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Samenvatting 

In dit rapport worden modellen voorgesteld die kunnen gebruikt worden om de 
frequentie en de ernst van ongevallen in België te verklaren en te voorspellen. Het doel 
van de studie is de uitbreiding van de kennis over de ontwikkelingen in 
verkeersveiligheid, en dit door het in kaart brengen van de impact van verschillende 
verklarende factoren. Meer specifiek wordt nagegaan of het aantal ongevallen en 
slachtoffers beïnvloed wordt door het weer, de economische toestand en de wetgeving. 
Belgische maandelijkse gegevens van januari 1974 tot december 1999 werden gebruikt 
om het model op stellen. Het model werd gebruikt om 12 voorspellingen te maken van 
de frequentie en de ernst van ongevallen voor het jaar 2000. Met behulp van een 
regressiemodel met ARIMA foutenterm wordt de impact van verschillende verklarende 
variabelen op de geaggregeerde verkeersveiligheid gekwantificeerd. Tegelijk wordt de 
invloed van niet gekende factoren opgevangen door de structuur in de foutenterm. De 
resultaten tonen een significant effect van het klimaat en de wetgeving, maar de impact 
van de economische condities blijkt statistisch verwaarloosbaar. Het model leent zich 
uitstekend voor de voorspelling van de verkeersveiligheid, zoals blijkt uit de vrij goede fit 
die werd bekomen op een 95% significantieniveau. 
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Summary 

In this paper, models are developed to explain and forecast the frequency and severity of 
accidents in Belgium.  The objective of this study is to enhance the understanding of the 
developments in road safety by studying the impact of various explanatory variables on 
traffic safety.  It is investigated whether the number of accidents and victims is 
influenced by weather conditions, economic conditions and policy regulations.  The model 
is used to predict the frequency and severity of accidents for a 12-months out-of-sample 
data set.  Monthly Belgian data from January 1974 to December 1999 are used in the 
model, and predictions are made for the year 2000.  Using a regression model with 
ARIMA errors, the impact of variables on aggregate traffic safety is quantified and at the 
same time the influence of unknown factors is captured by the error term.  The results 
show a significant effect of weather conditions and laws and regulations on traffic safety, 
but there seems to be negligible statistical impact of economic conditions.  The model 
can easily be used to forecast traffic safety, as can be seen from the reasonably good fit 
obtained on a 95% confidence level. 
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1.    IN T R O D U C T I O N 

For many years, traffic growth and the increasing importance of efficient road 
transportation led to a large number of road accidents, associated with economic losses 
and human suffering.  Road traffic safety is an important social issue.  In Belgium, traffic 
safety and mobility are main issues on today’s political agenda.  Traffic accidents are the 
combined result of various influences at a certain location and time.  In an OECD report 
(1), some broad categories of factors influencing traffic accident counts are listed.  First, 
the number of accidents depends on some autonomous factors that cannot be influenced 
on a short-term and countrywide level (weather and state of technology belong to this 
category).  Second, economic conditions like unemployment and income are part of the 
general climate in which accidents occur.  Although these issues are sometimes 
subjected to political intervention, they are rarely oriented towards road safety 
improvement.  A third category covers the size and the structure of the transportation 
sector, which is often closely related to exposure (infrastructure, Vehicle Park…).  Fourth, 
the accident countermeasures, formalized in laws and regulations, are explicitly brought 
into being to reduce the risk of road accidents.  Fifth, the accident counts also depend on 
the data collection system.  Changes in collection strategies may produce fictitious 
increases or decreases in accident counts.  A last influence is the random variation in 
accident counts.  Since accidents are, by definition, unwanted events, they cannot be 
fully predicted.  Therefore, part of this phenomenon will always be inexplicable. 

Although it is intuitively appealing to assume that these factors have an influence on the 
number of accidents, it would be instructive to get a confirmation of this influence.  Given 
the large number of possible factors, it is not easy to get a clear view on the reasons for 
the trends in traffic safety.  Because of the randomness involved in accident occurrence, 
the investigation of influential factors should be stochastic in nature.  Econometric 
explanatory models provide a means to test the impact of influential factors.  The factors 
summarized above can be combined in an explanatory model and tested for their 
(positive or negative) contribution to traffic safety.  This makes the models quite 
appealing to practitioners, who are typically interested in actively increasing the level of 
traffic safety.   

The objective of this study is twofold.  First, the insights in the developments in road 
safety are enhanced by studying the complex influence of other, possibly related, 
variables.  More specifically, it is investigated how weather conditions, economic growth 
and policy regulation may influence the number of accidents and victims.  A multiple 
regression model with ARIMA (Auto-Regressive Moving Average) errors is used to 
quantify the impact of these factors on aggregate traffic safety.  This combination of a 
regression model and a time series analysis technique allows to build a model with 
desirable statistical properties, and thus to minimize the risk of erroneous model 
interpretation.  Monthly Belgian data are used for a period from January 1974 to 
December 1999.  Second, an attempt is made to forecast the frequency and severity of 
accidents for a 12 months out-of-sample data set.  In comparison with other studies, 
results are on both the accident and the victim level and the full possibilities of ARIMA 
corrections in the errors are used.  Also, the impact of exposure is not explicitly tested.  
Exposure data were not available, and it would be instructive to know how well the 
models might perform without it.  Formal changes in the data collection and reporting 
system did not occur in the given time period, and therefore were not explicitly modelled.  
However, some extreme values will be taken into account.  The effects of changes in 
technology are assumed to be absorbed by the structured error term. 

