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1. Introduction
It is well known that conventional Public Transport (PT) is inadequate in the suburbs. The sparse demand density

in such areas forces PT operators to provide a low-frequency low-coverage service, to prevent the operational cost
per passenger from exploding. This leads to poor QoS and a chronic car-dependency in the suburbs. Several studies
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Abstract

Conventional Public Transport (PT) is based on fixed lines, running with routes and schedules determined a-priori. In low-demand
areas, conventional PT is inefficient. Therein, Mobility on Demand (MoD) could serve users more efficiently and with an improved
quality of service (QoS). The idea of integrating MoD into PT is therefore abundantly discussed by researchers and practitioners,
mainly in the form of adding MoD on top of PT. Efficiency can be instead gained if also conventional PT lines are redesigned after
integrating MoD in the first or last mile. In this paper we focus on this re-design problem. We devise a bilevel optimization problem
where, given a certain initial design, the upper level determines stop selection and frequency settings, while the lower level routes
a fleet of MoD vehicles. We propose a solution method based on Particle Swarm Optimization (PSO) for the upper level, while
we adopt Large Neighborhood Search (LNS) in the lower level. Our solution method is computationally efficient and we test it in
simulations with up to 10k travel requests. Results show important operational cost savings obtained via appropriately reducing the
conventional PT coverage after integrating MoD, while preserving QoS.
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evaluated the benefits of MoD in low-density areas, often in mono-modal context (Hyland et al. , 2024; Linares et al.
, 2016; Goncu et al. , 2022). The focus of this paper is however larger areas, which include both low and high demand
density. For such areas, Mahmassani (2016) mentions (without studying it) a multimodal service, consisting of both
conventional PT and MoD. Wang et al. (2024) assume that MoD is integrated with conventional PT and a single trip
can be composed of conventional PT legs and MoD legs. However, conventional PT is still assumed to be unchanged,
even after MoD is integrated. In Calabro et al. (2023), the joint design of conventional PT and MoD is proposed, at
a strategic level, consisting of deciding in which regions MoD should operate and how conventional PT lines should
change. The description of such design remains however a very high level, resorting to approximated density functions
and geometrical abstractions.

This paper instead focuses on the tactical and operational aspects of multimodal PT (conventional PT + MoD).
We in particular focus on redesigning conventional PT lines in order to more efficiently exploit the integration with
MoD. To this aim, we present a bilevel optimization problem. In the upper level, we decide stop activation status and
frequencies of conventional PT lines. In the lower level, we solve instead an Integrated Dial-A-Ride Problem (IDARP)
(Posada et al. , 2017), in which MoD fleet sizing and routing decisions are taken, together with user trips. MoD vehicle
routes are constructed so as to allow multimodal user trips, composed of conventional PT legs and MoD legs. We solve
the upper level via Particle Swarm Optimization (PSO) metaheuristic and we use the Large Neighborhood Search
(LNS) metaheuristic from Molenbruch et al. (2020) for solving the lower level. Table 1 summarizes the related work
closest to ours. The main novelty of our work is that we jointly redesign conventional PT lines (via stop selection) and
at the same time compute the exact routing of MoD vehicles to harmonize with conventional PT lines. We simulate
our solution in a scenario representing a simplified version of the Paris region in a low demand period. We concentrate
on this period, because that is when MoD becomes more adapted to the demand. Therefore, the output of our method
illustrates how multimodal PT should operate in the considered time period and we assume that such structure should
change over the day, according to the demand (leaving a larger and larger role to conventional PT during peak hours).
We show that operational cost savings can be achieved if partially (and appropriately) replacing conventional PT with
MoD, while still appropriately satisfying the considered demand. Overall, the designs we obtain imply introducing
an appropriately sized MoD fleet and reducing the extent of conventional PT, by skipping certain stops (from 27% to
67% of stops, depending on the line) and reducing the bus frequency (from 64% to 94%, depending on the line) and
also completely deactivating certain lines.

