
Made available by Hasselt University Library in https://documentserver.uhasselt.be

Allocating Isolation Levels to Transactions in a Multiversion Setting

Peer-reviewed author version

VANDEVOORT, Brecht; KETSMAN, Bas & NEVEN, Frank (2024) Allocating

Isolation Levels to Transactions in a Multiversion Setting. In: Sigmod Record, 53 (1)

, p. 16 -23.

DOI: 10.1145/3665252.3665257

Handle: http://hdl.handle.net/1942/45426

Allocating Isolation Levels to Transactions
in a Multiversion Setting

Brecht Vandevoort
UHasselt, Data Science Institute,

ACSL
brecht.vandevoort@uhasselt.be

Bas Ketsman
Vrije Universiteit Brussel

bas.ketsman@vub.be

Frank Neven
UHasselt, Data Science Institute,

ACSL
frank.neven@uhasselt.be

ABSTRACT
A serializable concurrency control mechanism ensures con-
sistency for OLTP systems at the expense of a reduced trans-
action throughput. A DBMS therefore usually offers the
possibility to allocate lower isolation levels for some trans-
actions when it is safe to do so. However, such trading
of consistency for efficiency does not come with any safety
guarantees. In this paper, we study the mixed robustness
problem which asks whether, for a given set of transactions
and a given allocation of isolation levels, every possible in-
terleaved execution of those transactions that is allowed un-
der the provided allocation is always serializable. That is,
whether the given allocation is indeed safe. While robust-
ness has already been studied in the literature for the ho-
mogeneous setting where all transactions are allocated the
same isolation level, the heterogeneous setting that we con-
sider in this paper, despite its practical relevance, has largely
been ignored. We focus on multiversion concurrency control
and consider the isolation levels that are available in Post-
gres and Oracle: read committed (RC), snapshot isolation
(SI) and serializable snapshot isolation (SSI). We show that
the mixed robustness problem can be decided in polynomial
time. In addition, we provide a polynomial time algorithm
for computing the optimal robust allocation for a given set of
transactions, prioritizing lower over higher isolation levels.
The present results therefore establish the groundwork to
automate isolation level allocation within existing databases
supporting multiversion concurrency control.

1. INTRODUCTION
The majority of relational database systems offer a range

of isolation levels, the highest of which is serializability en-
suring what is considered as perfect isolation. This allows
users to trade off isolation guarantees for better performance.
Executing transactions concurrently at weaker degrees of

© 2023 Copyright held by the authors. Publication rights licensed to
ACM. This is a minor revision of the paper entitled Allocating Isolation
Levels to Transactions in a Multiversion Setting, published in PODS ’23,
ISBN 979-8-4007-0127-6/23/06, June 18-23, 2023, Seattle, WA, USA.
DOI: https://doi.org/10.1145/3584372.3588672
Permission to make digital or hard copies of all or part of this work for per-
sonal or classroom use is granted without fee provided that copies are not
made or distributed for profit or commercial advantage and that copies bear
this notice and the full citation on the first page. Copyrights for components
of this work owned by others than ACM must be honored. Abstracting with
credit is permitted. To copy otherwise, or republish, to post on servers or to
redistribute to lists, requires prior specific permission and/or a fee. Request
permissions from permissions@acm.org.
.

isolation does carry some risk as it can result in specific
anomalies. However, there are situations when a group of
transactions can be executed at an isolation level lower than
serializability without causing any errors. In this way, we
get the higher isolation guarantees of serializability for free
in exchange for a lower isolation level, which is typically im-
plementable with a less expensive concurrency control mech-
anism. This formal property is called robustness [13,19,20]:
a set of transactions T is called robust against a given isola-
tion level if every possible interleaving of the transactions in
T that is allowed under the specified isolation level is serial-
izable. There is a famous example that is part of database
folklore: the TPC-C benchmark [24] is robust against Snap-
shot Isolation (SI), so there is no need to run a stronger,
and more expensive, concurrency control algorithm than SI
if the workload is just TPC-C. This has played a role in
the incorrect choice of SI as the general concurrency con-
trol algorithm for isolation level Serializable in Oracle and
PostgreSQL (before version 9.1, cf. [20]).

The robustness problem received quite a bit of attention
in the literature and can be classified in terms of the con-
sidered isolation levels: lower isolation levels like (multiver-
sion) Read Committed (RC) [6,22,25,26], Snapshot Isolation
(SI) [4, 10, 19, 20], and higher isolation levels [11, 13, 16, 18].
The far majority of this work focused on a homogeneous set-
ting where all transactions are allocated the same isolation
level. So, when a workload is robust against an isolation
level, all transactions can be executed under this isolation
level and benefit from the speedup offered by the cheaper
concurrency control algorithm and the guarantee that the
resulting execution will always be serializable. When a work-
load is not robust against an isolation level, robustness can
still be achieved by modifying the transaction programs [3–6,
20,25] or using an external lock manager [3,6,7]. The down-
side of these solutions is that they require altering transac-
tions or require drastic changes to the underlying database
implementation.

In this paper, we are interested in solutions that refrain
from modifying transactions and can be readily used on top
of a DBMS without changing any of the database internals.
The solution lies within the capabilities of the DBMS it-
self. Indeed, in practice, an isolation level is not set on
the level of the database or even the application but can
be specified on the level of an individual transaction. So, a
third option for making a transaction workload robust is to
allocate problematic transactions to higher isolation levels.
That is, by considering heterogeneous or mixed allocations
where individual transactions can be mapped to different

isolation levels. Such an approach requires a solution for
two research challenges as discussed next: the robustness
problem and the allocation problem. To this end, let T be
a set of transactions, I a class of isolation levels and A an
allocation (mapping each T ∈ T to an isolation level in I).
Then define the following problems:

• The robustness problem for I: Is every concurrent ex-
ecution of transactions in T that is allowed under A,
conflict-serializable?

