complete [5]. In the remainder of this section, we

obtain the following result:

Theorem 4.8. PC-Trans𝑏𝑎𝑔 (CQ≠,CQ≠) is in exptime.

We introduce IF-proof-trees as a means for reasoning on implied facts.

Definition 4.9. For a query Q and universe 𝑈 ⊆ dom, an IF-proof-tree T for Q over 𝑈 is a binary tree in which all

nodes 𝑛 have an instance InstT (𝑛) as label with the following conditions:

(1) If 𝑛 is a leaf, then InstT (𝑛) = 𝑉 (bodyQ) for some valuation 𝑉 for Q over𝑈 ;

(2) If 𝑛 is an intermediate node with children 𝑛1 and 𝑛2, then InstT (𝑛) = InstT (𝑛1) ∪ InstT (𝑛2), and some valuation

𝑉 for Q over𝑈 exists with 𝑉 (bodyQ) ⊆ InstT (𝑛1) ∩ InstT (𝑛2).

Two example IF-proof-trees for query Q of Example 4.5 over 𝑈 with {𝑎, 𝑏, 𝑐} ⊆ 𝑈 are shown in Figure 1. In the next

lemma, we relate IF-proof-trees and bag-parallel-correct distribution policies. In particular, the lemma says that all facts

occurring together in an IF-proof-tree for a given query have to be assigned to exactly one compute node by every

distribution policy that is bag-parallel-correct for that query.

Lemma 4.10. Let Q ∈ CQ≠ and T an IF-proof-tree over universe 𝑈 ′. For every distribution policy 𝑷 = (𝑈 , rfacts𝑷)
with𝑈 ′ ⊆ 𝑈 (over some network N) that is bag-parallel-correct for Q, there is exactly one node 𝜅 ∈ N , with InstT (𝑛) ⊆
rfacts𝑷 (𝜅), for every 𝑛 in T.

Proof. If T consists of a single leaf-node, the lemma holds straightforwardly by bag-parallel-correctness and

Lemma 3.5. Indeed, every valuation for Q over 𝑈 ′ is supported by 𝑷 and by exactly one compute node. Otherwise, the

result follows by induction on the depth of T. Specifically, for an intermediate node 𝑛, with subtrees T1 and T2, where

𝜅1 and 𝜅2 are the unique nodes where InstT (𝑛1) ⊆ rfacts𝑷 (𝜅1) and InstT (𝑛2) ⊆ rfacts𝑷 (𝜅2), for all nodes 𝑛1 in T1 and

𝑛2 in T2, respectively, we argue that 𝜅1 = 𝜅2. Indeed, by definition of IF-proof-tree, a valuation 𝑉 for Q over𝑈 ′ exists,

with 𝑉 (bodyQ) ⊆ InstT (𝑛1) and 𝑉 (bodyQ) ⊆ InstT (𝑛2), then 𝜅1 = 𝜅2 follows from Lemma 3.5. □

Algorithm 1 is a procedure that constructs all maximal IF-proof-trees. We notice that at each point during the

evaluation of max-proof-forest(Q,𝑈), all trees in I are valid IF-proof-trees for Q and𝑈 , by construction. In particular,

the output of Algorithm 1 contains for every valuation 𝑉 a unique tree with 𝑉 (bodyQ) ⊆ InstT (𝑛). Indeed, if two such

trees would exist, they would have been combined into a new tree by construction. Algorithm 2 then selects the unique

tree w.r.t. a given valuation. We notice that max-proof-tree(𝑉 ,Q,𝑈) is well-defined, since, if 𝑉 is a valuation for Q
over𝑈 , then the desired tree T indeed exists.

The next lemma shows that max-proof-tree(𝑉 ,Q,𝑈) computes precisely the facts that are implied by 𝑉 and Q.
14

Parallel-Correctness and Transferability for ConjunctiveQueries under Bag Semantics

Algorithm 1 max-proof-forest(Q,𝑈)

Let I be the set of single-node IF-proof-trees, one for each set 𝑉 (bodyQ), where 𝑉 is a valuation for Q over𝑈 .

while Distinct T1,T2 ∈ I and 𝑉 for Q over𝑈 exist, with 𝑉 (bodyQ) ⊆ InstT1
(𝑛1) ∩ InstT2

(𝑛2), with 𝑛1, 𝑛2 the roots
of T1,T2 respectively do

Remove T1 and T2 from I
Insert new node 𝑛 with children T1 and T2 to I
InstT (𝑛) = InstT1

(𝑛1) ∪ InstT2
(𝑛2);

end while
return I

Algorithm 2 max-proof-tree(𝑉 ,Q,𝑈)

Compute max-proof-forest(Q,𝑈).

return The unique tree T, with 𝑉 (bodyQ) ⊆ InstT (𝑛), where 𝑛 is the root of T.

Lemma 4.11. For a query Q and valuation 𝑉 for Q, 𝒇 ∈ ImpFacts(𝑉 ,Q) if and only if 𝒇 ∈ InstT (𝑛), with 𝑛 being the

root of T =max-proof-tree(𝑉 ,Q,𝑈).

Proof. (If). The proof follows directly from Lemma 4.10. Indeed, since 𝑉 (bodyQ) ∪ {𝒇 } ⊆ InstT (𝑛) for the root 𝑛 of

T, it follows immediately that 𝒇 ∈ ImpFacts(𝑉 ,Q).

(Only-If). Assume 𝒇 ∈ ImpFacts(𝑉 ,Q). Define 𝑷 = (adom(𝑉 (bodyQ)), rfacts𝑷) as the distribution policy based on

the IF-proof-trees in the output I of max-proof-forest(𝑉 ,Q,𝑈) as follows. We assume a network N with exactly

one node 𝜅 per tree T′ in I and define rfacts𝑷 (𝜅) = InstT′ (𝑛′), with 𝑛′ being the root of T′. By construction of

max-proof-forest(Q,𝑈), every valuation for Q over 𝑈 is supported by exactly one node under 𝑷 . Thus Lemma 3.5

implies bag-parallel-correctness. Now it follows from the construction of 𝑷 that rfacts𝑷 (𝜅) = InstT (𝑛) for the node 𝜅
for which 𝑉 (bodyQ) ⊆ rfacts𝑷 (𝜅). As 𝒇 ∈ rfacts𝑷 (𝜅), it then follows that 𝒇 ∈ InstT (𝑛). □

Observe that when 𝑈 is finite, max-proof-tree(𝑉 ,Q,𝑈) runs in time exponential in the size of Q and 𝑈 . The next

lemma says that we can restrict attention to finite universes of size bounded by the number of variables in the queries.

Lemma 4.12. Let Q,Q′ ∈ CQ≠ and dom𝑘 = {1, . . . , 𝑘} be a subset of dom, where 𝑘 =𝑚𝑎𝑥 (|Vars(Q)|, |Vars(Q′) |). The
following conditions are equivalent:

(1) For each valuation 𝑉 ′ for Q′ over 𝑈 ⊆ dom, there exists a valuation 𝑉 for Q over 𝑈 such that 𝑉 (𝑏𝑜𝑑𝑦Q) ⊆
𝑉 ′ (𝑏𝑜𝑑𝑦Q′) ⊆ ImpFacts(𝑉 ,Q).

(2) For each valuation𝑊 ′ for Q′ over𝑈𝑘 ⊆ dom𝑘 , there exists a valuation𝑊 for Q over𝑈𝑘 such that𝑊 (𝑏𝑜𝑑𝑦Q) ⊆
𝑊 ′ (𝑏𝑜𝑑𝑦Q′) ⊆ ImpFacts(𝑊,Q).

Proof. Direction (1) ⇒ (2) follows immediately from dom𝑘 ⊆ dom and the observation adom(𝑉 (bodyQ)) =
adom(𝑉 ′ (bodyQ′)). Thus if 𝑉 is defined over𝑈𝑘 ⊆ dom𝑘 , then 𝑉

′
also is.

We next argue (2)⇒ (1). Therefore, assume condition (2) holds. Let 𝑉 ′ be an arbitrary valuation for Q′ over some

universe 𝑈 ⊆ dom. By 𝑈 ′ ⊆ 𝑈 we denote the active domain values in 𝑉 ′ (bodyQ′). Clearly, |𝑈 ′ | ≤ 𝑘 . The argument

then relies on the genericity of Q, Q′, and ImpFacts(𝑉 ,Q). More specifically, it relies on the existence of a bijective

mapping 𝜋 from 𝑈 ′ to {1, 2, . . . , |𝑈 ′ |}. Indeed, by assumption, for valuation𝑊 ′ = 𝜋 ◦𝑉 ′ there is a valuation𝑊 for Q
over dom𝑘 as in condition (2). Then, 𝑉 = 𝜋−1 ◦𝑊 ′ is the desired witness for 𝑉 ′ in condition (1). □

We are now ready to prove Theorem 4.8.