This text is organized as follows.  First, some background information is given on the 
research done with the kind of models used in the paper.  Then, an overview of the data 
is given.  Next, the main ideas of regression with ARIMA errors are discussed.  In the 
results section, the model outcomes and the forecasts are presented and discussed.  Also 
some general conclusions and topics for model improvement and further research are 
provided. 
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2.    BA C K G R O U N D 

Econometric models (like regression and time series models) appear to be very useful to 
enhance the understanding of trends in traffic safety.  In the OECD report (1), the 
importance of this kind of models in traffic safety has been extensively described.  The 
wide arsenal of econometric modeling techniques can be very effective in taking into 
account various influences on aggregate accident figures.  This approach is especially 
useful when many factors are to be tested.  Moreover, since accidents are unwanted 
events, controlled (or “designed”) experiments cannot be used.  Accidents are, by 
definition, non-experimental.  Because of the random character, a probabilistic view on 
the accident process is quite natural.   

The importance of the use of time series analysis in traffic safety research appears from 
the attention it deserves in international literature.  For some time now, authors have 
analyzed aspects of traffic safety using (a combination of) regression techniques and 
time series models.  The main ideas of traffic safety development and time series models 
are described in the COST329 report of the European Commission (2).  Apart from the 
pure ARIMA modeling approach, the document describes the explanatory models, in 
which traffic safety outcomes are related to a set of explanatory factors.  Models with 
aggregated explanatory variables like population, unemployment or inflation, often 
referred to as “macro models”, are frequently used in literature to investigate various 
aspects of traffic safety.  An overview of these models is given in Hakim et al. (3).  
Atkins (4) used intervention analysis to determine the influence of compulsory car 
insurance, company strikes and a change in the policies of insurance companies on the 
number of traffic accidents on freeways in British Columbia.  Harvey and Durbin (5) 
studied the effect of seat belt legislation on road casualty rates by means of structural 
time series modeling.  In Fridstrøm et al. (6), Generalized Poisson regression models are 
used to study the impact of a wide range of explanatory factors on personal injury road 
accidents and their severity.  Fridstrøm et al. (7) investigated the impact of exposure, 
weather, daylight, reporting routines, speed limits and randomness on the variation in 
accident counts.  Johansson (8) tested the effect of a lowered speed limit on the number 
of accidents on Swedish motorways, using extended Poisson and Negative Binomial count 
data models.  They incorporate a large number of explanatory factors in a structural time 
series model.  Ledolter et al. (9) investigated the effect of a change in the speed limit on 
the rural interstate highway system to 65 miles per hour in Iowa.  One special class of 
explanatory models is known as the DRAG family.  The DRAG models are structural 
explanatory models, including a relatively large number of explanatory variables, whose 
effects on the exposure, the frequency and the severity of accidents are estimated by 
econometric methods (2).  These models are described in Gaudry et al. (10).  An 
overview of macro-economic models and DRAG models can be found in Van den Bossche 
and Wets (11).   

This report is an extended version of the report RA-2003-21 (“A Structural Road Accident 
Model for Belgium”). In comparison with this first version, some major revisions have 
been implemented. First, an extended dataset is constructed. Instead of working with 
data from 1986 to 2000, the first observations are now from 1974. Second, the 
correction structure in the error terms is not limited to AR components only, but allows a 
full ARIMA structure to model remaining error patterns. Third, some variables that turned 
out not to be useful were left out of the analysis and non-significant variables were 
dropped from the final models. The technical background on model construction, 
however, is still valid.  Many technical details on multicollinearity and heteroscedasticity 
that were previously described are also used in this report.  
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3.    DA T A 

A database has been created for Belgium with explanatory variables on weather, laws 
and regulations, and economic conditions.  Monthly data is used from January 1974 up to 
December 2000.  The last year is used for forecasting purposes.  The main part of the 
data has been gathered from governmental ministries and official documents published 
by the Belgian National Institute for Statistics.  Four dependent variables will be 
modeled: the number of accidents with lightly injured persons (NACCLI), the number of 
accidents with persons killed or seriously injured (NACCKSI), the number of persons 
lightly injured (NPERLI) and the number of persons killed or seriously injured (NPERKSI).  
The evolution in time of these variables is shown in the first column of Figure 1.   

The variables NACCKSI and NPERKSI show a decreasing trend.  This is less pronounced 
for NACCLI and NPERLI.  All dependent variables show a recurring seasonal pattern, and 
some months show extremely low observations.  The logarithm of the dependent 
variables will be modeled, written respectively as LNACCLI, LNACCKSI, LNPERLI and 
LNPERKSI.  The independent variables are summarized below. 