Table 1: Closest related work and illustration of the multimodal PT

Properties Stiglic
et
al.
(2018)

Sun
et
al.
(2018)

Posada
et
al.
(2017)

Molenbruch
et al.
(2020)

Lee
(2017)

Steiner
and
Ir-
nich
(2020)

Our
pa-
per

Chow
et
al.
(2019)

Public transit Yes Yes Yes Yes1 Yes Yes Yes Yes
Online or Offline al-
gorithm (On/Off)

Off Off Off Off Off Off On On

First mile Yes Yes Yes Yes Yes Yes Yes Yes
Last mile No No Yes Yes No Yes Yes Yes
Time window con-
straint

Yes Yes Yes Yes Yes No Yes No

Maximum ride du-
ration constraint

Yes Yes Yes Yes No Yes No No

Meeting points No Yes Yes No No No
Walking possibility Yes No Yes No No Yes Yes Yes
Door-to-door possi-
bility

Yes No No Yes No Yes Yes Yes

Single or multiple
transit line (S/M)

S S M M S M M

Zones No No No No Yes Yes No Yes
Decision variables:
Pax (passenger tra-
jectory), Veh (vehi-
cle trajectory)

Veh Veh Pax+
Veh

Pax+
Veh

Pax+
Veh

Pax Pax+
Veh

Pax+
Veh

Heuristic (H) or Ex-
act (E) resolution

H H E H E+H E H E+H
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2. System model
The form of MoD we consider is Ride Sharing (RS). The objective of the upper level is to decide stop activation

status and line frequencies to minimize a cost function, which depends on the number of RS cars and PT vehicles
employed. In the lower level, the objective is to minimize the total kilometers traveled by RS cars. Therefore, RS cars
can transport users from their origin to their destination directly, or from their origin to a PT stop at which users can
board a PT vehicle, or from a PT stop to their final destination. Due to this possibility of transferring between RS
and PT, any change in the upper level of the PT layout impacts RS routing in the lower level. On the other hand, the
decisions in the lower level result in a certain fleet size, which contributes to the total cost that the higher level aims
to minimize.

2.1. Graph Representation of Conventional Public Transport
Public Transport (PT) is defined by set PS of potential stops and set L of lines. Each line l ∈ L is characterized by

a sequence of potential stops Pl ⊆ P. A decision variable of our optimization problem will determine subset Sl ⊆ Pl

of stops that are active (stops in Pl \ Sl will be skipped). PT graph G is composed of active nodes S = ⋃l∈L Sl and
arcs (u, v), where u and v are consecutive active stops on the same line. We define A as the set of arcs, related to all
the lines. Any line l serves the sequence of stops Sl in forward and backward directions and has a frequency fl, which
is a decision variable. We consider a given time period during which PT graph G remains unchanged. For simplicity,
we assume PT vehicles have enough capacity to serve all the demand, as in (Chow et al., 2019, §3).

Average in-vehicle travel time tTT
uv on an arc (u, v) ∈ A is known and independent of the line. We compute it as

tTT
uv = d(u, v)/νPT, where d(u, v) is the Euclidean distance between stops u and and v and νPT is the average speed of a

PT vehicle. Let tPT
u be the dwell time at a stop u ∈ S, i.e., the time a PT vehicle stays in a stop for passenger boarding

and alighting. We compute average time tl
uv needed to go from stop u ∈ Sl to stop v ∈ Sl (not necessarily consecutive)

along a single line l:

tl
uv =

1
2 fl︸︷︷︸

waiting time
(Cascetta , 2009, (2.4.28))

+
∑

i, j∈Sl(u,v)
i, j consecutive

tPT
i j

︸�����������︷︷�����������︸
in-moving vehicle travel time

+
∑

i∈Sl(u,v)\{u}
tPT
i

︸���������︷︷���������︸
dwell time

(1)