15

Ketsman et al.

Proof. (of Theorem 4.8) The proof is by a naive verification of condition (2) of Lemma 4.12. More specifically, for

every universe 𝑈 ⊆ dom𝑘 and every valuation 𝑉 for Q over 𝑈 , we compute ImpFacts(𝑉 ,Q) through max-proof-

tree(𝑉 ,Q,𝑈) (cf. Lemma 4.11). Then, for every valuation 𝑉 ′ for Q′ over𝑈 and every valuation 𝑉 for Q over𝑈 we test

condition 𝑉 (bodyQ) ⊆ 𝑉 ′ (bodyQ′) ⊆ ImpFacts(𝑉 ,𝑄). If for some 𝑉 ′ no 𝑉 is found that satisfies the condition, then

the algorithm returns false, otherwise it returns true.

Correctness of the algorithm follows directly from Lemma 4.12 and Lemma 4.7. It remains to show that this algorithm

proceeds in exponential time in the size of Q and Q′. For this, we recall that dom𝑘 is linear in Q and Q′ by construction,
and thus that there are only exponentially many universes 𝑈 ⊆ dom𝑘 (w.r.t Q and Q′). The set of implied facts for a

given 𝑉 and Q, restricted to𝑈 , is computable in exponential time and itself is of at most exponential size. Since only

exponentially many valuations for Q and Q′ exist over 𝑈 , and the test condition itself proceeds in a linear run over the

set of implied facts, the result follows. □

We do not know if PC-Trans𝑏𝑎𝑔 (CQ≠,CQ≠) is complete for exptime. The strongest lower bound we are currently

aware of is the following rather trivial result:

Lemma 4.13. PC-Trans𝑏𝑎𝑔 (CQ≠,CQ≠) is 𝑛𝑝-hard.

Proof. The reduction is from the 3-colorability problem for undirected graphs, which is well-known to be np-

complete. Given an undirected graph 𝐺 as input to this problem, we can construct two queries 𝑄 and 𝑄 ′ and show that

bag-parallel-correctness transfers from Q to Q′ iff 𝐺 is 3-colorable.

Both queries are defined over schema {𝐸 (2) }. Query 𝑄 ′ is a Boolean query returning true if for at least some choice

of three different colors the 𝐸 relation contains all pairs of different colors. Formally,

Q′ : 𝑇 () ← 𝐸 (𝑥,𝑦), 𝐸 (𝑦, 𝑥), 𝐸 (𝑥, 𝑧), 𝐸 (𝑧, 𝑥), 𝐸 (𝑦, 𝑧), 𝐸 (𝑧,𝑦), 𝑥 ≠ 𝑦, 𝑥 ≠ 𝑧,𝑦 ≠ 𝑧.

Query Q is a Boolean query returning true if Q′ returns true and there is a mapping 𝑓 from the nodes in graph𝐺 on

values in the active domain of the given instance such that for every edge {𝑥,𝑦} in 𝐺 we have that 𝑓 (𝑥) ≠ 𝑓 (𝑦) and
there is a tuple (𝑓 (𝑥), 𝑓 (𝑦)) and (𝑓 (𝑦), 𝑓 (𝑥)) in the 𝐸 relation. Formally, headQ = 𝑇 (), bodyQ = bodyQ′ ∪ {𝐸 (𝑢, 𝑣) |
{𝑣,𝑢} ∈ 𝐺} ∪ {𝐸 (𝑣,𝑢) | {𝑣,𝑢} ∈ 𝐺}, and Q has a disequality 𝑣 ≠ 𝑢 for every {𝑣,𝑢} ∈ 𝐺 . In this construction we assume

that the variables introduced to represent the nodes of 𝐺 are all different from the variables used in Q′.
The resulting queries have polynomial size compared to the size of 𝐺 and can clearly be constructed in polynomial

time. Therefore, we only still need to show correctness of the reduction.

Correctness. We first show that if 𝐺 is 3-colorable, then bag-parallel-correctness transfers from Q to Q′. For this,
assume any network and distribution policy that is bag-parallel-correct for Q. We need to show that Q′ is also bag-

parallel-correct, which (due to Lemma 3.5) is the case if every valuation𝑉 ′ for Q′ is supported by precisely one node in

the network. To see that the latter is true, we observe that𝑉 ′ for Q′ can always be extended to a valuation𝑉 for𝑄 with

the property that 𝑉 (bodyQ) = 𝑉 ′ (bodyQ′). Indeed, this is done by assigning all variables representing nodes of 𝐺 to a

valid 3-coloring making use of the three colors 𝑉 (𝑥),𝑉 (𝑦),𝑉 (𝑧), which by construction of Q′ are indeed all different.

Since bag-parallel-correctness of Q implies that𝑉 is supported by precisely one node, and𝑉 (bodyQ) = 𝑉 ′ (bodyQ′), it is
immediate that also 𝑉 is supported by precisely one node, and hence Q is bag-parallel-correct on the given distribution

policy.

Second, we show that if 𝐺 is not 3-colorable, then bag-parallel-correctness does not transfer from Q to Q′. To see

this, consider a two-node network, any valuation 𝑉 ′ for Q′, and a distribution policy making one of the nodes in the

16

Parallel-Correctness and Transferability for ConjunctiveQueries under Bag Semantics

Q1

Q4 Q3

Q2
b
a
g

b
a
g

b
a
g

b
a
g

(a) Bag-parallel-correctness transfer

Q1

Q4 Q3

Q2

s
e
t

s
e
t

set

s
e
t

(b) Set-parallel-correctness transfer

Fig. 2. Relationship between the queries of Section 4.3 with respect to (a) bag-parallel-correctness transfer and (b) set-parallel-
correctness transfer.

network responsible for precisely the facts 𝑉 ′ (body𝑄 ′) and the other node responsible for all facts (including those

in 𝑉 ′ (body𝑄 ′)). It follows immediately from Lemma 3.5 and valuation 𝑉 ′ that Q′ is not bag-parallel-correct for the
constructed distribution policy. Query Q however is clearly bag-parallel-correct as all its valuations are supported by at

least one of the two nodes, and in case a valuation is supported by both nodes this would directly contradict with 𝐺

being not 3-colorable. □

4.3 Relationship between transferability under set and bag semantics

We argue that set-parallel-correctness transfer is orthogonal to bag-parallel-correctness transfer. Indeed, consider the

following queries:

Q1 : 𝐻 () ← 𝑅(𝑥,𝑦), 𝑅(𝑧,𝑤) .

Q2 : 𝐻 () ← 𝑅(𝑥, 𝑥), 𝑅(𝑦,𝑦), 𝑅(𝑧, 𝑧), 𝑥 ≠ 𝑦,𝑦 ≠ 𝑧, 𝑥 ≠ 𝑧.

Q3 : 𝐻 () ← 𝑅(𝑥,𝑦), 𝑅(𝑥, 𝑧), 𝑦 ≠ 𝑧.

Q4 : 𝐻 () ← 𝑅(𝑥,𝑦), 𝑅(𝑦, 𝑧), 𝑅(𝑥, 𝑥) .

Figure 2 shows the directions in which set-parallel-correctness transfer and bag-parallel-correctness transfer hold. In

particular, when an edge is missing, there is no set- or bag-parallel-correctness transfer between the two queries.

Lemma 4.14. Set-parallel-correctness transfer and bag-parallel-correctness transfer are orthogonal.

Proof. We show that Figure 2 is correct. Case Q1 ̸
set−−→ Q2, Q1 ̸

set−−→ Q3, Q3 ̸
set−−→ Q2, Q4 ̸

set−−→ Q2, Q4 ̸
set−−→ Q3. The

proof follows from Lemma 4.2. Specifically, from the observation that all valuations for Q2 require three facts, those for
Q3 require two facts, and the minimal valuations for Q1 and Q4 require only one fact.

Case Q2 ̸
set−−→ Q1, Q2 ̸

set−−→ Q3, and Q4 ̸
set−−→ Q1.Minimal valuations for Q2 and Q4 require only facts of the form 𝑅(𝑎, 𝑎),

while minimal valuations exist for Q1 and Q3 that require facts of the form 𝑅(𝑎, 𝑏), with 𝑎 ≠ 𝑏. The result then follows

again from Lemma 4.2.

Case Q1
set−−→ Q4, Q2

set−−→ Q4, and Q3
set−−→ Q4. The minimal valuations for Q4 all require just a single 𝑅-fact of the form

𝑅(𝑎, 𝑎). It is easy to see that valuations {𝑥,𝑦, 𝑧,𝑤, ↦→ 𝑎}, {𝑥 ↦→ 𝑎,𝑦 ↦→ 𝑏, 𝑧 ↦→ 𝑐}, and {𝑥,𝑦 ↦→ 𝑎, 𝑧 ↦→ 𝑏} are minimal for

Q1, Q2, and Q3 respectively. Then set-parallel-correctness transfer follows from Lemma 4.2.