3.1   Laws and regulations 

Five dummy variables are included in the model to study the effect of laws and 
regulations that were introduced in Belgium at a certain date within the scope of our 
analysis.  These variables are equal to zero before the introduction and equal to one as 
from the moment of introduction. 

In June 1975, mandatory seat belt use in the front seats was introduced (LAW0675).  
The regulations of November 1988 include the introduction of zones with a reduced 
speed limit of 30 km/h (LAW1188).  In January 1992, the speed limit of 50 km/h in 
urban areas and 90 km/h at road sections with at least 2 by 2 lanes without a raised 
shoulder or any other separation of the driving directions were introduced, together with 
regulations on vehicle load, cycling tourists and speed (LAW0192).  Starting from 
December 1994, the 0.05% maximum alcohol level was imposed and higher fines were 
written out for a 0.08% or higher alcohol level (LAW1294).  In April 1996, some 
regulations on traffic at zebra crossings were put into practice.  If a pedestrian is crossing 
the street, or has the intention to do so, the car driver should give right of way to the 
pedestrian (LAW0496).   

3.2   Weather conditions 

Meteorological variables were gathered by the Belgian Royal Meteorological Institute and 
published by the National Institute for Statistics. The quantity of precipitation (in mm) 
was measured as an average for the whole country (QUAPREC).  The other variables are 
measured in the climatologic center in Ukkel (in the center of Belgium).  These are the 
number of sunlight hours (HRSSUN) and the monthly percentage (× 100) of days with 
frost (PDAYFROST), snow (PDAYSNOW), sunlight (PDAYSUN), precipitation (PDAYPREC) 
and thunderstorm (PDAYTHUN).   

3.3   Economic conditions 

Some indicators are used to measure economic climate, namely the percentage inflation 
(INFLAT), and the (log-transformed) number of unemployed people (LNUNEMP).  
Additionally, the effect of the (log-transformed) number of car registrations (LNCAR) and 
the percentage of second hand car registrations (POLDNCAR) is tested.   
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3.4   Correction variables 

As could be seen from the graphs in the first column of Figure 1, the number of accidents 
or victims was extremely low for some months.  Peaks can be seen in January 1979, 
January 1984, January 1985 and February 1997.  Either the number of accidents or 
victims was indeed extremely low in these months, or there was a registration problem.  
As will be seen further in the text, extreme values disturb the desired properties of the 
model error terms and should be corrected.  Therefore, dummy variables are added to 
the model.  These variables, named JAN79, JAN84, JAN85 and FEB97, are equal to one in 
the month they represent, and equal to zero elsewhere. 

 

Dependent variables  
(model data) 

Predictions (full line), observed values 
(dots) and 95% confidence intervals 

(dotted lines) 
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FIGURE 1: Dependent variables (column 1) and predictions (column 2) 
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4.    ME T H O D O L O G Y  

In this study, dependent traffic safety variables are expressed in terms of independent 
explanatory variables.  Multiple linear regression can be used to model a relationship 
between a dependent variable and one or more independent variables.  It allows 
investigating the effect of changes in the various factors on the dependent variable.  If 
the observations are measured over time, the model is called a time series regression.  
The resulting statistical relationship can be used to predict future values of the target.  If 
one is interested in the explanatory and predictive power of the regression equation, all 
necessary assumptions should be met.  To this end, a regression model with ARIMA 
errors will be used as a means to analyze traffic accident time series data.  The 
construction of this kind of models is discussed here.  For a thorough and comprehensive 
overview of regression models, the reader is referred to Neter et al. (12).  In Makridakis 
et al. (13), an introduction to time series analysis is given.  Regression models with 
ARIMA errors are described in Pankratz (14). 

4.1   Multiple Regression 

The multiple regression model can be written as Yt=β0+β1X1,t+β2X2,t+…+βkXk,t+Nt, where 
Yt is the t-th observation of the dependent variable, and X1,t,…,Xk,t are the corresponding 
observations of the explanatory variables.  The parameters β0,β1,β2,…,βk are fixed but 
unknown, and Nt is the unknown random error term.  Using classical estimation 
techniques, estimates for the unknown parameters are obtained.  If the estimated values 
for β0,β1,β2,…,βk are given by b0,b1,b2,…,bk, then the dependent variable is estimated as 
Yest,t=b0+b1X1,t+b2X2,t+…+bkXk,t, and the estimate Nest,t for the error term Nt is calculated 
as the difference between the observed and predicted value of the dependent variable: 
Nest,t=Yt−Yest,t. In the theoretical model, several assumptions are made about the 
explanatory variables and the error term.  When these assumptions are satisfied, the 
estimators are unbiased and have minimum variance among all linear unbiased 
estimators.  Some of the assumptions of the regression model are, however, frequently 
violated, especially when applied to time series data.   