where S l(u, v) indicates the sequence of active stops between stop u and v. To compute trips between any two stops
of a certain PT graph G = (S,A), we need to define an additional graph G′ = (S,A′), constructed as follows. There
is an arc (u, v)l in A′, whenever there exists a line l, such that is possible to go from u to v along that line. The
time associated with this arc is (1). In case multiple lines connect the same pair of stops, there is a connecting arc
(u, v)l ∈ A′ for each line l. Therefore, G′ is a multi-graph. Using graph G′, the minimal average traveling and waiting
time tuv between two active stops u, v ∈ S can be computed by solving a shortest path problem in multigraph G′. Let
us consider a path P = [(u1, v1)l1 , . . . , (um, vm)lm ] of G′, where vi = ui+1. Such path means entering PT via stop u1,
boarding line l1 and going up to stop v1, changing for line l2 to go from stop v1 = u2 to stop v2, etc. Denoting with
tingress and tegress the time to go from the road to the PT stop and vice-versa, and denoting with tchange the time to walk
when changing from a line to another, the travel time is of such path is

tP = tingress +

m∑
i=1

tli
ui,vi

︸��︷︷��︸
within-lines

+ (m − 1) · tchange + tegress. (2)

For any pair of stops u, v ∈ S, P∗(u, v) is the shortest path, i.e., the path that minimizes quantity (2). We assume
that, whenever a user enters stop u at instant t, she will reach stop v at instant t + tP∗(u,v).

2.2. User trips
We represent n users as a set of nodes (note that they are not the nodes of PT graph G) corresponding to their

origin, destination, and transfer nodes, detailed as follows. Set N consists of an artificial depot node 0, a set of origin
nodes O = {1, ..., n}, a set of destination nodes D = {n + 1, ..., 2n}. With slight abuse of notation, we will represent
by i the origin of a user and the user itself, and i + n referring to the corresponding destination. We also define set Ti

of potential transfer nodes at which user i can switch from Ride Sharing (RS) to PT (or vice-versa). To define Ti, we
duplicate set S of active stops per each user: Ti = 2n+ (i− 1) · |S|+ 1, 2n+ (i− 1) · |S|+ 2, . . . , 2n+ (i− 1) · |S|+ |S|.
The entire set of possible transfer nodes is T = ⋃i Ti and N = O ∪D ∪ T .
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Let R be the set of all trip requests. We partition it into R = RW ∪RPT∪RRS∪RW-PT-RS∪RRS-PT-W., i.e., requests of
users who will just walk, or will be served by PT only, or will be served by RS only, or will walk in the first mile, enter
PT in a certain stop, and then use RS in the last mile, or will use RS in the first mile, then enter PT to a certain stop
and finally walk in the last mile, respectively. Therefore, we assume that RS cannot be arbitrarily chosen by a user.
The transport operator will provide RS service only to users that could not perform their trip otherwise. This prevents
competition between RS and conventional PT. For simplicity, we do not consider trips that have RS in both the first
and last mile. This assumption can be later removed, following an approach similar to Chow et al. (2019).

The procedure to partition users is described in Alg. 1. More complex mode choice models are out of scope here
and could be integrated later. In broad terms, our partitioning assumes that users would walk if possible, otherwise
use PT if possible, otherwise use PT+RS if possible, otherwise use RS. It is reasonable to assume these preferences,
as no monetary cost is associated with walking, some monetary cost is associated with PT and a larger monetary cost
is associated with RS, so that a user would use RS only if no other feasible alternatives are available. In our case “if
possible” means that the required walking time is less than a certain dmax

walk and the trip duration is less than a maximum
duration Mi tolerated by user i. We assume that Mi is such that at least a direct trip via RS is shorter than Mi.

Algorithm 1: Partition of users

Input: Set R of users; Maximum walking distance dmax
walk; Set Sk

i , ∀ origin or
destination i: the k closest stops to i; PT graph G

Hyperparameters: Mi: maximum trip time user i can tolerate; τRS: threshold
on RS feeder travel duration; dmax

walk
Output: R′,RW ,RPT ,RRS,RW-PT-RS,RRS-W-PT

1 Initialize R = R′ = RW = RPT = RRS = RW-PT-RS = RRS-W-PT = ∅
2 for User i ∈ R do
3 Take origin i and destination i + n
4 if d(i, i + n) ≤ dmax

walk then
5 RW = RW ∪ {i}
6 else
7 if ∃ active stops s, s′ ∈ S : d(i, s) + d(s′, i + n) ≤ dmax

walk then
8 Compute shortest path P∗(s, s′) within PT network
9 if twalk(i, s) + tP∗ (s,s′ ) + twalk(s′, i + n) ≤ Mi then