17

Ketsman et al.

Case Q3
set−−→ Q1. Minimal valuations for Q1 all require a single fact of the form 𝑅(𝑎, 𝑏). Since {𝑥 ↦→ 𝑎,𝑦 ↦→ 𝑏, 𝑧 ↦→ 𝑐} is

a minimal valuation for Q3, the result again follows from Lemma 4.2.

Case Q1
bag
−−−→ Q2, Q1

bag
−−−→ Q3, and Q1

bag
−−−→ Q4. We notice that for Q1 to be bag-parallel-correct over a distribution

policy 𝑷 = (𝑈 , rfacts𝑷), there is a node 𝜅 responsible for all 𝑅-facts over𝑈 , and 𝒇 ∈ rfacts𝑷 (𝜅′) implies 𝜅′ = 𝜅, for all

facts 𝒇 over𝑈 with predicate 𝑅.

The proof is straightforward. First, we observe that for every combination of facts 𝑅(𝑎, 𝑏), 𝑅(𝑐, 𝑑) over 𝑈 , there is a

valuation for Q1 that requires both. Lemma 3.5 then implies that all these valuations satisfy on some node. Since for

every individual fact 𝑅(𝑎, 𝑏) there is a valuation {𝑥, 𝑧 ↦→ 𝑎,𝑦,𝑤 ↦→ 𝑏} of Q1 that requires only 𝑅(𝑎, 𝑏), it follows that all
these facts must be mapped on one node, 𝜅.

Case Q2 ̸
bag
−−−→ Q1, Q3 ̸

bag
−−−→ Q1, Q4 ̸

bag
−−−→ Q1. We observe that there is a valuation for Q1 that requires only the fact

𝑅(𝑎, 𝑏), while no valuation for Q2, Q3 or Q4 requires only 𝑅(𝑎, 𝑏). Therefore, to find a counterexample distribution

policy 𝑷 (𝑈 , rfacts𝑷), we simply take one that is bag-parallel-correct for Q2 (or Q3,Q4 respectively), with {𝑎, 𝑏} ⊆ 𝑈 ,

and then add a new node 𝜅, with rfacts𝑷 (𝜅) = {𝑅(𝑎, 𝑏)}. The result follows from Lemma 3.5.

Case Q2 ̸
bag
−−−→ Q3, and Q4 ̸

bag
−−−→ Q3. For both Q2 and Q4 it is easy to see that for valuation 𝑉 ′ = {𝑥 ↦→ 𝑎,𝑦 ↦→ 𝑏, 𝑧 ↦→ 𝑐}

of Q3 the conditions in Lemma 3.5 fail.

Case Q2 ̸
bag
−−−→ Q4, and Q3 ̸

bag
−−−→ Q4. For Q2 and Q3 we observe that for valuation 𝑉 ′ = {𝑥,𝑦, 𝑧 ↦→ 𝑎} the conditions in

Lemma 3.5 fail.

Case Q3 ̸
bag
−−−→ Q2. The proof is analogous. Here we take 𝑉 ′ = {𝑥 ↦→ 𝑎,𝑦 ↦→ 𝑏, 𝑧 ↦→ 𝑐}.

Case Q4
bag
−−−→ Q2. The result follows from the observations that if 𝑷 = (𝑈 , rfacts𝑷) is bag-parallel-correct for Q4, then

there is a node 𝜅 where all 𝑅-facts over𝑈 are mapped on, and as a consequence, that all facts of the form 𝑅(𝑎, 𝑎), with
𝑎 ∈ 𝑈 are mapped only on 𝜅 (due to Lemma 3.5 and existence of valuations for Q4 that require exactly one such fact

𝑅(𝑎, 𝑎)).
To see why node 𝜅 indeed exists, the reasoning is analogous to Example 5.1. □

The next lemma follows directly from Theorem 3.10.

Lemma 4.15. For strongly minimal queries Q,Q′ ∈ CQ≠ and non-replicating distribution policies, we have that

Q
bag
−−−→ Q′ if and only if Q set−−→ Q′.

5 MODIFYING THE DISTRIBUTION MODEL

As already hinted upon in the Introduction, the Highlander Lemma of Section 3 implies that the space of valuations for a

conjunctive query should be perfectly partitioned over all compute nodes. That is, every valuation should occur in exactly

one compute node. We next give a simple example query for which the distribution policies that are bag-parallel-correct

for it, have to map all facts to a single node.

Example 5.1. Consider the query Q : 𝐻 (𝑥, 𝑧) ← 𝑅(𝑥,𝑦), 𝑅(𝑦, 𝑧). We argue that distribution policies that map all facts

to a single node are the only distribution policies that are bag-parallel-correct. Indeed, let 𝑷 be a distribution policy that

is bag-parallel-correct for Q. Assume 𝑅(𝑎, 𝑎) ∈ rfacts𝑷 (𝜅) for some node 𝜅 . Then, the valuation {𝑥 ↦→ 𝑎,𝑦 ↦→ 𝑎, 𝑧 ↦→ 𝑏}
(for every 𝑏) together with Lemma 3.5, implies that every fact of the form 𝑅(𝑎, 𝑏) for any 𝑏 should belong to rfacts𝑷 (𝜅)
as well. Furthermore, the valuation {𝑥 ↦→ 𝑎,𝑦 ↦→ 𝑏, 𝑧 ↦→ 𝑐} (for every 𝑏 and 𝑐) together with Lemma 3.5, implies

18

Parallel-Correctness and Transferability for ConjunctiveQueries under Bag Semantics

that every fact of the form 𝑅(𝑏, 𝑐) for any 𝑏 and any 𝑐 should belong to rfacts𝑷 (𝜅) as well. Consequently, 𝑷 , to be

bag-parallel-correct for Q, maps all facts to node 𝜅.

The previous example shows that there are queries where the demand for bag-parallel-correctness effectively

prohibits parallel computation. We note that this is not the case for all queries. See for instance Example 4.5.

In this section, we consider the setting of ordered networks where every compute node is assigned a number and for

every valuation only the node with the smallest number containing all facts required for that valuation can contribute

to the query result. While both settings do not differ under set semantics, the new setting is more natural for bag

semantics and alleviates the problem put forward in Example 5.1.

We associate a total order <N to every network N . We refer to these networks as ordered networks. The definition

of a distribution policy 𝑷 = (𝑈 , rfacts𝑷) seamlessly carries over to ordered networks. Let Q be a query and 𝑉 be a

valuation over 𝑈 for Q. Then, we say that a node 𝜅 ∈ N is responsible for 𝑉 (of Q) if 𝑉 (𝑏𝑜𝑑𝑦Q) ⊆ rfacts𝑷 (𝜅) and there

is no node 𝜅′ ∈ N with 𝜅′ <N 𝜅 and 𝑉 (𝑏𝑜𝑑𝑦Q) ⊆ rfacts𝑷 (𝜅′). Intuitively, the node responsible for a valuation 𝑉 is the

smallest node in the ordered network containing all the facts for 𝑉 (bodyQ).
We redefine the one-round distributed evaluation induced by 𝑷 and <N as follows:

[Q, 𝑷 , <N] (𝐼) =
⋃

𝜅∈N,𝑉 ∈V𝜅

[Q,𝑉] (loc-inst𝑷 ,𝐼 (𝜅))

withV𝜅 the set of valuations for which 𝜅 is responsible.

The notions of set- and bag-parallel-correctness carry over directly to the setting of ordered networks. Notice that

under set-semantics it does not matter whether the ordering of nodes is taken into account.

Proposition 5.2. For each query Q, distribution policy 𝑷 , and ordered network (N , <N), the following hold for all

instances 𝐼 :

(1) [Q, 𝑷 , <N] (𝐼) ⊆ [Q, 𝑷] (𝐼);
(2) [Q, 𝑷 , <N] (𝐼) ⊆ Q(𝐼); and,
(3) Facts([Q, 𝑷] (𝐼)) = Facts([Q, 𝑷 , <N] (𝐼));

Proof. The proof is straightforward. For (1) and (2) we observe that, under the ordered-network semantics, every

valuation is applied on at most one node. For (3) we observe that Facts([Q, 𝑷 , <N] (𝐼)) ⊆ Facts([Q, 𝑷] (𝐼)) due to (1).
Further, since all valuations satisfying under the unordered semantics still satisfy on some node, every output fact will

still be detected (although frequencies may drop). □

In particular, Proposition 5.2(3) implies that Theorem 3.3 and Lemma 3.4 carry over to ordered networks. The next

lemma provides characterizations of bag-parallel-correctness and transferability over ordered networks.