• The allocation problem for I: Compute an optimal
robust allocation for T over I (when it exists).

In order to increase transaction throughput, weaker iso-
lation levels, which are often less strict and permit higher
concurrency, are favored over stricter isolation levels which
generally limit concurrency.1 We then say that a robust
allocation is optimal when no higher isolation level can be
exchanged for a weaker one without breaking robustness.
A seminal result in this context is that of Fekete [19] who
provided polynomial time algorithms for the robustness and
the allocation problem for the setting where I consists of
the isolation levels SI and strict two-phase locking (S2PL).
More specifically, when T is not robust against SI, a min-
imal number of transactions can be found that need to be
run under S2PL to make the workload robust.

In the present work, we address the robustness and al-
location problem for a wider range of isolation levels: RC,
SI, and Serializable Snapshot Isolation (SSI) [14,23]. These
classes are particularly relevant for the following reasons:
RC is often configured by default [9]; SI remains the highest
possible isolation level in some database systems like Oracle
and is well-studied (e.g, [4,10,13,16–21]; and, SSI effectively
guarantees serializability. Furthermore, {RC, SI, SSI} is the
class of isolation levels available in Postgres, while {RC, SI}
are those available in Oracle. We see our results as a signif-
icant step towards automating isolation level allocation on
top of existing databases. Indeed, we obtain that for {RC,
SI, SSI} an optimal robust allocation can always be found
in polynomial time. As {RC,SI} does not include a seri-
alizable isolation level, a robust allocation does not always
exist. However, the results in this paper show that the ex-
istence of a robust allocation for {RC,SI} can be decided
in polynomial time, and when a robust allocation exists, an
optimal one can be found.
The main technical contribution of this paper is Theo-

rem 3.2 which shows that non-robustness against an alloca-
tion for the isolation levels {RC,SI, SSI} can be character-
ized in terms of the existence of a counterexample schedule
of a very specific form that we refer to as a multiversion split
schedule. Such split schedules have been used before in the
homogeneous setting where all transactions in a workload
are assigned to the same isolation level [19, 22, 25]. Gener-
ally, a split schedule is of the following form: one transaction
is split in two (hence, the name) and some other transac-
tions are placed between these two parts in a serial fashion
where both the splitted and the intermediate serial trans-
actions satisfy some additional requirements. All remaining
transactions (if any) are appended after the splitted trans-
action, again, in a serial fashion. We refer to Figure 1 for

1Indeed, Vandevoort et al. [25] have shown that when
contention increases, RC outperforms SI w.r.t. transaction
throughput.

· · ·

· · ·

T1 :

T2 :

Tm :

Tm+1 :

Tn :
time

Figure 1: Abstract representation of a multi-version split
schedule where T1 is the splitted transaction.

the general structure of a split schedule. The split sched-
ules used in the cited papers all differ in the additional re-
quirements. When these additional requirements are sim-
ple, a direct enumeration of all possible split schedules can
be avoided and replaced by a more efficient polynomial time
algorithm [22, 25]. In some cases, however, finding a coun-
terexample split schedule is np-complete [22] or even unde-
cidable [26]. In the present paper, we consider mixed al-
locations where different transactions can be allocated to
different isolation levels. The corresponding split schedule
is consequentially more involved as it needs to take interrela-
tionships between multiple isolation levels into account. We
show in Theorem 3.3 that a counterexample split schedule
can still be efficiently constructed.

The contributions of this paper can be summarized as
follows:

1. We provide a formal framework to reason on robust-
ness in the presence of mixed allocations of isolation
levels. In particular, we formally define what it means
for a schedule to be allowed under a (mixed) allocation
w.r.t. {RC, SI, SSI} (cf., Definition 2.4). Even though
these definitions are an abstraction, they are consis-
tent with mixed allocations as they are applied within
Postgress and Oracle.

2. We characterize non-robustness for allocations over {RC,
SI, SSI} in terms of the existence of a multiversion
split-schedule.

3. We provide a polynomial time decision procedure for
robustness against an allocation over {RC, SI, SSI}.

4. We show that there is always a unique optimal robust
allocation over {RC, SI, SSI} and we provide a polyno-
mial time algorithm for computing it.

5. We show that is decidable in polynomial time whether
there exists a robust allocation over {RC, SI} for a
given set of transactions. Furthermore, when a ro-
bust allocation exists, an optimal one can be found in
polynomial time as well.

Outline. This paper is structured as follows. We introduce
the necessary definitions in Section 2. We consider the ro-
bustness and allocation problem for {RC, SI, SSI} in Sec-
tion 3 and Section 4, respectively. We consider robustness
and allocation for {RC,SI} in Section 5. We discuss related
work in Section 6. We conclude in Section 7.

This paper is a shortened version of the PODS 2023 pa-
per [27] where the definition of a multiversion split schedule
(Definition 3.1) has been simplified and a more elaborate
running example has been added.

R1[t] R1[v] W1[v] C1

W2[q] W2[t] C2

R3[u] R3[v] W3[q] W3[v] C3

R4[q] W4[u] C4

vs1

vs1

≪s1
≪s1

T1 :

T2 :

T3 :

T4 :

Figure 2: A single version schedule s1 for Tex with vs1 and ≪s1 represented
through arrows. The special operation op0 and all arrows involving op0 are omit-
ted.