10 RPT = RPT ∪ {i}
11 else
12 R′ = R′ ∪ {i}
13 end
14 else
15 R′ = R′ ∪ {i}
16 end
17 end

18 end
19 //We have now partitioned R = R′ ∪ RPT ∪ RW
20 // In the next lines we are going to partition R′
21 for User i ∈ R′ do
22 Take origin i and destination i + n
23 if For any pair of active stops s, s′ ∈ S, we have d(i, s) > dmax

walk and
d(s′, i + n) > dmax

walk then
24 // User i cannot reach any close stop, neither in the first nor the last

mile. User i will need a door-to-door RS trip
25 RRS = RRS ∪ {i}
26 else
27 if ∃s, s′ ∈ S s.t. d(i, s) ≤ dmax

walk and twalk(i, s) + tP∗ (s,s′ ) + τRS ≤ Mi

then
28 RW-PT-RS = RW-PT-RS ∪ {i}
29 else if ∃s, s′ ∈ S s.t. d(s′, i + n) ≤ dmax

walk and
τRS + tP∗ (s,s′ ) + twalk(s′, i + n) ≤ Mi then

30 RRS-PT-W = RRS-PT-W ∪ {i}
31 else
32 RRS = RRS ∪ {i}
33 end
34 end

2.3. Ride Sharing
The Mobility in Demand service we consider is Ride Sharing (RS): a fleet of cars that can pickup and dropoff

passengers. We use the model of RS and the calculation of routing for RS cars from Molenbruch et al. (2020).
In order to compute the time window that RS needs to ensure, we have to consider some constraints related to the

quality of service demanded by users. Let y be any location (it can be a stop or not) and suppose we want to ensure a
user i arrives at y no later than instant li. We can compute the latest time at which a user can depart from a stop s to
arrive at location y no later than instant li as

tmax(s, y, li) = sup
{
t|t + tP∗(s,v) + twalk(v, y) ≤ li,∀v ∈ S} = sup

{
t = li − tP∗(s,v) − twalk(v, y)|∀v ∈ S} (3)

Similarly, we focus now on a user staying at location y and willing to reach stop s as early as possible and willing
to depart from y no earlier than instant ei. The earliest arrival time at s is:

tmin(y, s, ei) = inf
{
t = ei + twalk(y, v)) + tP∗(v,s)|v ∈ S

}
(4)

Let set R′ = RRS ∪RW-PT-RS ∪RRS-PT-W contain all requests that must be handled by RS, either entirely or partially.
By construction (Alg. 1), in the absence of RS, such users would need to walk more than dmax

walk (summing the first and
last mile walk) or would take longer than the total tolerated trip time Mi. We assume all requests in R′ need to be
served and that the demand is inelastic, i.e., R does not change when changing the PT network layout or RS routing.
However, R′ changes every time we change the PT network layout, after running Alg. 1 with a new PT graph G.
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Every user i is associated with an origin node i and corresponding destination node i+n. RS users will need appro-
priate time constraints to be respected. To calculate such constraints, we treat RRS,RW-PT-RS and RRS-PT-W differently:
• For every user i ∈ RRS-PT-W, we assume latest arrival time li at destination is exogenously determined. We compute

the earliest departure time at the origin as ei = li − Mi, where Mi is the maximum tolerable trip time of user i
(including waiting). Let Ti ⊂ T be the set of potential transfer nodes available to user i. This set may be a subset
of all eligible PT stops, e.g. the k closest stops to the user’s origin. If the user is dropped off by RS in a certain
transfer node, then they will traverse a PT path. If a user uses transfer node s ∈ Ti, RS should drop them at s at
time ls such that, departing from s the user can reach destination i + n before li. Via (3), the latest possible arrival
time ls at stop s is ls = tmax(s, i + n, li).
• For every user i ∈ RW-PT-RS, earliest possible departure time ei at origin i is assumed to be exogenously determined.