Lemma 5.3. Let Q and Q′ be in CQ≠. Let 𝑷 = (𝑈 , rfacts𝑷) be a distribution policy over an ordered networkN . Then the

following characterizations hold true:

(1) Q is bag-parallel-correct under 𝑷 if and only if for every valuation 𝑉 for Q over 𝑈 there is a node 𝜅 with

𝑉 (bodyQ) ⊆ rfacts𝑷 (𝜅); and,
(2) bag-parallel-correctness transfers from Q to Q′ over ordered networks if and only if for each valuation 𝑉 ′ for Q′

over a universe𝑈 ′ there is a valuation 𝑉 for Q over𝑈 ′ such that 𝑉 ′ (bodyQ′) ⊆ 𝑉 (bodyQ).

Proof. (1). The proof is straightforward. By definition of query evaluation on ordered networks, it is guaranteed

that every valuation 𝑉 for Q is applied on at most one node. To show bag-parallel-correctness it is thus sufficient (due

19

Ketsman et al.

to Lemma 3.5) to show that every valuation𝑉 for Q satisfies on at least one node. Indeed, then the lowest of these nodes

will apply 𝑉 .

(2). The result follows directly from (1) and the ordered-network semantics. □

Notice the similarity with Lemma 3.4 and Lemma 4.2. In particular, the inclusion between𝑉 (bodyQ) and𝑉 ′ (bodyQ′)
now is in the same direction as in Lemma 4.2. The only difference is that in the above lemma all valuations are considered

rather than only the minimal ones. The latter is reflected in the complexity of the associated decision problems.

We formally define the respective decision problems. By C and C′ we denote query classes, by P a class of distribution

policies.

PC𝑏𝑎𝑔
<N (C,P)

Input: Query Q ∈ C, distribution policy 𝑷 ∈ P
Question: Is Q bag-parallel-correct under 𝑷?

PC-Trans𝑏𝑎𝑔<N (C, C′)
Input: Query Q ∈ C, query Q′ ∈ C′

Question: Does bag-parallel-correctness transfer from Q to Q′?

Using the characterizations in Lemma 5.3, we obtain the following results.

Theorem 5.4. (1) PC𝑏𝑎𝑔
<N (CQ,Pfin) is coNP-hard and PC𝑏𝑎𝑔

<N (CQ≠,P) is in coNP for all P ∈ {Pfin}∪𝔓det ;

and

(2) PC-Trans𝑏𝑎𝑔<N (CQ≠,CQ≠) and PC-Trans𝑏𝑎𝑔<N (CQ≠,CQ) are Π𝑝

2
-complete; and

(3) PC-Trans𝑏𝑎𝑔<N (CQ,CQ≠) and PC-Trans𝑏𝑎𝑔<N (CQ,CQ) are np-complete.

Proof. (1) We first argue that PC𝑏𝑎𝑔
<N (CQ≠,𝔓det) is in coNP. The required algorithm follows immediately from

Lemma 5.3(1). Indeed, if a given query Q is not bag-parallel-correct under a given distribution policy 𝑷 , then a valuation

𝑉 exists such that 𝑉 (bodyQ) ⊈ rfacts𝑷 (𝜅) for every node 𝜅 of the network that 𝑷 is defined over. By definition of

𝔓det , 𝜅 has polynomial size and 𝑉 (bodyQ) ⊈ rfacts𝑷 (𝜅) is testable in polynomial time. Therefore, it suffices to guess a

valuation 𝑉 and a node 𝜅 and verify that 𝑉 (bodyQ) ⊈ rfacts𝑷 (𝜅).
Next, we show that PC𝑏𝑎𝑔

<N (CQ,Pfin) is coNP-hard. We use a simple reduction from the problem that asks whether

a given graph is not 3-colorable. The latter is coNP-hard, since 3-colorability is well-known to be np-complete. Now, let

𝐺 be an arbitrary undirected graph with 𝑛 edges. We notice that unconnected nodes in 𝐺 do not affect colorability.

W.l.o.g., we can thus assume that 𝐺 has no such nodes and can be encoded by a binary relation 𝐸. More specifically, we

choose to encode the edges in𝐺 in a directed fashion, that is, by including in 𝐸, for all edges {𝑢, 𝑣} in 𝐺 , either (𝑢, 𝑣) or
(𝑣,𝑢), but not both.
We are now ready to construct a CQ Q and distribution policy 𝑷 ∈ Pfin. For this, we denote by ℓ (.) : 𝐸 → [𝑛] an

arbitrarily chosen labeling that assigns to each edge in 𝐸 a unique number from [𝑛]. We later use this labeling to reason

about colorings for the end-nodes of particular edges.

Let Q be the boolean CQ over D = {𝐸 (2)
𝑖
| 𝑖 ∈ [𝑛]}, with bodyQ = {𝐸ℓ (𝑒) (𝑥𝑣, 𝑥𝑢) | (𝑣,𝑢) = 𝑒 ∈ 𝐸}. We define

distribution policy 𝑷 over network N = [𝑛] and universe 𝑈 = {𝑟, 𝑔, 𝑏}, with rfacts𝑷 (𝑗) = {𝒇 | 𝒇 ∈ Facts({𝐸𝑖 },𝑈), 𝑖 ∈
[𝑛], 𝑗 ≠ 𝑖} ∪ {𝐸 𝑗 (𝑟, 𝑟), 𝐸 𝑗 (𝑔,𝑔), 𝐸 𝑗 (𝑏,𝑏)}, for every node 𝑗 ∈ N .

20

Parallel-Correctness and Transferability for ConjunctiveQueries under Bag Semantics

Clearly, the reduction is polynomial. It remains to show that𝐺 is not 3-colorable if and only if Q is bag-parallel-correct

under 𝑷 with ordered network N .

(If). Suppose that 𝐺 is 3-colorable. Let 𝜌 be this coloring (say over colors {𝑟, 𝑔, 𝑏}). Then there is a valuation 𝑉 for

Q that encodes 𝜌 . More specifically, 𝑉 is defined 𝑉 (𝑥𝑢) = 𝜌 (𝑢). It is easy to see—by the construction of 𝑉—that

for all combinations of variables 𝑥𝑢 , 𝑥𝑣 occuring together in some atom 𝐸𝑖 (𝑥𝑢 , 𝑥𝑣) ∈ bodyQ : 𝑉 (𝑥𝑢) ≠ 𝑉 (𝑥𝑣). It now
follows directly from the construction of 𝑷 that no node in N can support 𝑉 , and from Lemma 5.3(1), that Q is not

bag-parallel-correct under 𝑷 .

(Only-if). Let 𝑉 be an arbitrary valuation for Q over 𝑈 . We notice that 𝑉 encodes a coloring for 𝐺 . Indeed, let 𝜌 be the

mapping from nodes in 𝐺 to colors in𝑈 , where 𝜌 (𝑢) = 𝑉 (𝑥𝑢), for all nodes 𝑢 in 𝐺 . Since𝐺 is not 3-colorable, it must

be that 𝜌 (𝑢) = 𝜌 (𝑣) for some adjacent nodes 𝑢, 𝑣 in𝐺 . Since bodyQ encodes𝐺 , there is an atom 𝐸𝑖 (𝑥𝑢 , 𝑥𝑣) ∈ bodyQ (or

𝐸𝑖 (𝑥𝑣, 𝑥𝑢) ∈ bodyQ), with 𝑉 (𝑥𝑢) = 𝑉 (𝑥𝑣). It is now easy to see that 𝑉 (bodyQ) ⊆ rfacts𝑷 (𝑖), by construction of 𝑷 . It

follows from Lemma 5.3(1), that Q is bag-parallel-correct under 𝑷 .

(2) We first argue that PC-Trans𝑏𝑎𝑔<N (CQ≠,CQ≠) is in Π
𝑝

2
. The required algorithm follows immediately from

Lemma 5.3(2). Indeed, we just need to verify that for every valuation 𝑉 ′ there is a valuation 𝑉 such that 𝑉 ′ (bodyQ′) ⊆
𝑉 (bodyQ). The latter test can be performed in polynomial time and hence the result follows.

We next show that PC-Trans𝑏𝑎𝑔<N (CQ≠,CQ) is Π𝑝

2
-hard. The reduction is from the quantified boolean satisfiability

problem for the respective level of the hierarchy. That is, satisfiability for formulas of the form 𝜑 = ∀𝒙∃𝒚𝜓 (𝒙 ;𝒚).
Let 𝜑 be such a formula.