T1 T2

T3 T4

R1[t] → W2[t]

W2
[q
]→

W3
[q
] W

2 [q
]→

R
4 [q

]R
3
[v
]
→

W
1
[v
]

W
3
[v
]
→

R
1
[v
]

W
3
[v
]
→

W
1
[v
]

R3[u] → W4[u]
W3[q] → R4[q]

Figure 3: Serialization graph SeG(s1).

R1[t] R1[v] W1[v] C1

W2[q] W2[t] C2

R3[u] R3[v] W3[q] W3[v] C3

R4[q] W4[u] C4

vs2

≪s2

≪s2

T1 :

T2 :

T3 :

T4 :

Figure 4: A schedule s2 for Tex with vs2 and ≪s2 represented through arrows.
The special operation op0 and all arrows involving op0 are omitted.

T1 T2

T3 T4

R1[t] → W2[t]

R
1 [v

]→
W
3 [v

]
W
1 [v

]→
W
3 [v

]

W3
[q
]→

W2
[q
]

R
3
[v
]
→

W
1
[v
]

R
4
[q
]
→

W
2
[q
]

W4[u] → R3[u]
R4[q] → W3[q]

Figure 5: Serialization graph SeG(s2).

2. DEFINITIONS

2.1 Transactions and Schedules
We fix an infinite set of objects Obj. For an object t ∈

Obj, we denote by R[t] a read operation on t and by W[t]
a write operation on t. We also assume a special commit
operation denoted by C. A transaction T over Obj is a
sequence of read and write operations on objects in Obj
followed by a commit. In the sequel, we leave the set of
objects Obj implicit when it is clear from the context and
just say transaction rather than transaction over Obj.

Formally, we model a transaction as a linear order (T,≤T),
where T is the set of (read, write and commit) operations
occurring in the transaction and ≤T encodes the ordering
of the operations. As usual, we use <T to denote the strict
ordering. For a transaction T, we use first(T) to refer to the
first operation in T.
When considering a set T of transactions, we assume that

every transaction in the set has a unique id i and write Ti

to make this id explicit. Similarly, to distinguish the opera-
tions of different transactions, we add this id as a subscript
to the operation. That is, we write Wi[t] and Ri[t] to de-
note a W[t] and R[t] occurring in transaction Ti; similarly Ci
denotes the commit operation in transaction Ti. This con-
vention is consistent with the literature (see, e.g. [12,19]). To
avoid ambiguity of notation, we assume that a transaction
performs at most one write and one read operation per ob-
ject. The latter is a common assumption (see, e.g. [19]). All
our results carry over to the more general setting in which
multiple writes and reads per object are allowed.
As a running example, we define the set of transactions

Tex = {T1, T2, T3, T4} over four different objects t, u, v, and
q as follows:

• T1 = R1[t] R1[v] W1[v] C1 ;

• T2 = W2[q] W2[t] C2;

• T3 = R3[u] R3[v] W3[q] W3[v] C3; and

• T4 = R4[q] W4[u] C4.

A (multiversion) schedule s over a set T of transactions
is a tuple (Os,≤s,≪s, vs) where

• Os is the set containing all operations of transactions
in T as well as a special operation op0 conceptually
writing the initial versions of all existing objects,

• ≤s encodes the ordering of these operations,

• ≪s is a version order providing for each object t a
total order over all write operations on t occurring in
s, and,

• vs is a version function mapping each read operation
a in s to either op0 or to a write operation in s.

We require that op0 ≤s a for every operation a ∈ Os,
op0 ≪s a for every write operation a ∈ Os, and that a <T b
implies a <s b for every T ∈ T and every a, b ∈ T. We fur-
thermore require that for every read operation a, vs(a) <s a
and, if vs(a) ̸= op0, then the operation vs(a) is on the same
object as a. Intuitively, op0 indicates the start of the sched-
ule, the order of operations in s is consistent with the order
of operations in every transaction T ∈ T , and the version
function maps each read operation a to the operation that
wrote the version observed by a. If vs(a) is op0, then a
observes the initial version of this object. The version or-
der ≪s represents the order in which different versions of
an object are installed in the database. For a pair of write
operations on the same object, this version order does not
necessarily coincide with ≤s. For example, under RC and
SI the version order is based on the commit order instead.

Continuing our running example, Figure 2 and Figure 4
illustrate two schedules s1 and s2 over Tex. The version or-
der ≪ as well as the version function v are represented as
arrows. The special operation op0 together with its arrows,
is omitted in these figures to improve readability. For exam-
ple, vs1(R1[v]) = W3[v] in schedule s1, since R1[v] reads the
version of v written by W3[v]. In s2 on the other hand, we

have vs2(R1[v]) = op0, since R1[v] reads the initial version
of v. Furthermore, the read operation R3[v] reads the initial
version of v in schedule s2 instead of the version written by
T1, even though T1 commits before R3[v] in s2.

We say that a schedule s is a single version schedule if ≪s

is compatible with ≤s and every read operation always reads
the last written version of the object. Formally, for each pair
of write operations a and b on the same object, a ≪s b iff
a <s b, and for every read operation a there is no write
operation c on the same object as a with vs(a) <s c <s a.
For example, s1 in Figure 2 is a single version schedule, while
s2 in Figure 4 is not as op0 = vs2(R3[v]) <s2 W1[v] <s2 R3[v].
A single version schedule over a set of transactions T is
single version serial if its transactions are not interleaved
with operations from other transactions. That is, for every
a, b, c ∈ Os with a <s b <s c and a, c ∈ T implies b ∈ T for
every T ∈ T .
The absence of aborts in our definition of schedule is con-

sistent with the common assumption [13,19] that an under-
lying recovery mechanism will rollback aborted transactions.
We only consider isolation levels that only read committed
versions. Therefore there will never be cascading aborts.