First, the model should be checked for multicollinearity.  For computational reasons, the 
explanatory variables X1,t,…,Xk,t may not be (perfectly) correlated.  From a practical point 
of view, the estimated coefficients will be unstable and unreliable if explanatory variables 
are highly correlated.  In the presence of multicollinearity, the effect of a single 
explanatory variable cannot be isolated, as the regression coefficients are quite 
uninformative and their confidence intervals very wide.  If the purpose of the model is 
only to predict the dependent variable, multicollinearity is not a real problem.  However, 
if one is interested in the individual estimated coefficients, results should be interpreted 
with caution, since only imprecise information can be obtained from the regression 
coefficients.  In the study at hand, the impact of explanatory variables on traffic safety 
variables, as well as future values for the dependent variable are important.  Therefore, 
the model should be checked for collinear relationships.  However, one should realize 
that multicollinearity is an intrinsic property of non-experimental data.  Since controlled 
experiments are impossible in traffic accident studies, a certain degree of 
multicollinearity should be accepted.  Several techniques can be used to assess the level 
of multicollinearity.  In this study, Variance Inflation Factors (15) and Variance 
Decomposition (16) are used, but these concepts are not discussed here.  Neter et al. 
(12) argue that a maximum Variance Inflation Factor larger than 10 is an indication of 
influential multicollinearity. In the final data set, they are all smaller than 5.  Therefore it 
assumed that multicollinearity is at an acceptable level. 

Second, the error terms should be uncorrelated over time.  This assumption is likely to 
be violated in regression with time series data, giving rise to autocorrelation (the error 
terms being correlated among themselves).  The regression coefficients, although still 
unbiased, become inefficient, and the estimated standard errors are probably wrong, 
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making the confidence intervals and t-tests or F-tests no longer strictly applicable (12).  
In a regression with autocorrelated errors, the errors will probably contain information 
that is not captured by the explanatory variables, and it is necessary to extract this 
information to finally end up with uncorrelated (“white noise”) residuals.  Typically, the 
Autocorrelation Function (ACF) and the Partial Autocorrelation Function (PACF) are used 
to detect autocorrelation among residuals (13).  Autocorrelation can be taken into 
account by adding more complex autoregressive (AR) or moving average (MA) structures 
to the regression equation, as will be explained further in this text. 

Third, the error terms should be identically (normally) distributed with mean zero and 
constant variance.  Constant variance is called homoscedasticity.  Violation of this 
condition is called heteroscedasticity.  In the presence of heteroscedasticity, the 
estimators will still be unbiased and consistent, but they will no longer be efficient.  Also, 
the estimates of the standard errors of the regression coefficients will be invalid, leading 
to a wrong impression of the precision of the results in terms of significance and 
confidence intervals.  Several methods exist to detect heteroscedasticity, like the 
Goldfeld-Quandt test (17) and Engle's ARCH test (18).  In time series, constant variance 
in the regression error terms is often achieved by transforming the data.  In this text, 
log-transformations are used. 

4.2   ARIMA Modeling 

In the previous section, the multiple regression model was described, together with 
possible problems that should be taken care of in order to benefit from the desirable 
properties of the estimators.  When regression is applied to time series data, the error 
terms are often autocorrelated.  If they are, ARIMA models can be used to model the 
information they contain.  The resulting model is then a combination of a multiple 
regression and an ARIMA model in the error terms.  This should enable us to obtain more 
reliable estimates for the effect of the explanatory variables on the dependent variable.   

The ARIMA modeling approach expresses a variable as a weighted average of its own 
past values.  The model is in most cases a combination of an autoregressive (AR) part 
and a moving average (MA) part.  Suppose a variable Nt is modeled as an autoregressive 
process, AR(p).  Then, Nt can be expressed as a regression in terms of its own passed 
values: Nt=C+φ1Nt-1+φ2Nt-2+…+φpNt-p+at, where C is a constant term, φi (i = 1, …, p) are 
the weights for the autoregressive terms and at is a new random term, which is assumed 
to be normally distributed “white noise”, containing no further information.  Using a 
backshift operator Bi on Nt, defined as BiNt=Nt-i (i=1,2,…), this process can be written as 
Nt=C+φ1BNt+φ2B2Nt+…+φpBpNt+at, or (1–φ1B–φ2B2–…–φpBp)Nt=C+at.  The series Nt can 
also be expressed in terms of the random errors of its past values, which is then a 
moving average MA(q) model: Nt=C+at–θ1at-1–θ2at-2–…–θqat-q, where θj (j=1,…,q) are the 
weights for the moving average terms.  Using the backshift operator, this equals  
Nt=C–θ1Bat–θ2B2at–…–θqBqat+at, or Nt=C+(1–θ1B–θ2B2–…–θqBq)at.  In a more general 
setting, it is possible to include autoregressive and moving average terms in one 
equation, leading to an ARMA(p, q) model: (1–φ1B–φ2B2–…–φpBp)Nt=C+(1–θ1B–θ2B2–…–
θqBq)at, where at is again assumed to be “white noise”.   