(Encoding of𝜓). For the construction of Q and Q′, we first describe how𝜓 can be encoded as a set of atoms over schema

D = {Or(3) , And(3) , Neg(2) }. We denote this encoding by Enc(𝜓). An example of the construction is given in Figure 3.

For the definition of this encoding, we need to associate to every variable 𝑥 in𝜓 a unique variable in var. However, for
convenience, we simply assume 𝑥 ∈ var. We are now ready to define Enc(·) inductively as follows. For a single variable

𝑥 , Enc(𝑥) = (∅, 𝑥).
For propositional formulas𝜓1,𝜓2, with Enc(𝜓1) = (𝐴, 𝑥) and Enc(𝜓2) = (𝐵,𝑦):

Enc(¬𝜓1) = (𝐴 ∪ {Neg(𝑥, 𝑧)}, 𝑧);
Enc((𝜓1)) = (𝐴, 𝑥);
Enc(𝜓1 ∧𝜓2) = (𝐴 ∪ 𝐵 ∪ {And(𝑥,𝑦, 𝑧)}, 𝑧); and
Enc(𝜓1 ∨𝜓2) = (𝐴 ∪ 𝐵 ∪ {Or(𝑥,𝑦, 𝑧)}, 𝑧).

In the above construction, we always choose for 𝑧 a fresh variable that is not used in Enc(𝜓1) nor Enc(𝜓2).
We note that the above construction is non-deterministic, and that Enc(·) defines a set of encodings for 𝜓 rather

than just one. In the remainder of the proof, we assume that one such encoding is chosen (arbitrarily) and refer to it by

Enc(𝜓) = (tempEncoding𝜓 , 𝑥𝑡).

(Construction of Q and Q′). Rather then defining Q and Q′ directly over D, we consider a schema with as many copies

of the relation names in D as there are occurrences of the relation names in tempEncoding𝜓 . More formally, let 𝑛𝑋

denote the number of atoms with relation name 𝑋 ∈ D in tempEncoding𝜓 , and let ℓ𝑋 denote a bijective labeling

function from atoms with relation name 𝑋 in tempEncoding𝜓 , to a unique index in [𝑛𝑋]. We define Q and Q′ over
schema D′ = {Or(3)

𝑖
| 𝑖 ∈ [𝑛Or]} ∪ {And(3)𝑖

| 𝑖 ∈ [𝑛And]} ∪ {Neg(2)𝑖
| 𝑖 ∈ [𝑛Neg]} ∪ {Bool(2) } ∪ {𝑃 (2)𝑥 | 𝑥 ∈ 𝒙}.

For the construction, we use the following gadgets. Here, 𝑥𝑡 and 𝑥 𝑓 denote special variables (recall that we used 𝑥𝑡

also in Enc(𝜓) = (tmpEncoding𝜓 , 𝑥𝑡)). Intuitively, 𝑥𝑡 represents “true” and 𝑥 𝑓 represents “false”. We use “_” to denote a

21

Ketsman et al.

fresh variable that is used exactly once in the query.

encoding ={𝑋𝑖 (𝒛) | 𝑋 (𝒛) ∈ tmpEncoding𝜓 , with 𝑖 = ℓ𝑋 (𝑋 (𝒛))}.

invalid ={Or𝑖 (𝒕) | 𝒕 ∈ {(𝑥𝑡 , 𝑥 𝑓 , 𝑥 𝑓), (𝑥 𝑓 , 𝑥𝑡 , 𝑥 𝑓), (𝑥𝑡 , 𝑥𝑡 , 𝑥 𝑓), (𝑥 𝑓 , 𝑥 𝑓 , 𝑥𝑡)}, 𝑖 ∈ [𝑛Or]}

∪ {And𝑖 (𝒕) | 𝒕 ∈ {(𝑥𝑡 , 𝑥 𝑓 , 𝑥𝑡), (𝑥 𝑓 , 𝑥𝑡 , 𝑥𝑡), (𝑥 𝑓 , 𝑥 𝑓 , 𝑥𝑡), (𝑥𝑡 , 𝑥𝑡 , 𝑥 𝑓)}, 𝑖 ∈ [𝑛And]}

∪ {Neg𝑖 (𝒕) | 𝒕 ∈ {(𝑥𝑡 , 𝑥𝑡), (𝑥 𝑓 , 𝑥 𝑓)}, 𝑖 ∈ [𝑛Neg]}.

surplus ={Or𝑖 (_, _, _), Or𝑖 (_, _, _), Or𝑖 (_, _, _) | 𝑖 ∈ [𝑛Or]}

∪ {And𝑖 (_, _, _), And𝑖 (_, _, _), And𝑖 (_, _, _) | 𝑖 ∈ [𝑛And]}

∪ {Neg𝑖 (_, _) | 𝑖 ∈ [𝑛Neg]}.

all ={Or𝑖 (𝒛) | 𝑖 ∈ [𝑛Or], 𝒛 ∈ {𝑥𝑡 , 𝑥 𝑓 }3}

∪ {And𝑖 (𝒛) | 𝑖 ∈ [𝑛And], 𝒛 ∈ {𝑥𝑡 , 𝑥 𝑓 }3}

∪ {Neg𝑖 (𝒛) | 𝑖 ∈ [𝑛Neg], 𝒛 ∈ {𝑥𝑡 , 𝑥 𝑓 }2]}.

chosenx ={𝑃𝑥 (𝑦𝑥,𝑡 , 𝑥𝑡), 𝑃𝑥 (𝑦𝑥,𝑓 , 𝑥 𝑓), 𝑃𝑥 (𝑦𝑥,𝑢 , 𝑥𝑡), 𝑃𝑥 (𝑦𝑥,𝑢 , 𝑥 𝑓) | 𝑥 ∈ 𝒙}.

fixedx ={𝑃𝑥 (𝑦𝑥,1, 𝑥), 𝑃𝑥 (𝑦𝑥,2, 𝑥), 𝑃𝑥 (_, _), 𝑃𝑥 (_, _) | 𝑥 ∈ 𝒙}.

Intuitively, atoms And𝑖 (𝑥,𝑦, 𝑧), Or𝑖 (𝑥,𝑦, 𝑧), and Neg𝑖 (𝑥,𝑦) represent propositional formulas 𝑧 = 𝑥 ∧ 𝑦, 𝑧 = 𝑥 ∨ 𝑦, and
𝑦 = ¬𝑥 , respectively. Therefore, interpreting 𝑥𝑡 as “true” and 𝑥 𝑓 as “false”, all represents all possible truth assignments

for these formulas, including those that do not satisfy the formula; encoding represents exactly one truth assignment

for each formula, following the structure of𝜓 ; invalid represents exactly the invalid truth assignments; and surplus

allows to encode the remaining truth assignments (i.e, those that are not invalid, and not encoded by encoding). Gadgets

chosenx and fixedx are inspired by a technique used in [20], and will be used to encode fixed partial assignments for

𝒙 .

We are now ready to define Q and Q′, both with boolean head. We start with Q′.

bodyQ′ ={Bool(𝑥𝑡 , 𝑥 𝑓)} ∪ all

chosenx

Query Q is defined as follows.

bodyQ ={Bool(𝑥𝑡 , 𝑥 𝑓)} ∪ encoding ∪ invalid ∪ surplus ∪ fixedx

DiseqQ′ ={𝑦𝑥,1 ≠ 𝑦𝑥,2 | 𝑥 ∈ 𝒙}.

It is easy to see that the construction of Q and Q′ is only polynomial in the size of 𝜑 . Next, we show that 𝜑 is

satisfiable if and only if bag-parallel-correctness transfers from Q to Q′.