2.2 Conflict Serializability
Two operations aj and bi from different transactions Tj

and Ti in a set of transactions T are conflicting if they are
on the same object t and at least one of them is a write.
In this case, we furthermore say that bi is ww-conflicting
(respectively, wr-conflicting) with aj if bi is a write operation
and aj is a write operation (respectively, a read operation);
and bi is rw-conflicting with aj if bi is a read operation and
aj is a write operation. Furthermore, commit operations
and the special operation op0 never conflict with any other
operation. When bi and aj are conflicting operations in T ,
we say that aj depends on bi in a schedule s over T , denoted
bi →s aj if:

• (ww-dependency) bi is ww-conflicting with aj and bi ≪s

aj ; or,

• (wr-dependency) bi is wr-conflicting with aj and bi =
vs(aj) or bi ≪s vs(aj); or,

• (rw-antidependency) bi is rw-conflicting with aj and
vs(bi) ≪s aj .

Intuitively, a ww-dependency from bi to aj implies that
aj writes a version of an object that is installed after the
version written by bi. An wr-dependency from bi to aj im-
plies that bi either writes the version observed by aj , or
it writes a version that is installed before the version ob-
served by aj . A rw-antidependency from bi to aj implies
that bi observes a version installed before the version writ-
ten by aj . For example, the dependencies W3[v] →s1 W1[v],
W3[v] →s1 R1[v] and R3[v] →s1 W1[v] are respectively a ww-
dependency, a wr-dependency and a rw-antidependency in
schedule s1 presented in Figure 2.
Two schedules s and s′ are conflict-equivalent if they are

over the same set T of transactions and for every pair of
conflicting operations aj and bi, bi →s aj iff bi →s′ aj .

Definition 2.1. A schedule s is conflict-serializable if it
is conflict-equivalent to a single version serial schedule.

A serialization graph SeG(s) for schedule s over a set of
transactions T is the graph whose nodes are the transactions

in T and where there is an edge from Ti to Tj if Tj has an
operation aj that depends on an operation bi in Ti, thus
with bi →s aj .

Theorem 2.2 (implied by [2]). A schedule s is conflict-
serializable iff SeG(s) is acyclic.

Figure 3 and 5 visualize the serialization graphs SeG(s1)
and SeG(s2) for the schedules s1 and s2 in Figure 2 and 4,
respectively. For illustration purposes, each edge is labelled
with the corresponding dependencies. Since SeG(s1) and
SeG(s2) are not acyclic, both schedules are not conflict-
serializable.

2.3 Isolation Levels
Let I be a class of isolation levels. An I-allocation A for

a set of transactions T is a function mapping each transac-
tion T ∈ T onto an isolation level A(T) ∈ I. When I is not
important or clear from the context, we sometimes also say
allocation rather than I-allocation. In this paper, we con-
sider the following isolation levels: read committed (RC),
snapshot isolation (SI), and serializable snapshot isolation
(SSI). In general, with the exception of Section 5, I = {RC,
SI, SSI}. Before we define what it means for a schedule to
consist of transactions adhering to different isolation levels,
we introduce some necessary terminology.

Let s be a schedule for a set T of transactions. Two
transactions Ti, Tj ∈ T are said to be concurrent in s when
their execution overlaps. That is, if first(Ti) <s Cj and
first(Tj) <s Ci. In our running example schedule s1 in Fig-
ure 2, T1 and T2 are concurrent, as well as T1 and T3. All
other pairs of transactions are not concurrent in s1. We
say that a write operation Wj [t] in a transaction Tj ∈ T re-
spects the commit order of s if the version of t written by
Tj is installed after all versions of t installed by transac-
tions committing before Tj commits, but before all versions
of t installed by transactions committing after Tj commits.
More formally, if for every write operation Wi[t] in a trans-
action Ti ∈ T different from Tj we have Wj [t] ≪s Wi[t] iff
Cj <s Ci. All write operations in Figure 2 respect the com-
mit order of s1. In Figure 4, write operations W3[q] and W2[q]
do not respect the commit order of s2 as C2 <s2 C3 but
W3[q] ≪s2 W2[q].

We next define when a read operation a ∈ T reads the
last committed version relative to a specific operation. For
RC this operation is a itself while for SI this operation is
first(T). Intuitively, these definitions enforce that read op-
erations in transactions allowed under RC act as if they ob-
serve a snapshot taken right before the read operation itself,
while under SI they observe a snapshot taken right before
the first operation of the transaction. A read operation Rj [t]
in a transaction Tj ∈ T is read-last-committed in s relative
to an operation aj ∈ Tj (not necessarily different from Rj [t])
if the following holds:

• vs(Rj [t]) = op0 or Ci <s aj with vs(Rj [t]) ∈ Ti; and

• there is no write operation Wk[t] ∈ Tk with Ck <s aj

and vs(Rj [t]) ≪s Wk[t].

The first condition says that Rj [t] either reads the initial
version or a committed version, while the second condition
states that Rj [t] observes the most recently committed ver-
sion of t (according to ≪s). For example, R1[v] in Fig-
ure 2 is read-last-committed in s1 relative to R1[v] but not

to first(T1), whereas in Figure 4 read operation R3[v] is read-
last-committed in s2 relative to first(T3) but not relative to
R3[v].

