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Abstract. Constraints on graph data expressed in the Shapes Con-
straint Language (SHACL) can be quite complex. This brings the chal-
lenge of efficient validation of complex SHACL constraints on graph
data. This challenge is remarkably similar to the processing of analytical
queries, investigated intensively in the database community. Motivated
by this observation, we have devised an efficient compilation technique
from SHACL into SQL, under a natural relational representation of RDF
graphs. Our conclusion is that the powerful processing and optimization
techniques, already offered by modern SQL engines, are more than up
to the challenge.

1 Introduction

The Shapes Constraint Language (SHACL) is a W3C recommended language
for expressing integrity constraints on RDF graphs [37,29,45]. In this setting,
a “shape” is a possibly complex condition on nodes in a graph; intuitively, a
shape specifies how the “neighborhood” of a node in the graph should look like.1

A SHACL document, called a shapes graph, contains various shape definitions,
along with target expressions that specify simple node-selecting queries. An RDF
graph G conforms to a shapes graph S if for every shape–target pair (σ, τ) in
S, all nodes in G selected by τ satisfy σ in G. The task of checking whether a
graph conforms to a shapes graph (and reporting the violations, if any) is called
validation.

Our point of departure in this paper is that validating an RDF graph is
strikingly similar to querying a database. Indeed, looking for violations to a
shape–target pair entails computing the set difference Q1 − Q2 between two
queries:Q1 finds all nodes selected by the target, andQ2 finds all nodes satisfying
the shape. A crucial observation in this respect is that SHACL is a rich logical
language. Its expressive power certainly includes set difference, through the logic
primitives sh:and, sh:not. Moreover, target expressions correspond themselves
to simple shapes. Hence, the difference Q1 − Q2 above can itself be seen as a
shape. Furthermore, finding the violations to all shape–target pairs listed in the

1 An alternative, automata-based, but equally interesting and popular approach to
shapes is taken in the language ShEx [55,14,29].

https://mjakubowski.info
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shapes graph, boils down to finding the set union (logical primitive sh:or) of the
violations of all these pairs. We are led to conclude that validation is equivalent
to shape querying: finding all nodes satisfying some (possibly complex) shape.

Of course, querying graph data, in particular RDF graphs, is what SPARQL
engines are all about. Our hypothesis in this paper, however, is that shape
queries are actually much closer to analytical queries in relational databases,
than they are to SPARQL queries. Analytical queries are complex, ad-hoc queries
for decision support. They are usually non-monotonic, and, expressed in SQL,
they involve not only joins (typically along star-shaped schemas) but also aggre-
gations, and nested subqueries, often negated (NOT EXISTS in SQL). Queries
of this nature are exemplified in the widely used TPC-H benchmark [57].2

When analyzing various features by which SHACL can express shapes, and
viewing them from the perspective of SQL query constructions, we are indeed
strongly reminded of analytical querying:

Group joins and count aggregation Qualified min- and max-count condi-
tions in SHACL amount to group joins [42,22,26]: grouping combined with
subqueries and HAVING conditions on the results of aggregate functions (in
this case, count aggregations).

MIN and MAX aggregation These arise in evaluating sh:lessThan con-
straints.

Set difference This quintessential non-monotonic operator is involved in the
evaluation of various SHACL constraints, including sh:closed constraints;
disjointness (sh:disjoint); and negated equality (sh:not sh:equals).

Nested subqueries Further non-monotonic constraints in SHACL require com-
plex nested NOT-EXISTS subqueries, notably equality (sh:equals), and the
constraint sh:uniqueLang.

One may argue that aggregations and nested subqueries, possibly negated,
can be expressed in SPARQL equally well as in SQL [32]. Nevertheless, the
performance of SPARQL engines has typically been tuned towards monotonic
queries, notably, basic graph patterns and path queries. Indeed, SPARQL en-
gines, using index data structures geared to graph data and multiway join algo-
rithms, can outperform relational systems in this area [33]. In contrast, progress
in relational database query processing, query plan selection, and query opti-
mization, has been building up for more than fifty years. Especially in the past
twenty years, advances in hardware gave rise to breakthroughs in single-node,
main-memory SQL engines for analytical querying.3 Breakthrough techniques
included columnar storage and vectorization, as seen in the seminal systems
C-Store and MonetDB [56,13,12], later followed by the technique of query com-
pilation [35,36,38].

2 In the early days of data analytics, analytical querying was referred to as OLAP and
was typically focused on data cube operations [31,43]. Later, the term broadened to
complex SQL querying; it is in this sense that we use the term “analytical query”
in the present paper.

3 We are leaving as out of scope a discussion of the advances in cloud database systems.
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Our goal in this paper is to investigate if our research hypothesis can be
tested “straight out of the box”. Thereto, we have devised a translation method
from SHACL shapes Q into SQL select-statements Q′. The translation is correct
in the sense that, for any RDF graph G, the result of Q′ on a relational database
representation of G consists precisely of all nodes in G that satisfy Q. Validation
of an entire shapes graph can then be done by looking for violations, as already
discussed above. The relational representation of RDF graphs that we assume
for our translation is standard [23] and not optimized in any way.