An ARMA model cannot, however, be applied in all circumstances.  It is required that the 
series be stationary.  For practical purposes, it is sufficient to have weak stationarity, 
which means that the data is in equilibrium around the mean and that the variance 
around the mean remains constant over time (13).  If a series is non-stationary because 
the variance is not constant, it often helps to log-transform the data, as is done in this 
text.  To have a series that is stationary in the mean, differencing is used.  Instead of 
working with the original series, successive changes in the series are modeled.  If 
necessary, the series can be differenced more than once.  For example, in order to obtain 
a stationary series, the data may be differenced once for the period-by-period (monthly) 
fluctuations (∇Xt=Xt–Xt-1) and once for the seasonal (yearly) fluctuations: 
∇12(∇Xt)=∇12(Xt–Xt-1)=(Xt–Xt-1)-(Xt-12–Xt-13)=Xt–Xt-1–Xt-12+Xt-13.  When an ARMA model is 
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built on differenced data, it is called an ARIMA model, where “I” indicates the 
differencing. 

4.3   Regression with ARIMA errors 

The ARIMA modeling approach can now be applied to the multiple regression equation to 
model the information that remains in the error terms.  Assume a regression model with 
one explanatory variable, denoted as Yt=β0+β1X1,t+Nt.  Suppose further that the error 
terms are autocorrelated, and that they can be appropriately described by an ARMA(1,1) 
process.  This model can then be written as: Yt=β0+β1X1,t+Nt, where (1–φ1B)Nt=(1–
θ1B)at, and at is assumed to be white noise.  Substituting the correction for the error 
term into the regression equation gives: 
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Because of the specific form in the error terms, the classical least squares methods are 
not appropriate to estimate the parameters of this equation.  Instead, the SAS-ARIMA 
procedure with Maximum Likelihood estimation is used to set up the models.  The 
Likelihood function is maximized using Marquardt’s method via nonlinear least squares 
estimation (19). 

If differencing is applied to the errors in a multiple regression, Pankratz (14) shows that 
all corresponding series (both of the dependent and the explanatory variables) should be 
differenced.  This can be seen from our small regression example.  Differencing the error 
terms twice results in the following expression, with the ARMA(1,1) model now in the 
differenced error terms: 
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Substituting back this expression into the regression equation gives: 
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The intercept is now possibly different, but the (theoretical) regression coefficient β1 is 
not affected by the differencing operation.  Its estimated value may differ slightly, since 
the estimation is done on different (although related) time series.   

4.4   Forecasting 

Regression models can easily be used for forecasting purposes.  After the model has 
been developed, estimated values for the dependent variable can be obtained.  In order 
to produce forecasts with a regression model with ARIMA errors, the two parts of the 
equation need to be predicted.  First, for the regression part, future values of the 
explanatory variables should be available.  National or regional government institutions 
often produce forecasts for economic indicators.  If these forecasts are not available, the 
explanatory variables must be estimated.  In our models, “future” monthly values for the 
year 2000 are available for each of the explanatory variables and therefore no estimation 
is done.  Second, in the ARIMA error part, the errors should be replaced by their 
estimated values.  To depict uncertainty in the predicted values, 95% confidence 
intervals are provided.   
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5.    RE S U L T S  

In this section, the results of our models will be presented.  The models were tested for 
multicollinearity, based on Variance Inflation Factors (15) and Variance Decomposition 
(16).  The set of variables used to model the number of accidents and their severity had 
an acceptable level of multicollinearity.  Next, the models were tested for 
heteroscedasticity.  It turned out that this was not a serious problem in the models, so 
that no corrections were needed.  For stationarity reasons, the models were developed 
on the differenced data.  It is reasonable to assume that the number of accidents or 
victims in one period may in some sense be related to the same number in the previous 
period.  Also, since monthly counts are used, a recurring seasonal pattern will be 
present.  Therefore, both period-by-period and yearly differences were taken.  Further, 
the intercept was dropped from the equations.  When differencing is done, the intercept 
may be interpreted as a deterministic trend, which is not always realistic (14).  Based on 
the ACF and the PACF and the corresponding confidence intervals, some AR and MA 
terms were defined for the error terms of the regression equations.  According to the 
Ljung-Box Q*-statistics (20), the final error terms were accepted to be “white noise”. 

5.1   Explanatory model 

The next section gives an overview of the results obtained.  Models were built for 
LNACCLI, LNACCKSI, LNPERLI and LNPERKSI.  In Table 1, the parameter estimates for 
the four equations are presented.  Only the significant variables were retained (each 
model was re-estimated after dropping the non-significant variables).  For each variable, 
the parameter estimate and the approximate absolute t-value (between brackets) are 
reported.  If an absolute t-statistic is larger than 2, the explanatory variable has a 
significant influence on at least a 95% confidence level.  If absolute the t-value is larger 
than 1.64, then the explanatory variable has a significant influence on a confidence level 
of at least 90%.  Lower confidence levels were not retained.  Also the Akaike Information 
Criterion (AIC) and the error standard deviation are reported for the estimated models 
and for the corresponding pure ARIMA models (without covariates).  The AIC is smaller 
when less parameters are used or when the likelihood increases.  The lower the AIC, the 
better the model is.  Furthermore, it is interesting to compare the AIC value with an 
ARIMA model without explanatory variables.  This gives an idea of the model quality 
improvement when covariates are used.  There is an increase in model fit of about 30% 
for all models when explanatory variables are considered. 