A transaction Tj ∈ T exhibits a concurrent write in s if
there is another transaction Ti ∈ T and there are two write
operations bi and aj in s on the same object with bi ∈ Ti,
aj ∈ Tj and Ti ̸= Tj such that bi <s aj and first(Tj) <s

Ci. That is, transaction Tj writes to an object that has
been modified earlier by a concurrent transaction Ti. A
transaction Tj ∈ T exhibits a dirty write in s if there are two
write operations bi and aj in s with bi ∈ Ti, aj ∈ Tj and Ti ̸=
Tj such that bi <s aj <s Ci. That is, transaction Tj writes to
an object that has been modified earlier by Ti, but Ti has not
yet issued a commit. Notice that by definition a transaction
exhibiting a dirty write always exhibits a concurrent write.
Transaction T1 in Figure 2 exhibits a concurrent write in s1,
since it writes to v, which has been modified earlier by a
concurrent transaction T3. However, T1 does not exhibit a
dirty write in s1, since T3 has already committed before T1

writes to v. In Figure 4, T2 exhibits a dirty write in s2 since
it writes to q, which has been modified earlier by T3 and T3

has not yet committed before W2[q].

Definition 2.3. Let s be a schedule over a set of trans-
actions T . A transaction Ti ∈ T is allowed under isolation
level read committed (RC) in s if:

• write operations in Ti respect the commit order of s;

• each read operation bi ∈ Ti is read-last-committed in s
relative to bi; and

• Ti does not exhibit dirty writes in s.

A transaction Ti ∈ T is allowed under isolation level snap-
shot isolation (SI) in s if:

• write operations in Ti respect the commit order of s;

• each read operation in Ti is read-last-committed in s
relative to first(Ti); and

• Ti does not exhibit concurrent writes in s.

We then say that the schedule s is allowed under RC (re-
spectively, SI) if every transaction is allowed under RC (re-
spectively, SI) in s. The latter definitions correspond to
the ones in the literature (see, e.g., [19, 25]). We emphasize
that our definition of RC is based on concrete implementa-
tions over multiversion databases, found in e.g. Postgres,
and should therefore not be confused with different inter-
pretations of the term Read Committed, such as lock-based
implementations [12] or more abstract specifications cover-
ing a wider range of concrete implementations (see, e.g., [2]).
In particular, abstract specifications such as [2] do not re-
quire the read-last-committed property, thereby facilitating
implementations in distributed settings, where read opera-
tions are allowed to observe outdated versions. When study-
ing robustness, such a broad specification of RC is not de-
sirable, since it allows for a wide range of schedules that are
not conflict-serializable. We furthermore point out that our
definitions of RC and SI are not strictly weaker forms of
conflict-serializability. That is, a conflict-serializable sched-
ule is not necessarily allowed under RC and SI as well.
While RC and SI are defined on the granularity of a single

transaction, SSI enforces a global condition on the schedule

as a whole. For this, recall the concept of dangerous struc-
tures from [14]: three transactions T1, T2, T3 ∈ T (where
T1 and T3 are not necessarily different) form a dangerous
structure T1 → T2 → T3 in s if:

• there is a rw-antidependency from T1 to T2 and from
T2 to T3 in s;

• T1 and T2 are concurrent in s;

• T2 and T3 are concurrent in s;

• C3 ≤s C1 and C3 <s C2; and

• if T1 is read-only, then C3 <s first(T1).

Note that this definition of dangerous structures slightly
extends upon the one in [14], where it is not required for
T3 to commit before T1 and T2. In the full version [15] of
that paper, it is shown that such a structure can only lead
to non-serializable schedules if T3 commits first, and actual
implementations of SSI (e.g., Postgres [23]) therefore include
this optimization when monitoring for dangerous structures
to reduce the number of aborts due to false positives.

We are now ready to define when a schedule is allowed
under a (mixed) allocation of isolation levels.

Definition 2.4. A schedule s over a set of transactions
T is allowed under an allocation A over T if:

• for every transaction Ti ∈ T with A(Ti) = RC, Ti is
allowed under RC;

• for every transaction Ti ∈ T with A(Ti) ∈ {SI,SSI},
Ti is allowed under SI; and

• there is no dangerous structure Ti → Tj → Tk in s
formed by three (not necessarily different) transactions
Ti, Tj , Tk ∈ {T ∈ T | A(T) = SSI}.

We denote the allocation mapping all transactions to RC
(respectively, SI) by ARC (respectively, ASI).
In our running example schedule s1 in Figure 2, the first

three transactions form a dangerous structure T3 → T1 →
T2, witnessed by the rw-antidependencies R3[v] →s1 W1[v]
and R1[t] →s1 W2[t]. Therefore, s1 is not allowed under an
allocation mapping all three transactions to SSI. Since R1[v]
is read-last-committed relative to itself but not relative to
the first operation of T1, and since T1 exhibits a concurrent
write, T1 is allowed under RC in s1, but not allowed under SI.
Transactions T2, T3 and T4 are allowed under both RC and
SI in s1. Notice in particular that all read operations in T3

and T4 are read-last-committed relative to both themselves
and the first operation of the corresponding transaction in
s1. We conclude that s1 is allowed under all allocations over
Tex mapping T1 to RC, and T2, T3 and T4 to either RC, SI
or SSI. For schedule s2 in Figure 4, no allocation A over Tex

exists such that s2 is allowed under A. Indeed, not all write
operations in T2 and T3 respect the commit order of s2, and
T2 furthermore exhibits a dirty write, which is not allowed
under any isolation level.