(If). Let 𝛽 be an arbitrary truth assignment for 𝒙 . We need to show that 𝛽 can be extended to a satisfying truth assignment

for𝜓 . To this end, let𝑉 ′ be the valuation where𝑉 ′ (𝑥𝑡) = 1,𝑉 ′ (𝑥 𝑓) = 0, and where for every 𝑥 ∈ 𝒙 , we set𝑉 ′ (𝑦𝑥,𝑡) = 1

and𝑉 ′ (𝑦𝑥,𝑓) = 𝑉 ′ (𝑦𝑥,𝑢) = 0, if 𝛽 (𝑥) = 1; and𝑉 ′ (𝑦𝑥,𝑓) = 1 and𝑉 ′ (𝑦𝑥,𝑡) = 𝑉 ′ (𝑦𝑥,𝑢) = 0 otherwise. Intuitively, the latter

guarantees that (†) 𝑉 ′ (bodyQ′) ⊆ 𝑉 (bodyQ) can only satisfy if 𝑉 agrees with 𝛽 on the truth assignment for 𝑥 ∈ 𝒙 .
Particularly, this is because, for every 𝑥 ∈ 𝒙 , four distinct 𝑃𝑥 -facts are included in 𝑉 ′ (bodyQ), bodyQ has only four 𝑃𝑥

atoms, and 𝑉 (𝑦𝑥,1) must be distinct from 𝑉 (𝑦𝑥,2).
22

Parallel-Correctness and Transferability for ConjunctiveQueries under Bag Semantics

Now bag-parallel-correctness transfer from Q to Q′ implies existence of valuation 𝑉 for Q with 𝑉 ′ (bodyQ′) ⊆
𝑉 (bodyQ), and from (†) it follows that 𝑉 (𝑥) = 𝛽 (𝑥) for all 𝑥 ∈ 𝒙 . Further, we observe that 𝑉 ′ (Bool(𝑥𝑡 , 𝑥 𝑓)}) ⊆
𝑉 (bodyQ) can only satisfy if𝑉 (𝑥𝑡) = 1 and𝑉 (𝑥 𝑓) = 0. By construction of bodyQ and bodyQ′ ,𝑉

′ (all) ⊆ 𝑉 (bodyQ) im-

plies𝑉 ′ (all) = 𝑉 (encoding∪invalid∪surplus), and more specifically, that𝑉 ′ (all) \𝑉 (invalid) = 𝑉 (encoding∪
surplus). Therefore, and since𝑉 ′ (𝑥𝑡) = 1,𝑉 must encode a satisfying truth assignment for𝜓 that agrees on the choices

of 𝛽 for 𝑥 ∈ 𝒙 . It is now straightforward that 𝜑 is indeed satisfiable.

(Only-If). Let 𝑉 ′ be an arbitrary valuation for Q′ over some universe𝑈 .

If𝑉 ′ (𝑥𝑡) = 𝑉 (𝑥 𝑓), the result is straightforward. Indeed, we chose𝑉 , with𝑉 (𝑥𝑡) = 𝑉 (𝑥 𝑓) = 𝑉 ′ (𝑥𝑡), and use the fresh
variables in surplus to obtain𝑉 ′ (all) ⊆ 𝑉 (surplus). For𝑉 ′ (chosenx) we observe that, for every 𝑥 ∈ 𝒙 ,𝑉 ′ (chosenx)
contains at most 3 𝑃𝑥 -facts, all of the form 𝑃𝑥 (𝑎𝑖 , 𝑏), with fixed 𝑏. We can thus choose 𝑉 (𝑥) = 𝑏, 𝑉 (𝑦𝑥1) = 𝑎1. For

remaining facts, we can freely map the atoms over anonymous variables.

Otherwise, if 𝑉 ′ (𝑥𝑡) ≠ 𝑉 ′ (𝑥 𝑓), we interpret 𝑉 ′ (𝑥𝑡) as 1 and 𝑉 ′ (𝑥 𝑓) as 0. For the construction of 𝑉 , we first satisfy

𝑉 ′ (chosenx) ⊆ 𝑉 (fixedx). We do this as follows. Let 𝑥 ∈ 𝒙 . If 𝑉 ′ (𝑦𝑥,𝑡) ≠ 𝑉 ′ (𝑦𝑥,𝑢), we choose 𝑉 (𝑦𝑥,1) = 𝑉 (𝑦𝑥,𝑡) and
𝑉 (𝑦𝑥,2) = 𝑉 ′ (𝑦𝑥,𝑢), else, if 𝑉 ′ (𝑦𝑥,𝑓) ≠ 𝑉 ′ (𝑦𝑥,𝑢), we choose 𝑉 (𝑦𝑥,1) = 𝑉 (𝑦𝑥,𝑓) and 𝑉 (𝑦𝑥,2) = 𝑉 ′ (𝑦𝑥,𝑢). Otherwise, we
map 𝑉 (𝑦𝑥,1) = 𝑉 (𝑦𝑥,𝑡) and map 𝑉 (𝑦𝑥,2) to an arbitrary distinct variable from 𝑈 . It is now easy to see that 𝑉 can be

further extended so that 𝑉 ′ (chosenx) ⊆ 𝑉 (fixedx) by satisfying the other facts using the 𝑃𝑥 atoms with anonymous

variables.

Let now 𝛽 be the partial truth assignment for 𝜓 , where 𝛽 (𝑥) = 𝑉 (𝑥) for all 𝑥 ∈ 𝒙 . We notice that 𝛽 is over {0, 1}
by assumption. Then, satisfiability of 𝜑 ensures existence of an extension 𝛽′ of 𝛽 that satisfies 𝜑 . We use 𝛽′ to further

construct 𝑉 as follows: 𝑉 (𝑥) = 𝛽′ (𝑥). Since 𝛽′ is a satisfying truth assignment, it follows from the construction of

encoding that 𝑉 can be further extended so that 𝑉 (encoding) includes only facts encoding valid truth assignments.

It is now easy to see, since 𝑉 (invalid) encodes all invalid assignments, we can obtain 𝑉 ′ (bodyQ′) ⊆ 𝑉 (bodyQ), by
tuning the anonymous variables in surplus. Since now 𝑉 ′ (bodyQ′) ⊆ 𝑉 (bodyQ), the result follows.

(3) We first show the following lemma:

Lemma 5.5. For a CQ Q, bag-parallel-correctness transfers from Q to Q′ over ordered networks if and only if a mapping

𝜃 for Q over adom(bodyQ′) exists such that bodyQ′ ⊆ 𝜃 (bodyQ).

Proof. It is easy to see that bag-parallel-correctness and Lemma 5.3(2) imply existence of 𝜃 : just take𝑉 ′ as the identity

function. It remains to argue the other direction. That is, that existence of 𝜃 implies the conditions in Lemma 5.3(2). For

this, we observe that if 𝜃 exists, then for every valuation𝑊 ′ for Q′ over an𝑈 ′ there is mapping 𝜌 : 𝑈 ′ ↦→ 𝑈 ′, such that

𝜌 (𝑥) =𝑊 ′ (𝑥), if 𝑥 ∈ bodyQ′ , and 𝜌 (𝑥) = 𝑎, for some arbitrary value 𝑎 ∈ 𝑈 ′, otherwise. Then take the valuation𝑊

defined as𝑊 (𝑥) = 𝜌 ◦ 𝜃 (𝑥). It is now easy to see that𝑊 ′ (bodyQ′) ⊆𝑊 (bodyQ). □

That PC-Trans𝑏𝑎𝑔<N (CQ,CQ≠) is in np now follows directly from Lemma 5.5. Indeed, one can easily guess 𝜃 , and

verify in polynomial time if bodyQ′ ⊆ 𝜃 (bodyQ).
We next show that PC-Trans𝑏𝑎𝑔<N (CQ,CQ) is np-hard. We use a reduction from graph 3-colorability. Let 𝐺 be an

arbitrary undirected graph. We label every edge in𝐺 with a unique label from [𝑛], where 𝑛 is the number of edges in𝐺 .

We construct boolean queries Q and Q′ over schema D = {𝐸 (2)
𝑖
| 𝑖 ∈ [𝑛]}. For Q′, we have:

bodyQ′ = {𝐸𝑖 (𝑥,𝑦) | 𝑖 ∈ [𝑛] and 𝑥,𝑦 ∈ {𝑥𝑟 , 𝑥𝑔, 𝑥𝑏 }}.

23

Ketsman et al.

For an example of the construction, consider the formula ∀𝑥∃𝑦𝜓 (𝑥,𝑦) with𝜓 (𝑥,𝑦) = ¬ [(𝑥 ∨ ¬𝑦) ∧ 𝑦]. For this
formula, we obtain tempEncoding𝜓 = ({Neg(𝑦, 𝑧1), Or(𝑥, 𝑧1, 𝑥2), And(𝑦, 𝑧2, 𝑧3), Neg(𝑧3, 𝑥𝑡)}, 𝑥𝑡) by applying the

inductive construction in the following order: ¬𝑦, 𝑥 ∨ ¬𝑦, (𝑥 ∨ ¬𝑦) ∧ 𝑦, etc. Queries 𝑄 and 𝑄 ′ are defined over schema

D′, which for this example equals

D′ = {Neg(2)
1

, Or
(3)
1

, And
(3)
1

, Neg
(2)
2

, Bool(2) , 𝑃 (2)𝑥 , 𝑃
(2)
𝑦 }.