The latest arrival time li at the destination is computed as ei + Mi. For every transfer node s ∈ Ti, the earliest
possible RS departure time es is computed via (4) such that the user, leaving their origin after ei, reaches stop s
(via walking and conventional PT) no earlier than es, i.e., es = tmin(i, s, ei).
• Users i ∈ RRS declare the latest arrival time at destination, such as t +Mi, where t is the time instant at which user

i submits their trip request.
Let us denoteV the set of RS cars, each with capacity Q. We assume they all start and end their activity at a depot

0. For any pair of nodes i, j, the travel time by RS is ti, j = d(i, j) · circ/νcar, where νcar is the average speed of a car
and circ ≥ 1 is the circuity (Boeing, 2019), which accounts for the fact that a real world topology implies that any
movement from i to j is longer than the Euclidean distance.
3. Optimization Problem
3.1. Bilevel optimization problem definition

We solve a bilevel optimization problem. In the upper level, we fix the following decision variables:
• Number Nl of PT vehicles for each line l and, as a consequence, average frequency fl = Nl/(2tl), (Cascetta , 2009, (2.4.28)),

where tl is the time for a PT vehicle to go from the beginning to the end of line l and fl is the frequency of that line. Conse-
quently, the minimum and maximum vehicle numbers Nmin and Nmax are dependent on the maximum and minimum frequency,
which are 0.25 and 0.06 vehicles/min.

• Set Sl ⊆ Pl of stops to activate in each line l (represented as a vector of binary variables indicating whether a stop in Pl is
activated or not).

A PT layout y (or solution) is a vector of values for the decision variables above. G(y) is the resulting PT graph
(§2.1). Fixing a PT layout G(y) also induces a certain partition of users, calculated with Alg. 1, indicating whether
each user walks, use PT, use RS or a combination of such modes.

The lower level gets set R′ of user using RS either entirely or partially (§2.3) as input. The lower level decides:
• The fleet size NRS = |V| of active cars in the RS service.
• The route of all ride-sharing cars, i.e., the sequence of pickups and dropoffs
• The precise trip of each user, i.e., (i) the instant and the location in which they will be picked up and dropped off (either at

the origin, destination, or some transfer stop), (ii) the exact path traveled within conventional PT (if any), including changes
from a line to another (if any), (iii) the trajectory traveled within a RS car (if any), including possible stopovers to serve other
passengers, (iv) the walking legs.

In the lower level, decisions are calculated as in Molenbruch et al. (2020), with the objective to minimize kilometers
traveled by RS cars, subject to serving all users R′ (users using RS either for the entire trip or for a part of it) and
respecting the time constraints specified in § 2.3. The resolution method is Large Neighborhood Search (LNS).

To compute the cost of a solution y, we assume that a PT vehicle has an operating cost that is β times the one of
a RS car. We wish to minimize the following expression, which is a proxy of the operating cost of the multimodal
system composed of conventional PT and a RS service:

f (y) = NRS + β ·
∑
l∈L

Nl (5)

3.2. Particle Swarm Optimization (PSO)
We adapt Particle Swarm Optimization (PSO) to solve the upper level (Alg. 2). A particle p corresponds to a

sequence of PT layouts, evolving along epochs. The set of particles is called swarm. Saying that a particle evolves
means that the corresponding layout changes from y in an epoch to y′ in the following epoch. Such changes are the
activation/deactivation of some stops and the number of PT and RS vehicles (§3.1). For any particle p, in addition to
its layout yp at the current epoch, we also keep yibest

p the best “version” of particle p across all previous epochs (the
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one with the best performance (5)). ygbest is the best particle among the whole swarm and all epochs, up to the current
epoch. The evolution of each particle p at each epoch is obtained by two perturbations: Binary PSO (BPSO) (Alg. 3
- inspired by (Khanesar et al., 2007)) activates/deactivates conventional PT stops and Discrete PSO (DPSO) (Alg. 4 -
inspired by (Cipriani et al., 2020)) changes the number of PT vehicles per line.

Algorithm 2: Particle Swarm Optimization (PSO) for the
upper level problem.