2.4 Robustness
We define the robustness property [13] (also called accept-

ability in [19, 20]), which guarantees serializability for all
schedules over a given set of transactions for a given alloca-
tion.

T1 T2 T3 T4 Tex robust against Ai?
A1 RC RC SSI SSI no (cf. s1 in Figure 2)
A2 SSI RC SSI SSI yes
A3 SI SI SSI SSI yes
A4 SI RC SSI SSI yes
A5 SI RC SI SSI no (cf. s3 in Figure 6)
A6 SI RC SSI SI no (cf. s3 in Figure 6)

Table 1: Example allocations for Tex.

Definition 2.5 (Robustness). A set of transactions T is
robust against an allocation A for T if every schedule for T
that is allowed under A is conflict-serializable.

We refer to A as a robust allocation. The robustness prob-
lem is then to decide whether a given allocation for a set of
transactions T is a robust allocation.

Table 1 presents some allocations over our running exam-
ple Tex. For each allocation that Tex is not robust against,
a counterexample schedule is given. For example, T is not
robust against A1 because schedule s1 in Figure 2 is allowed
under A1 and not conflict-serializable.

3. DECIDING ROBUSTNESS
In the next definition, for an operation b ∈ T, we denote

by prefixb(T) the restriction of T to all operations that are
before or equal to b according to ≤T . Similarly, we denote
by postfixb(T) the restriction of T to all operations that are
strictly after b according to ≤T .

Definition 3.1 (Multiversion split schedule). Let T =
{T1, T2, . . . , Tn} be a set of transactions and A an allocation
for T . A multiversion split schedule s for T and A is a
multiversion schedule allowed under A that has the following
form:

prefixb1(T1) · T2 · . . . · Tm · postfixb1(T1) · Tm+1 · . . . · Tn,

where b1 ∈ T1 and m ∈ [2, n]. Furthermore, for each pair of
transactions Ti, Tj ∈ T with i, j ∈ [1,m] and either j = i+1
or i = m and j = 1, there are two operations bi ∈ Ti and
aj ∈ Tj such that bi →s aj.

Schedule s1 in Figure 3 is a multiversion split schedule for
our running example set of transactions Tex and allocation
A1. Notice in particular the cyclic chain of dependencies
implied by the definition. Because of this, such a schedule
is never conflict-serializable. The existence of a multiversion
split schedule for a set of transactions T and an allocation
A for T therefore implies that T is not robust against A.
The next Theorem states that the opposite direction is also
true, thereby characterizing non-robustness in terms of the
existence of a multiversion split schedule.

Theorem 3.2. For a set of transactions T and an allo-
cation A for T , the following are equivalent:

1. T is not robust against A;

2. there is a multiversion split schedule s for T and A.

Theorem 3.2 forms the basis for a ptime algorithm de-
ciding robustness against a given allocation, presented as
Algorithm 1 in [27]. We emphasize that a naive approach
enumerating all multiversion split schedules for T and A
does not work, as this number can still be exponential in

the number of transactions in T . Instead, the algorithm
relies on a number of conditions on A as well as the the op-
erations in T and makes use of an auxiliary graph structure
to efficiently check whether a multiversion split schedule ex-
ists that witnesses the desired cyclic chain of dependencies
and is allowed under A. We refer to [27] for the details of
the algorithm.

Theorem 3.3 ([27]). Algorithm 1 in [27] decides whether
a set of transactions T is robust against an allocation A in
time O(|T |3 · max{|T |3, k2ℓ2, ℓ6}), with k the total number
of operations in T and ℓ the maximum number of operations
in a transaction in T .

4. THE ALLOCATION PROBLEM
Finding a robust allocation over {RC, SI, SSI} is of course

trivial as we can simply assign every transaction to SSI.
Such an allocation is undesirable as it enforces the most ex-
pensive concurrency control mechanism on all transactions.
We are therefore interested in robust allocations that favor
RC over SI and SI over SSI.

In the following, we assume a total order2 RC < SI <
SSI over the isolation levels, and introduce the following
notions. Let T be a set of transactions, and let A and A′

be allocations over T . We denote by A ≤ A′ when A(T) ≤
A′(T) for all T ∈ T . Furthermore, A < A′ when A ≤ A′

and there is a T ∈ T with A(T) < A′(T).
We say that a robust allocation A is optimal when there is

no robust allocation A′ with A′ < A. For an isolation level
I, we denote by A[T 7→ I] the allocation where T is assigned
I and every other transaction T ′ ∈ T is assigned A(T ′). For
two isolation levels I and I′ with I < I′ (respectively I′ <
I) we say that I is a lower (respectively higher) isolation
level than I′.

The following proposition obtains some useful properties
of robust allocations. Specifically, it says that robustness
propagates upwards. That is, if a schedule is robust under
an allocation A, it remains robust when assigning a higher
isolation level to any of its transactions T. Furthermore, if
there exists a robust allocation A′ mapping T to a lower
isolation level than A(T), then A(T) can be safely updated
to that lower isolation as well. That is, s is also robust under
A[T 7→ A′(T)].

Proposition 4.1. Let T be a set of transactions. Let A
and A′ be allocations for T .

1. If A ≤ A′ and T is robust against A, then T is robust
against A′.

2. If T is robust against A and A′, then T is robust
against A′[T 7→ A(T)] for every T ∈ T .

Applying these results on the allocations in Table 1, A4

being a robust allocation implies that A2 and A3 are robust
allocations as well. Furthermore, the robust allocations A2

and A3 can be combined into the robust allocation A4.
We can now prove the following proposition.