Clearly, 𝑛And and 𝑛Or equal one, while 𝑛Neg equals two, which is the reason why two copies of the Neg relation symbol

are installed in D′. Now taking as bijective labeling function ℓ
Neg(𝑦,𝑧1) = ℓOr(𝑥,𝑧1,𝑥2) = ℓAnd(𝑦,𝑧2,𝑧3) = 1 and

ℓ
Neg(𝑧3,𝑥𝑡) = 2, we obtain the following sets of atoms:

encoding = {Neg
1
(𝑦, 𝑧1), Or1 (𝑥, 𝑧1, 𝑥2), And1 (𝑦, 𝑧2, 𝑧3), Neg2 (𝑧3, 𝑥𝑡)}

invalid = {Or1 (𝑥𝑡 , 𝑥 𝑓 , 𝑥 𝑓), Or1 (𝑥 𝑓 , 𝑥𝑡 , 𝑥 𝑓), Or1 (𝑥𝑡 , 𝑥𝑡 , 𝑥 𝑓), Or1 (𝑥 𝑓 , 𝑥 𝑓 , 𝑥𝑡),
And1 (𝑥𝑡 , 𝑥 𝑓 , 𝑥𝑡), And1 (𝑥 𝑓 , 𝑥𝑡 , 𝑥𝑡), And1 (𝑥 𝑓 , 𝑥 𝑓 , 𝑥𝑡), And1 (𝑥𝑡 , 𝑥𝑡 , 𝑥 𝑓),
Neg

1
(𝑥𝑡 , 𝑥𝑡), Neg1 (𝑥 𝑓 , 𝑥 𝑓), Neg2 (𝑥𝑡 , 𝑥𝑡), Neg2 (𝑥 𝑓 , 𝑥 𝑓)}

surplus = {Or1 (_, _, _), Or1 (_, _, _), Or1 (_, _, _), And1 (_, _, _), And1 (_, _, _), And1 (_, _, _),
Neg

1
(_, _), Neg

2
(_, _)}

all = {Or1 (𝑥𝑡 , 𝑥𝑡 , 𝑥𝑡), Or1 (𝑥𝑡 , 𝑥 𝑓 , 𝑥𝑡), Or1 (𝑥 𝑓 , 𝑥𝑡 , 𝑥𝑡), Or1 (𝑥 𝑓 , 𝑥 𝑓 , 𝑥 𝑓),
And1 (𝑥𝑡 , 𝑥𝑡 , 𝑥𝑡), And1 (𝑥𝑡 , 𝑥 𝑓 , 𝑥 𝑓), And1 (𝑥 𝑓 , 𝑥𝑡 , 𝑥 𝑓), And1 (𝑥 𝑓 , 𝑥 𝑓 , 𝑥 𝑓),
Neg

1
(𝑥𝑡 , 𝑥 𝑓), Neg1 (𝑥 𝑓 , 𝑥𝑡), Neg2 (𝑥𝑡 , 𝑥 𝑓), Neg2 (𝑥 𝑓 , 𝑥𝑡)} ∪ invalid

chosenx = {𝑃𝑥 (𝑦𝑥,𝑡 , 𝑥𝑡), 𝑃𝑥 (𝑦𝑥,𝑓 , 𝑥 𝑓), 𝑃𝑥 (𝑦𝑥,𝑢 , 𝑥𝑡), 𝑃𝑥 (𝑦𝑥,𝑢 , 𝑥 𝑓)}
fixedx = {𝑃𝑥 (𝑦𝑥,1, 𝑥), 𝑃𝑥 (𝑦𝑥,2, 𝑥), 𝑃𝑥 (_, _), 𝑃𝑥 (_, _)}

Finally, based on the above gadgets, we obtain the following queries 𝑄 and 𝑄 ′.

𝑄 = () ←Bool(𝑥𝑡 , 𝑥 𝑓), Neg1 (𝑦, 𝑧1), Or1 (𝑥, 𝑧1, 𝑥2), And1 (𝑦, 𝑧2, 𝑧3), Neg2 (𝑧3, 𝑥𝑡),
Or1 (𝑥𝑡 , 𝑥 𝑓 , 𝑥 𝑓), Or1 (𝑥 𝑓 , 𝑥𝑡 , 𝑥 𝑓), Or1 (𝑥𝑡 , 𝑥𝑡 , 𝑥 𝑓), Or1 (𝑥 𝑓 , 𝑥 𝑓 , 𝑥𝑡),
And1 (𝑥𝑡 , 𝑥 𝑓 , 𝑥𝑡), And1 (𝑥 𝑓 , 𝑥𝑡 , 𝑥𝑡), And1 (𝑥 𝑓 , 𝑥 𝑓 , 𝑥𝑡), And1 (𝑥𝑡 , 𝑥𝑡 , 𝑥 𝑓),
Neg

1
(𝑥𝑡 , 𝑥𝑡), Neg1 (𝑥 𝑓 , 𝑥 𝑓), Neg2 (𝑥𝑡 , 𝑥𝑡), Neg2 (𝑥 𝑓 , 𝑥 𝑓), Or1 (_, _, _),

Or1 (_, _, _), Or1 (_, _, _), And1 (_, _, _), And1 (_, _, _), And1 (_, _, _), Neg1 (_, _),
Neg

2
(_, _), 𝑃𝑥 (𝑦𝑥,1, 𝑥), 𝑃𝑥 (𝑦𝑥,2, 𝑥), 𝑃𝑥 (_, _), 𝑃𝑥 (_, _), 𝑦𝑥,1 ≠ 𝑦𝑥,2 .

𝑄 ′ = () ←Bool(𝑥,𝑡 , 𝑥 𝑓),
Or1 (𝑥𝑡 , 𝑥𝑡 , 𝑥𝑡), Or1 (𝑥𝑡 , 𝑥 𝑓 , 𝑥𝑡), Or1 (𝑥 𝑓 , 𝑥𝑡 , 𝑥𝑡), Or1 (𝑥 𝑓 , 𝑥 𝑓 , 𝑥 𝑓),
And1 (𝑥𝑡 , 𝑥𝑡 , 𝑥𝑡), And1 (𝑥𝑡 , 𝑥 𝑓 , 𝑥 𝑓), And1 (𝑥 𝑓 , 𝑥𝑡 , 𝑥 𝑓), And1 (𝑥 𝑓 , 𝑥 𝑓 , 𝑥 𝑓),
Neg

1
(𝑥𝑡 , 𝑥 𝑓), Neg1 (𝑥 𝑓 , 𝑥𝑡), Neg2 (𝑥𝑡 , 𝑥 𝑓), Neg2 (𝑥 𝑓 , 𝑥𝑡),

Or1 (𝑥𝑡 , 𝑥 𝑓 , 𝑥 𝑓), Or1 (𝑥 𝑓 , 𝑥𝑡 , 𝑥 𝑓), Or1 (𝑥𝑡 , 𝑥𝑡 , 𝑥 𝑓), Or1 (𝑥 𝑓 , 𝑥 𝑓 , 𝑥𝑡),
And1 (𝑥𝑡 , 𝑥 𝑓 , 𝑥𝑡), And1 (𝑥 𝑓 , 𝑥𝑡 , 𝑥𝑡), And1 (𝑥 𝑓 , 𝑥 𝑓 , 𝑥𝑡), And1 (𝑥𝑡 , 𝑥𝑡 , 𝑥 𝑓),
Neg

1
(𝑥𝑡 , 𝑥𝑡), Neg1 (𝑥 𝑓 , 𝑥 𝑓), Neg2 (𝑥𝑡 , 𝑥𝑡), Neg2 (𝑥 𝑓 , 𝑥 𝑓),

𝑃𝑥 (𝑦𝑥,𝑡 , 𝑥𝑡), 𝑃𝑥 (𝑦𝑥,𝑓 , 𝑥 𝑓), 𝑃𝑥 (𝑦𝑥,𝑢 , 𝑥𝑡), 𝑃𝑥 (𝑦𝑥,𝑢 , 𝑥 𝑓).

Fig. 3. Application of the construction of queries 𝑄 and 𝑄 ′ as described in the proof of Theorem 5.4(2) on formula
∀𝑥∃𝑦¬ [(𝑥 ∨ ¬𝑦) ∧ 𝑦].

Intuitively, Q′ encodes for each edge in𝐺 all possible red, green, blue colorings (not necessarily only valid ones). Notice

that for every edge, there are 9 possible colorings. For query Q, we first introduce the following sets of atoms:

invalidE = {𝐸𝑖 (𝑥𝑖 , 𝑥𝑖), 𝐸𝑖 (𝑦𝑖 , 𝑦𝑖), 𝐸𝑖 (𝑧𝑖 , 𝑧𝑖) | 𝑖 ∈ [𝑛]}.

surplusE = {𝐸𝑖 (_, _), 𝐸𝑖 (_, _), 𝐸𝑖 (_, _), 𝐸𝑖 (_, _), 𝐸𝑖 (_, _) | 𝑖 ∈ [𝑛] }.24

Parallel-Correctness and Transferability for ConjunctiveQueries under Bag Semantics

We are now ready to define query Q:

bodyQ = {𝐸𝑖 (𝑥𝑢 , 𝑥𝑣) | 𝐸 (𝑢, 𝑣) ∈ 𝐺 having label 𝑖} ∪ invalidE ∪ surplusE.