5.1.1   Laws and Regulations 

The results on laws and regulations are very interesting and instructive.  The mandatory 
seat belt use in the front seats (LAW0675) resulted in considerable and highly significant 
increases in traffic safety.  The seat belt law results are in line with many other models in 
literature.  Hakim et al. (3) postulated that seat belt legislation and enforcement 
generally reduce the number of fatalities and the severity of injuries.  Harvey and Durbin 
(5) and McCarthy (21) found similar results.  The introduction of ZONE 30 in urban areas 
(LAW1188) is not significant.  It would be good practice to further investigate this result 
on a local level, since the law is only valid in some urban areas.  The law of January 1992 
(LAW0192), which imposes new speed limits, reduces all kinds of accidents and victims.  
In Fridstrøm et al. (7) the effects of speed reduction on rural roads and freeways from 90 
km/h to 80 km/h and from 110 km/h to 100 km/h were both insignificant, as opposed to 
the urban speed limit reduction from 60 km/h to 50 km/h.  Yet another promising effect 
can be noted for the laws and fines on alcohol (LAW1294).  This law seems to be very 
useful in reducing LNACCKSI and LNPERKSI.  It is, however, less efficient for the lightly 
injured outcomes LNACCLI and LNPERLI.  This underlines the hypothesis that drunken 
drivers do frequently provoke serious or fatal accidents.  In Fournier et al. (22), the 
combined law on alcohol and speed limits caused a decline in the number of accidents 
with persons killed and injured.  Also in Blum et al. (23), alcohol limits reduce the 
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number of accidents.  The laws of April 1996 (LAW0496), controlling traffic at zebra 
crossings, are not significant.  These new regulations neither increase nor decrease the 
number of accidents and victims.  Just like for the introduction of ZONE 30 in urban areas 
(LAW1188), these results should be checked on a more local level.   

 

TABLE 1: Results for the four models 

 

 

 LNACCLI LNACCKSI LNPERLI LNPERKSI 
Laws and Regulations 

LAW0675 -0.0696
(2.40)

-0.1346
(3.82)

-0.1204
(3.75)

-0.1594
(4.24)

LAW1188  

LAW0192 
-0.0706

(2.50)
-0.0624

(1.87)
-0.0635

(2.03)
-0.0755

(2.11)

LAW1294 
-0.1049

(3.12)
-0.0928

(2.57)
LAW0496  
Weather Conditions 

QUAPREC 0.0005
(4.71)

0.0005
(4.39)

PDAYPREC 
0.0007
(2.84)

0.0007
(3.34)

0.0008
(2.88)

0.0009
(4.02)

PDAYFROST 
-0.0011

(5.63)
-0.0013

(5.77)
-0.0009

(4.36)
-0.0012

(4.81)
PDAYSNOW  

PDAYTHUN 
0.0005
(2.06)

0.0006
(1.93)

PDAYSUN  

HRSSUN 
0.0005
(5.38)

0.0005
(5.35)

0.0004
(4.17)

0.0005
(4.80)

Economic Conditions 
INFLAT 
LNUNEMP 
LNCAR 
POLDNCAR 
Correction Variables 

JAN79 -0.4409
(10.40)

-0.5736
(12.05)

-0.4581
(9.97)

-0.5498
(10.75)

JAN84 
-0.4492

(9.87)

JAN85 
-0.2852

(6.80)
-0.2815

(5.85)
-0.2937

(6.46)
-0.2890

(5.62)

FEB97 
-0.2181

(5.08)
-0.1282

(2.66)
-0.2377

(5.09)
-0.1243

(2.31)
Goodness of Fit 
AIC -949.54 -860.50 -904.17 -821.89
Error St. Dev. 0.0467 0.0547 0.0506 0.0586
Goodness of Fit for an ARIMA model without covariates 
AIC -713.62 -656.07 -654.54 -651.05
Error St. Dev. 0.0728 0.0805 0.0804 0.0784
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It is assumed that the introduction of a law results in a sudden and permanent increase 
or decrease in the dependent variable.  For example, the introduction of the seat belt law 
resulted in a 1-exp(-0.0696)=6.7% reduction of the number of accidents with lightly 
injured persons, ceteris paribus.  This assumption of a "step-based intervention” is not 
always a natural one.  Moreover, it is not possible to isolate the effect of a single 
measure when several regulations are put into practice at the same or a nearby moment 
in time.  The significant impact of laws and regulations may be better described as 
“something changed at that time”, instead of attributing the whole effect to the law itself.  
Nevertheless it makes sense to test whether these changes are indeed substantial.   