Input: Initial PT layout y0

Output: The best PT layout ybest

1 //Initialize the swarm with the initial version of P particles
2 for particle index p = 1, . . . , P do
3 // Generate particle yp as follows
4 for Every stop s ∈ P of every line l ∈ L do
5 Set s to active with probability 0.5
6 Generate number Nl of PT vehicles in l, unif. at rnd in [Nmin,Nmax]
7 end
8 yibest

p = yp

9 end
10 ygbest = arg max

p=0,1,...,P
f (yp)

11 //Associate a “velocity” to each particle, line and stop
12 for each particle index p = 1, . . . , P, line l ∈ L, stop s ∈ P do
13 vp,0(l, s) = 0; vp,1(l, s) = 0
14 end

15 repeat
16 for particle index p = 1, . . . , P do
17 Evaluate cost f (yp) via (5).
18 //Compare performance f (yp) to the best version particle p:
19 if f (yp) < f (yibest

p ) then
20 yibest

p = yp

21 end
22 //Compare performance f (yp) to the globally best particle ygbest:
23 if f (yp) < f (ygbest) then
24 ygbest = yp
25 end
26 //Perturb the particle
27 yp = BPSO(p) //Alg. 3
28 yp = DPSO(p) //Alg. 4
29 Compute the number of RS cars via the low level optimization
30 end
31 until number of epochs;

Algorithm 3: BPSO for stop (de)activation
Hyperparameters: Constants C1,C2
Input: Index p of a particle,
Previous velocities vp,0(l, s), vp,1(l, s), ∀line l ∈ L and stop s ∈ Pl
Output: Updated particle yp

1 for each line l ∈ L and stop s ∈ Pl do
2 Generate random values: r1, r2 uniformly at random in [0, 1]
3 if Stop s is active in yibest

p then
4 d1

1 = C1 · r1

5 d1
0 = −C1 · r1

6 else
7 d1

0 = C1 · r1

8 d1
1 = −C1 · r1;

9 end
10 if Stop s is active in ygbest then
11 d2

1 = C2 · r2

12 d2
0 = −C2 · r2

13 else
14 d2

0 = C2 · r2

15 d2
1 = −C2 · r2;

16 end
17 Generate value inertia uniformly at random in [−1, 1]
18 //Update velocities:
19 vp,1(l, s) = inertia · vp,1(l, s) + d1

1 + d2
1

20 vp,0(l, s) = inertia · vp,0(l, s) + d1
0 + d2

0

21 v =


vp,1(l, s) Stop s is active in y
vp,0(l, s) Otherwise

22 With probability sigmoid(v), activate stop s, else deactivate it
23 end

Algorithm 4: DPSO for number of PT
Hyperparameters: Constants CR1,CR2,CR3. By increasing CR1 we

tend to guide particles closer to yibest
p . Higher

values of CR2 force particles to resemble ygbest.
CR3 allows for tuning the level of randomness of
the particles.

Input: Particle index p
Output: Modified particle yp

1 for each line l ∈ L do
2 Generate r uniformly at random in [0, 1]
3 ac = CR1 · r
4 if ac ≤ 0.5 then
5 Naux1

l = yz(Nl)
6 else
7 Naux1

l = yibest
z (Nl)

8 end
9 Generate another r uniformly at random in [0, 1]

10 ac = CR2 · r
11 if ac ≤ 0.5 then
12 Naux2

l = Naux1
l

13 else
14 Naux2

l = ygbest(Nl)
15 end
16 Generate another r uniformly at random in [0, 1]
17 ac = CR3 · r
18 if ac ≤ 0.5 then
19 yz(Nl) = Naux2

l
20 else
21 Generate yz(Nl) uniformly at random in [Nmin,Nmax].
22 end
23 end

4. Simulation results
We conduct numerical experiments simulated in an area with the same size as the Paris region, with 7 conventional

PT lines, approximately corresponding to part of the PT lines in the Paris region (see figure inside Table 3 and
parameters in Table 2). For simplicity, travel time tRS

i j on all arcs ending and starting with the depot are set to 0.
To simulate the transportation demand, we distribute user requests over a three-hour time window. The spatial

distribution of these requests mirrors the geographic characteristics of the Paris region, which is divided into three
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Hyperparameters of the Discrete Particle Swarm Optimization (DPSO) algorithm
CR1, CR2, CR3 0.55, 0.65, 0.52 (respectively)