For every edge 𝐸 (𝑢, 𝑣) in 𝐺 (say with label 𝑖) there are 9 atoms in Q each corresponding to one specific coloring of

𝐸 (𝑢, 𝑣):

• the atom 𝐸𝑖 (𝑥𝑢 , 𝑥𝑣) stemming from the edge 𝐸 (𝑢, 𝑣) ∈ 𝐺 ; this atom corresponds to the chosen 3-coloring;

• the atoms in invalidE corresponding to invalid colorings; and,

• the atoms in surplusE corresponding to surplus colorings, that is, valid colorings that will not be used.

Intuitively, bodyQ′ ⊆ 𝜃 (bodyQ) implies that for every edge all colorings can be partitioned into three sets: one valid

coloring that participates in the 3-coloring of the graph; the invalid colorings; and, the rest or the surplus of the

colorings.

The reduction is clearly polynomial in the size of 𝐺 . Next, we show that 𝐺 is 3-colorable if and only if Q
bag

−−−→ Q′.

(If). Suppose Q
bag

−−−→ Q′. By Lemma 5.5, there is a 𝜃 such that bodyQ′ ⊆ 𝜃 (bodyQ). Now define the mapping 𝜌 as

𝜌 (𝑢) = 𝜃 (𝑥𝑢) for every node 𝑢 in 𝐺 (using 𝑥𝑟 , 𝑥𝑏 , 𝑥𝑔 as colorings). We argue that 𝜌 is a 3-coloring of 𝐺 . Towards a

contradiction, assume 𝜌 (𝑢) = 𝜌 (𝑣) for some edge (𝑢, 𝑣) in𝐺 with label 𝑖 . This would imply that for atom 𝐸𝑖 there are at

most 8 colorings present in 𝜃 (bodyQ) whereas there are 9 colorings in 𝜃 (bodyQ′). So, bodyQ′ ⊈ 𝜃 (bodyQ) which leads

to the desired contradiction.

(Only-if). Assume 𝐺 is 3-colorable and let 𝜌 be a valid coloring for 𝐺 over colors {𝑟, 𝑔, 𝑏}. By Lemma 5.5, it suffices

to show that there is a mapping 𝜃 for which bodyQ′ ⊆ 𝜃 (bodyQ). To this end, define 𝜃 as follows: 𝜃 (𝑥𝑢) = 𝑥𝜌 (𝑢) for

every node 𝑢 in 𝐺 . Then assign values to all other variables to encompass the 8 additional colorings of every edge. By

construction of Q there are 8 additional atoms for every edge and it is therefore possible to do so while ensuring that

bodyQ′ ⊆ 𝜃 (bodyQ). □

6 DISCUSSION

In this paper, we revisited the framework of [5] under bag semantics. The latter represents a more accurate semantics

for real world queries and is a necessary step towards aggregate queries. We obtained semantic characterizations

for parallel-correctness as well as transferability under bag semantics. For bag-parallel-correctness we provide tight

complexity bounds whereas for transferability we provide an upper bound in exptime and an np-hard lower bound.

In addition, we show correspondences and incomparabilities with the analog problems under set semantics. We also

introduced an ordered network setting that could be more natural for capturing bag semantics and in this setting

obtained tight complexity bounds for both decision problems. We mention that all our results can be naturally extended

to unions of conjunctive queries. The latter does not need any additional ideas but clutters notation.

There are quite a number of directions for follow-up work. We did not obtain a strict lower bound for transfer of

bag-parallel-correctness. Actually, we suspect the upper bound can be improved by coming up with a more efficient

algorithm to compute the set of implied facts. A motivation for the ordered model presented in Section 5 is that

bag-parallel-correctness under the previous model can prohibit parallelization. Indeed, Example 5.1 shows a query that

can not be parallelized while retaining bag-parallel-correctness. A natural question is whether this class of queries for

which no efficient policy exists can be characterized. Whereas the focus in this paper is on set and bag semantics, it

could be interesting to consider parallel-correctness and parallel-correctness transfer under bag-set [7] or combined

25

Ketsman et al.

semantics [8]. Similarly, another direction of future work would be to consider parallel-correctness in the context of

aggregate operators.

ACKNOWLEDGMENTS

This work is partly funded by FWO-grant G062721N and G055219N.

REFERENCES
[1] Foto N. Afrati, Manas R. Joglekar, Christopher Ré, Semih Salihoglu, and Jeffrey D. Ullman. 2017. GYM: A Multiround Distributed Join Algorithm. In

ICDT. 4:1–4:18.
[2] Foto N. Afrati, Anish Das Sarma, Semih Salihoglu, and Jeffrey D. Ullman. 2013. Upper and Lower Bounds on the Cost of a Map-Reduce Computation.

PVLDB 6, 4 (2013), 277–288.

[3] Foto N. Afrati and Jeffrey D. Ullman. 2010. Optimizing joins in a map-reduce environment. In EDBT. 99–110.
[4] Tom J. Ameloot, Gaetano Geck, Bas Ketsman, Frank Neven, and Thomas Schwentick. 2016. Data partitioning for single-round multi-join evaluation

in massively parallel systems. SIGMOD Record 45, 1 (2016), 33–40.

[5] Tom J. Ameloot, Gaetano Geck, Bas Ketsman, Frank Neven, and Thomas Schwentick. 2017. Parallel-Correctness and Transferability for Conjunctive

Queries. J. ACM 64, 5, 36:1–36:38.

[6] Paul Beame, Paraschos Koutris, and Dan Suciu. 2014. Skew in Parallel Query Processing. In PODS. ACM, 212–223.

[7] Surajit Chaudhuri and Moshe Y. Vardi. 1993. Optimization of Real Conjunctive Queries. In PODS. ACM Press, 59–70.

[8] Sara Cohen. 2009. Equivalence of queries that are sensitive to multiplicities. VLDB J. 18, 3 (2009), 765–785.
[9] Sumit Ganguly, Abraham Silberschatz, and Shalom Tsur. 1990. A Framework for the Parallel Processing of Datalog Queries. In SIGMOD. ACM Press,

143–152.

[10] Gaetano Geck, Bas Ketsman, Frank Neven, and Thomas Schwentick. 2016. Parallel-Correctness and Containment for Conjunctive Queries with

Union and Negation. In ICDT. 9:1–9:17.
[11] Gaetano Geck, Frank Neven, and Thomas Schwentick. 2020. Distribution Constraints: The Chase for Distributed Data. In 23rd International

Conference on Database Theory (ICDT) (LIPIcs, Vol. 155). Schloss Dagstuhl - Leibniz-Zentrum für Informatik, 13:1–13:19.

[12] Hadoop. 2024. (2024). https://hadoop.apache.org/.

[13] Bas Ketsman, Aws Albarghouthi, and Paraschos Koutris. 2020. Distribution Policies for Datalog. Theory Comput. Syst. 64, 5 (2020), 965–998.
[14] Bas Ketsman, Frank Neven, and Brecht Vandevoort. 2018. Parallel-Correctness and Transferability for Conjunctive Queries under Bag Semantics. In

21st International Conference on Database Theory, (ICDT) (LIPIcs, Vol. 98). Schloss Dagstuhl - Leibniz-Zentrum für Informatik, 18:1–18:16.

[15] Bas Ketsman and Dan Suciu. 2017. A Worst-Case Optimal Multi-Round Algorithm for Parallel Computation of Conjunctive Queries. In PODS.
417–428.

[16] Paraschos Koutris and Dan Suciu. 2011. Parallel evaluation of conjunctive queries. In PODS. 223–234.
[17] Rimma Nehme and Nicolas Bruno. 2011. Automated Partitioning Design in Parallel Database Systems. In SIGMOD. ACM, 1137–1148.

[18] Jun Rao, Chun Zhang, Nimrod Megiddo, and Guy Lohman. 2002. Automating Physical Database Design in a Parallel Database. In SIGMOD. 558–569.
[19] Bruhathi Sundarmurthy, Paraschos Koutris, and Jeffrey F. Naughton. 2021. Locality-Aware Distribution Schemes. In 24th International Conference on

Database Theory, (ICDT) (LIPIcs, Vol. 186). Schloss Dagstuhl - Leibniz-Zentrum für Informatik, 22:1–22:25.

[20] Ron van der Meyden. 1992. The Complexity of Querying Indefinite Data about Linearly Ordered Domains. In PODS. 331–345.
[21] Reynold S. Xin, Josh Rosen, Matei Zaharia, Michael J. Franklin, Scott Shenker, and Ion Stoica. 2013. Shark: SQL and rich analytics at scale. In

SIGMOD. 13–24.

26

https://hadoop.apache.org/