5.1.2   Weather Conditions 

The weather conditions seem to have an impact on traffic safety.  First, an extra 
millimeter of precipitation in a given month (QUAPREC) will increase NPERLI and NACCLI 
by exp(0.0005)-1=0.05%.  However, this variable neither affects LNACCKSI nor 
LNPERKSI.  If the quantity of precipitation is known to be higher in a given period, a 
lower number of fatal accidents is to be expected, because of more prudent driving 
behavior.  If, however, drivers are surprised by sudden heavy rainfall, fatal accidents and 
severe injuries are more likely.  Probably these two opposite powers cancel out the effect 
of quantity of precipitation on the accidents with persons killed and seriously injured and 
the corresponding number of victims.  On the other hand, the percentage number of 
rainy days (PDAYPREC) has a similar influence on all dependent variables.  For example, 
if PDAYPREC increases by 1 in a given month, then NACCLI will be exp(0.0007)-1=0.07% 
higher on average.  More days with the same kind of (bad) weather may create a sort of 
habituation, leading to more risky driving behavior.  Also, this variable does not take into 
account the quantity of precipitation, probably resulting in a more general effect.  The 
rainfall increases accident toll also according to other studies, like for example in 
Fridstrøm et al. (6, 7) and in Tegnér et al. (24).  Blum et al. (23) stated that the 
presence of rain has larger and more general impacts than the amount of rain, which is 
in line with our findings. 

The impact of the percentage number of days with thunderstorm (PDAYTHUN) is 
comparable to that of the quantity of precipitation.  A higher number of days with 
thunderstorm significantly increases LNACCLI and LNPERLI.  This may be partly explained 
by a lower visibility in stormy weather.  A higher monthly percentage number of days 
with frost (PDAYFROST) decreases all dependent variables.  Road users seem to 
compensate for the higher risk imposed by frost.  They probably adjust their driving 
habits more than in normal weather conditions.  Another possible explanation is the 
lower number of kilometres driven (exposure) in winter.  Furthermore, winter conditions 
may induce a more prudent driving behavior.  One can also argue, as is done in 
Fridstrøm et al. (7), that less proficient drivers may avoid driving on slippery roads, 
thereby increasing the average driving capacity of drivers on the road.  Moreover, lower 
speeds in extreme weather conditions lead to less serious accidents.  The variable 
PDAYSNOW is not significant in our models, almost surely because snow is not common 
in Belgium.  In countries where snow is more prevalent, the effect on traffic safety is 
comparable to that of frost.  For example, Tegnér et al. (24) report a lower number of 
accidents in extremely cold weather.  In Fridstrøm (25), less injury accidents were found 
when the ground is covered with snow, but accident frequency goes up during days with 
snowfall, which is in line with our precipitation results.   

Next, the monthly number of sunny hours (HRSSUN) increases all dependent variables.  
For example, an increase of HRSSUN by 1 (hour) results in a exp(0.0005)-1=0.05% 
increase in NACCLI.  It is possible that exposure is higher on sunny days, and that 
drivers are more relaxed and concentrated less than normal.  Also it is plausible to 
assume a higher exposure on sunny days, or accidents caused by the dazzling sun, as 
was also found in Blum et al. (23).  Other climatologic variables like the percentage 
number of days with snow (PDAYSNOW) and sunlight (PDAYSUN) were not significant.  
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Given the fact that these variables are often important in other models, it is clear that 
the effect of weather data is related to the geographic properties of the area of concern.  
Results may also vary according to the time period considered.  A climatologic variable 
studied on a daily level may provide completely different insights than when studied on a 
monthly level.  Further research on this topic is necessary. 

5.1.3   Economic Conditions 

The effect of economic conditions on traffic safety is far less clear in comparison with the 
other categories of variables.  None of the tested economic indicators was significant in 
our models.  In other models however, results are often significant, although not always 
unambiguous.  In Hakim et al. (3), unemployment and income are said to increase traffic 
safety, because of a lower ability to travel and a higher demand for safer cars.  In 
contrast, Jaeger et al. (26) found that a rise in unemployment may decrease traffic 
safety.  One of the reasons might be a divergent variable construction.  Also different 
social protection systems may explain dissimilarity between various models.    
Further, the number of car registrations (LNCAR) and the percentage of second hand car 
registrations (POLDNCAR) were not significant.  In many other models the vehicle fleet 
has a significant influence on traffic safety.  This confirms our impression that these 
variables are only weak approximations for the size of the vehicle fleet, for which no 
accurate data could be obtained.  Moreover, the effect of economic variables might have 
disappeared because of the differencing operations in the model.  Since transitions in 
economic variables are sometimes very slow, the effect after differencing may be almost 
negligible. Hakim et al. (3) conclude that the net effect of economic growth on traffic 
safety is not clear.  There may be a decreasing effect from an increase in exposure and 
an increasing effect from demand and supply of safety.  These opposite effects may 
nullify each other, obscuring the different parts in the relationship. 

5.1.4   Correction Variables 

The correction variables, introduced to account for deviating behavior of the series, are 
highly significant.  For LNACCLI, the number of accidents was 1-exp(-0.4409)=36% 
lower on average in JAN79.  The deviations were clearly present in the graphs for the 
dependent variables and in the residual plots (not shown here), which justifies their 
inclusion in the models.  It is possible that these numbers are not “accidentally” 
deviating.  For example, JAN79 and JAN85 were characterized by extremely cold 
weather, and FEB97 was one of the least sunny and most rainy months of the century.  
For JAN84, which is only significant in one equation, no such interpretation could be 
found, probably indicating a registration error.  It is clear from the results that these 
corrections significantly improve the accordance between the original and the estimated 
series, although one should be aware of the danger of over-fitting. 