Proposition 4.2. There is a unique optimal allocation
for every set of transactions T .
2This order only represents the preference between isolation
levels (i.e., RC over SI and SI over SSI), not an inclusion
relation between isolation levels. For example, not every
schedule allowed under ASI is allowed under ARC (cf. Ex-
ample 5.2).

R1[t] R1[v] W1[v] C1

W2[q] W2[t] C2

R3[u] R3[v] W3[q] W3[v] C3

R4[q] W4[u] C4

vs3

≪s3

≪s3

T1 :

T2 :

T3 :

T4 :

Figure 6: A schedule s3 for Tex with vs3 and ≪s3 represented through arrows.
The special operation op0 and all arrows involving op0 are omitted.

op0

W1[t] C1

R2[v] R2[t] C2vs

vs

≪sT1 :

T2 :

Figure 7: Schematic representation of
schedule s in Example 5.2.

Algorithm 1: Computing the optimal robust alloca-
tion.
Input : Set of transactions T
Output: Optimal robust allocation A for T
A := ASSI;
for T ∈ T do

if T is robust against A[T 7→ RC] then
A := A[T 7→ RC];

else if T is robust against A[T 7→ SI] then
A := A[T 7→ SI];

return A

For our running example Tex, the optimal robust alloca-
tion is A4 in Table 1. Indeed, trying to lower the isolation
level for one of the transactions even further always leads to
nonrobust allocations (cf., A1, A5 and A6)

The following theorem shows that the unique optimal al-
location can be computed in polynomial time. The corre-
sponding algorithm is given as Algorithm 1.

Theorem 4.3. An optimal robust allocation can be com-
puted in time polynomial in the size of T for every set of
transactions T .

5. RESTRICTING TO RC AND SI
As already mentioned in the introduction, Oracle restricts

to the isolation levels RC and SI. We investigate in this sec-
tion how the results of the previous sections can be trans-
ferred to this setting. In particular, we ignore SSI and re-
strict attention to RC and SI.

We start with the following result.

Proposition 5.1. For a set of transactions T , robustness
against ARC implies robustness against ASI.

This above result is an immediate consequence of Propo-
sition 5.4. We mention that it is also a direct consequence
of the characterizations for robustness against ARC [25] and
ASI [19]. Indeed, it can be shown that a counterexample
for robustness against ASI can always be transformed into
a counterexample for robustness against ARC as well. We
do want to emphasize that Proposition 5.1 is not a trivial
consequence that immediately follows from the definitions
of the isolation levels RC and SI, for the simple reason that
it is not the case that every schedule allowed under ASI is
also allowed under ARC as the next example shows.

Example 5.2. We give an example of a schedule s that
is allowed under SI but not allowed under RC. To this
end, consider the schedule s over transactions W1[t] C1 and

R2[v] R2[t] C2 with operation order ≤s,

op0 W1[t] R2[v] C1 R2[t] C2,

version order op0 ≪s W1[t], and version function vs(R2[v]) =
vs(R2[t]) = op0. Figure 7 shows a graphical representation
of schedule s. Then, s is allowed under ASI, but not under
ARC, because R2[t] is not read-last-committed in s relative
to itself. 2

We formalize when a set of transactions is robustly allo-
catable against a class of isolation levels:

Definition 5.3. For a class of isolation levels I, a set
of transactions T is robustly allocatable against I if there
exists an I-allocation A such that T is robust against A.

The only if-direction of the next theorem now immediately
follows from Proposition 4.1(1) asA ≤ ASI for any {RC, SI}-
allocation A for which a set of transactions is robustly allo-
catable. The if-direction is trivial, since robustness against
ASI is an immediate witness for T being robustly allocatable
against {RC, SI}:

Proposition 5.4. A set of transactions T is robustly al-
locatable against {RC,SI} iff T is robust against ASI.

We now state the main result of this section:

Theorem 5.5. Let T be a set of transactions. It can be
decided in time polynomial in the size of T whether T is
robustly allocatable against {RC,SI}. If T is robustly allo-
catable against {RC,SI}, then an optimal unique allocation
can be computed in polymonial time as well.

6. RELATED WORK

Mixing isolation levels. Adya et al. [2] define isolation
levels in terms of phenomena that are forbidden to occur
in the serialization graph. they consider a mixture of read
uncommitted, read committed and serializable transac-
tions and do not consider SI or SSI like we do in this paper.
Note that a separate graph-based definition of SI is speci-
fied in [1], requiring an extension of the serialization graph.
Incorporating SI in the mixed setting in [2] is therefore not
trivial. Other work [13, 19] consider a limited form of isola-
tion level mixing where one isolation level (say, SI) can be
mixed with a serializable isolation level. To the best of our
knowledge, this paper is the first that jointly considers mix-
ing RC, SI and SSI in the way that it is applied in Postgres.

Robustness and allocation for transactions. Fekete [19]
is the first work that provides a necessary and sufficient con-
dition for deciding robustness against an isolation level (SI)
for a workload of transactions. In particular, that work pro-

vides a characterization for optimal allocations when every
transaction runs under either SI or strict two-phase locking
(S2PL). As a side result, this work presents a characteriza-
tion for robustness against SI as well.

Ketsman et al. [22] provide characterisations for robust-
ness against read committed and read uncommitted un-
der lock-based semantics. In addition, it is shown that the
corresponding decision problems are complete for conp and
logspace, respectively, which should be contrasted with the
polynomial time characterization obtained in [25] for robust-
ness against multiversion read committed which is the vari-
ant that is considered in this paper. The present paper is
therefore the first to address the robustness and allocation
problem for a wider range of isolation levels.