Evaluation scenario (default values in underlined bold)
RS Car speed νcar 30 Kmh Normal traffic Yong-chuan et al. (2011)

PT vehicle speed νPT 60 Kmh Metro line Domı́nguez et al. (2014)
Walking speed νwalk 1.4 m/s (5.04 Kmh) Google Maps

Car circuity circ 1.255 Giacomin and Levinson (2015)
Walk circuity circwalk 1.391 Zhao and Deng (2013)

tingress, tegress Both are 0
Max walk distance dmax

walk 2.52 Km (∼30 min)
Ingress, change and egress times tingress = tchange = tegress (§2.1) 0

Dwell time tPT
i of PT vehicle at a stop (includes time for acc(dec)elerating) 3 minutes

RS car pickup and dropoff time (includes time for acc(dec)elerating) 1 minute
Minimum bus headway (to avoid bus bunching) 2 minutes Sadrani et al. (2022)

Maximum lengthening γ γ ∈ {1, 1.25, 1.5, 1.75, 2, 2.5, 3}
Number of users (i.e., of trips) {100, 500, 1000, 5000, 10000}

Maximum trip time Mi tolerated by user i Mi = γ× direct trip time by a private car
Cost of operating a bus β = 2× cost of operating a RS car Bosch et al. (2018), (Cats et al., 2021, Tab 3, γc)

Number of epochs of PSO for every scenario 50
Processor and RAM of the PC used get our results Threadripper 3970X, 128GB RAM

The maximum time needed to run a single simulation 2318.77s (38.65 minutes)

Table 2: Parameters considered

Table 3: PT layout changes in the default scenario

Line Skipped stops Reduction of Num of
fraction num of buses users

1 42% 76% 105
2 67% 80% 15
3 50% 64% 131
4 27% 88% 6
5 41% 84% 34
6 38% 94% 17
7 100% 100% 0

main zones: Paris (Central Zone), the Inner Suburbs, and the Outer Suburbs (see (Omnil , 2019, page 12)). We
consider inter-zone and intra-zone travel requests to capture the diversity of transportation needs across the region.

Under different scenarios, we compare N0 = f (y0) and N∗ = f (y∗), i.e., the cost of the initial and optimized
solution, respectively. In all scenarios, solution y0 is initialized with

∑
l∈L Nl = 25 buses (NRS is then determined in

the lower level - §3.1). For every scenario, to obtain optimized solution y∗, we start from y0 and we first perform
our optimization (§3.2) setting maximum lengthening parameter γ = 1 (Table 2) to obtain y∗ and the corresponding
cost N∗γ=1. Then, for γ = 1.25, we start the optimization with the previously found y∗ and we perform our optimization
to obtain a new optimal solution y∗ and the corresponding cost N∗γ=1.25. We continue up to γ = 3.

The optimized layout in the default scenario (with parameters in Table 2) is shown in Table 3: buses and stops
of conventional PT are considerably reduced (and so the operational cost - Fig. 1a). Line 7 is completely removed.
Fig. 1a shows that cost reduction is consistent across different levels of demand. However, with few users there is
more margin for cost reduction, as conventional PT becomes inefficient and can be well replaced by a relatively small
fleet of vehicles. Fig. 1b and 1c show that the higher the maximum travel times Mi tolerated by users (i.e., larger γ -
Table 2), the less RS is used in favor of PT.

5. Conclusion

We present a modeling and metaheuristic-based approach to design a multimodal PT, composed of conventional
PT and Ride Sharing (RS). We show in simulation that the PT designs issued by our approach can reduce operational
costs while respecting users’ time constraints. In future work, we will apply this method to a detailed representation
of a metropolitan area (current simulations are on a simplified version of the Paris Region) and increase even more the
number of considered users to find up to which demand density it is convenient to integrate RS into conventional PT.
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(a) (b) (c)

Fig. 1: Performance of the initial layout y0 and optimized layout y∗, under different scenarios.
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