5.2   Error model 

The error terms of the regression equations should be corrected for possible 
autocorrelation.  As explained in the methodology section, both Autoregressive (AR) and 
Moving Average (MA) corrections are possible.  For LNACCLI, it is found that 
(1+0.1916B4)Nt=(1–0.7327B)(1–0.8989B12)at.  Here, Nt is the original regression error 
term, while at is the corrected (“white noise”) error term, which contains no further 
information.  The backshift operator B is the same as defined before.  For LNPERLI, the 
expression is very similar: (1+0.1527B4)Nt=(1–0.7284B)(1–0.8755B12)at.  In the 
correction term for LNACCKSI, only moving average terms were needed: Nt=(1–
0.7197B–0.1473B4+0.1408B6)(1–0.2011B10)(1–0.8237B12)at.  For LNPERKSI, the error 
expression is (1+0.1583B4+0.1652B10)Nt=(1–0.7184B)(1–0.8018B12)at.   

It is not always easy to give a clear-cut interpretation for the error structure models, but 
the one-by-one and the yearly backshift express the fact that each month carries some 
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information from the previous month, and from the same month in the previous year, 
which is no surprise indeed.   

5.3   Forecasting 

Forecasting is done on the data for the year 2000.  If forecasting is done with a 
regression model, data for the input series (the explanatory variables) should be 
available.  In our case, “future” monthly values for the explanatory variables for 2000 are 
used.  The values for the explanatory variables are not estimated, and are assumed to be 
known with certainty.  The predicted values (full line) and the 95% confidence intervals 
(dotted lines) are plotted in the second column of Figure 1.  To assess the quality of the 
prediction, also the real numbers of accidents and victims are plotted (dots).  Note that 
the data and the confidence intervals have been transformed back to the original series. 

The predicted values are quite close to the observed values.  Only a few observed values 
are outside the prediction intervals.  To quantify forecast accuracy, the Mean Squared 
Error (MSE) is reported, which is the average of all squared deviations between the 
observed and the predicted values (13).  This value is calculated separately for the 
training data, on which the model has been developed, and for the predictions.  The 
latter are not used for model fitting, and are completely new for the model.  This explains 
why the MSE on these data is much higher.  It is, however, a better indicator of model 
quality, because a good model fit does not always imply good forecasting.  On the other 
hand, the graphs show that most of the fluctuations in the series is captured. Also note 
that accidents are better predicted than victims (shown by a lower MSE value for the 
predictions). 
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6.    CO N C L U S I O N S  A N D  FU R T H E R  RE S E A R C H 

In this study, regression models with ARIMA errors were developed to investigate the 
impact of weather, laws and regulations and economic conditions on the frequency and 
severity of accidents in Belgium.  If all statistical assumptions are fulfilled, the 
combination of regression and time series analysis offers a powerful means to investigate 
the impact of various factors on traffic safety.  The results show that weather conditions 
and some policy regulations have a significant influence on traffic safety.  The impact of 
the economic conditions is not significant.  The models were subsequently used to make 
out-of-sample forecasts for the dependent variables.  The predictions were plausible and 
quite accurate, but nevertheless they show the intrinsic volatility present in traffic safety 
outcomes.  This underlines the importance of a statistical approach to accident analysis.   

The models developed in this text show large potential for describing the long-term 
trends in traffic safety.  On the one hand, they can isolate the effect of phenomena that 
cannot be influenced, but that certainly act upon traffic safety, like weather conditions.  
Similarly, macro-economic indicators and socio-demographic evolutions could be added 
to the model.  On the other hand, the efficiency of laws and regulations or time-specific 
interventions can be tested.  These are the direct tools for increasing the level of traffic 
safety.  This looks appealing to practitioners, who may find it useful to know what factors 
other than policy regulations are influencing traffic safety.  

However, some aspects should be given more attention.  Regression models with ARIMA 
errors could become quite complex.  It is important to look for the most parsimonious 
model.  As regards the data, it is clear that the number of variables tested in our models 
is limited.  It would be interesting to test also other factors like exposure, demography, 
active and passive car safety, speed, observed seat belt use and alcohol consumption.  
Nevertheless, the combination of a regression model and an ARIMA error structure gives 
an acceptable fit, even without these elements.  The effects of omitted factors, although 
not explicitly tested, are reflected in the error terms.  Also, adding explanatory variables 
brings more multicollinearity into the model and requires a higher number of 
observations.  Extending the model with more factors may result in a better 
understanding of the complex influences on traffic safety, but model building will become 
more complex.  The elaboration of data quality and availability, together with the 
development of extensive but statistically sound models should lead to high quality 
results that can be used as a guide to more directed analyses.  These are important 
topics for further research. 
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