Robustness in practice. The setting in the present paper
assumes that the complete set of all transactions in a work-
load is completely known which is an assumption that can
not always be met in practice. In [27] we provide an elab-
orate discussion of different approaches that have been pre-
viously investigated to address this [6,8,13,16–18,20,21,25,
26].

7. CONCLUSION
In this paper, we addressed and solved the robustness and

allocation problem for the classes {RC, SI, SSI} and {RC,
SI} corresponding to the isolation levels employed in Post-
gres and Oracle, respectively. These results can be used
as a stepping stone for corresponding results on the level of
transaction programs, thereby laying the groundwork for au-
tomating isolation level allocation within existing databases
that support multiversion concurrency control.

Acknowledgments
This work is partly funded by FWO-grant G019921N. We
thank Alan Fekete for spotting the omission related to read-
only transactions in our definition of dangerous structures.

8. REFERENCES
[1] A. Adya. Weak Consistency: A Generalized Theory

and Optimistic Implementations for Distributed
Transactions. Ph.D., MIT, Cambridge, MA, USA,
Mar. 1999.

[2] A. Adya, B. Liskov, and P. E. O’Neil. Generalized
isolation level definitions. In ICDE, pages 67–78, 2000.

[3] M. Alomari. Serializable executions with snapshot
isolation and two-phase locking: Revisited. In
AICCSA, pages 1–8, 2013.

[4] M. Alomari, M. Cahill, A. Fekete, and U. Rohm. The
cost of serializability on platforms that use snapshot
isolation. In ICDE, pages 576–585, 2008.

[5] M. Alomari, M. J. Cahill, A. D. Fekete, and U. Röhm.
Serializable executions with snapshot isolation:
Modifying application code or mixing isolation levels?
In DASFAA, volume 4947, pages 267–281, 2008.

[6] M. Alomari and A. Fekete. Serializable use of read
committed isolation level. In AICCSA, pages 1–8,
2015.

[7] M. Alomari, A. D. Fekete, and U. Röhm. A robust
technique to ensure serializable executions with
snapshot isolation DBMS. In ICDE, pages 341–352,
2009.

[8] P. Alvaro and K. Kingsbury. Elle: Inferring isolation
anomalies from experimental observations. PVLDB,
14(3):268–280, 2020.

[9] P. Bailis, A. Davidson, A. Fekete, A. Ghodsi, J. M.
Hellerstein, and I. Stoica. Highly available
transactions: Virtues and limitations. PVLDB,
7(3):181–192, 2013.

[10] S. M. Beillahi, A. Bouajjani, and C. Enea. Checking
robustness against snapshot isolation. In CAV, pages
286–304, 2019.

[11] S. M. Beillahi, A. Bouajjani, and C. Enea. Robustness
against transactional causal consistency. In CONCUR,
pages 1–18, 2019.

[12] H. Berenson, P. A. Bernstein, J. Gray, J. Melton, E. J.
O’Neil, and P. E. O’Neil. A critique of ANSI SQL
isolation levels. In SIGMOD, pages 1–10, 1995.

[13] G. Bernardi and A. Gotsman. Robustness against
consistency models with atomic visibility. In
CONCUR, pages 7:1–7:15, 2016.

[14] M. J. Cahill, U. Röhm, and A. D. Fekete. Serializable
isolation for snapshot databases. In SIGMOD, pages
729–738, 2008.

[15] M. J. Cahill, U. Röhm, and A. D. Fekete. Serializable
isolation for snapshot databases. ACM Trans.
Database Syst., 34(4):20:1–20:42, 2009.

[16] A. Cerone, G. Bernardi, and A. Gotsman. A
framework for transactional consistency models with
atomic visibility. In CONCUR, pages 58–71, 2015.

[17] A. Cerone and A. Gotsman. Analysing snapshot
isolation. J.ACM, 65(2):1–41, 2018.

[18] A. Cerone, A. Gotsman, and H. Yang. Algebraic Laws
for Weak Consistency. In CONCUR, pages 26:1–26:18,
2017.

[19] A. Fekete. Allocating isolation levels to transactions.
In PODS, pages 206–215, 2005.

[20] A. Fekete, D. Liarokapis, E. J. O’Neil, P. E. O’Neil,
and D. E. Shasha. Making snapshot isolation
serializable. ACM Trans. Database Syst.,
30(2):492–528, 2005.

[21] Y. Gan, X. Ren, D. Ripberger, S. Blanas, and
Y. Wang. Isodiff: Debugging anomalies caused by
weak isolation. PVLDB, 13(11):2773–2786, 2020.

[22] B. Ketsman, C. Koch, F. Neven, and B. Vandevoort.
Deciding robustness for lower SQL isolation levels. In
PODS, pages 315–330, 2020.

[23] D. R. K. Ports and K. Grittner. Serializable snapshot
isolation in postgresql. PVLDB, 5(12):1850–1861,
2012.

[24] TPC-C. On-line transaction processing benchmark.
http://www.tpc.org/tpcc/.

[25] B. Vandevoort, B. Ketsman, C. Koch, and F. Neven.
Robustness against read committed for transaction
templates. PVLDB, 14(11):2141–2153, 2021.

[26] B. Vandevoort, B. Ketsman, C. Koch, and F. Neven.
Robustness against read committed for transaction
templates with functional constraints. In ICDT, pages
16:1–16:17, 2022.

[27] B. Vandevoort, B. Ketsman, and F. Neven. Allocating
isolation levels to transactions in a multiversion
setting. In PODS, pages 69–78, 2023.

http://www.tpc.org/tpcc/