We have taken care to obtain a translation that is also efficient. Since SQL
is meant to be a declarative language, the notion of “efficient” or “less efficient”
SQL expressions is a bit of an oxymoron. Indeed, through query plan selection
and optimization, query compilers are ideally supposed to pick a good execution
plan regardless of how the query was formulated. Yet, in practice, it makes sense
to generate SQL expressions from which the query optimizer is likely to pick
a good plan. We achieve this by converting SHACL shapes in negation normal
form by pushing all negations (sh:not) through until they apply to atomic
constraint components. We generate a concise SQL expression for each atomic
or negated atomic constraint component. Notably, NOT EXISTS subqueries are
only needed in that step; SQL expressions for more complex shapes can now be
built up using join, grouping and aggregation, filtering, union and set difference
operators.

With this translation in hand, all we need to answer our “out of the box”
question is a standalone main-memory SQL engine good in processing analytical
queries, much like we have standalone main-memory SHACL validators [53]. We
have chosen DuckDB [47] for this purpose, as it is very easy to use and install.4

Our experimental results show that, when validating moderate numbers of target
nodes in large graphs, SQL performs equally well as a specialized SHACL engine.
When validating a substantial proportion of nodes, shape querying using SQL
becomes orders of magnitude more efficient. We also compare with Trav-SHACL,
which is a recent approach to SHACL processing through SPARQL rather than
through SQL [27].

This paper is organized as follows. Section 2 offers some further motivation for
shape querying. Section 3 discusses related work. Section 4 recalls the SHACL
language, using a logical syntax. Section 5 presents the translation into SQL.
Section 6 presents experiments showing the viability of our approach. Section 7
draws conclusions.

2 Motivation

Shape querying is also motivated by new applications of shapes, going beyond
validation. Shape fragments [21] and knowledge-graph subsets [39] take shape
querying one step further: they retrieve not just all nodes satisfying some shape,
but also the “neighborhoods” of these nodes. The neighborhoods depend on the

4 Alternatively we could have used the Hyper API https://www.tableau.com/

developer/tools/hyper-api.

https://www.tableau.com/developer/tools/hyper-api
https://www.tableau.com/developer/tools/hyper-api
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shape. In this way, shapes can be used as a view mechanism. Delva et al. [21]
use a SHACL2SPARQL-like translation as an aid to generate even more com-
plex SPARQL queries that return the neighborhoods. They provide little detail
concerning their translation, its efficiency, or comparison to other systems.

Views defined by shapes may also have application in access control. In cur-
rent approaches [59,51], the credentials of a user are checked by validating a
SHACL shapes graph against RDF data containing information about this user.
In case of conformance, the user is granted access to a data source according to
one of the standard access control levels (e.g., read, write, etc.) However, shapes
could also be used to specify, in a more fine-grained manner, a subgraph of the
source to which access is granted [20].

3 Related work

The idea to reduce SHACL validation to querying comes naturally. Indeed, while
we take an approach through SQL in this paper, Corman et al. [16] already inves-
tigated a more direct approach through SPARQL. While their focus is mostly on
recursion, they also considered the translation of a nonrecursive shapes graph
into a single complex SPARQL query. They also introduce a rule-based algo-
rithm that can handle recursion. The single-query approach was reported to
perform slightly better than the rule-base algorithm in the nonrecursive case.
They do not compare performance with other SHACL engines. Their system,
SHACL2SPARQL, supports only a limited class of shapes [54].

Trav-SHACL [27] was introduced as an improvement over SHACL2SPARQL;
we include Trav-SHACL in our experiments in Section 6. Unfortunately, also
Trav-SHACL currently only supports a quite limited set of constraint compo-
nents. Our translation to SQL presented in this paper covers all SHACL core
constraint components, but omits property paths, as explained in Section 4.

Representing RDF graphs in relational databases, which is necessary for
translating SHACL to SQL, is an old idea dating back to at least the Virtu-
oso system [25]. Conversely, while research on implementation and optimization
of analytical queries has been predominantly pursued in the relational setting
(cf. the references in the Introduction), such techniques can certainly also be
integrated in RDF systems [44,24,11,2,34]. The Virtuoso system is rumored to
have some SHACL functionality, but, to the best of our knowledge, there is
no detailed information available. Searches in the docs of both commercial and
open-source software returned no results.

To conclude we mention existing work which relates SHACL and SPARQL
on a quite different level than considered here [1,48,9]. There, the goal is not
to do SHACL processing by SPARQL querying, but rather, to use knowledge
about integrity constraints expressed in SHACL to optimize SPARQL queries
posed against conforming data.

Recursion Many interesting research works on SHACL are focused on recursive
shapes graphs, e.g., [17,7,16,46,10,15,3,4,5,6]. Indeed, one sometimes gets the
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feeling that some authors seem to suggest that SHACL without recursion is
trivial. We strongly object to this conception. Our work shows that nonrecursive
shapes graphs already give rise to complex SQL queries that no database expert
would call trivial. This does not mean, though, that the extension of our work
to recursion, e.g., by using recursive SQL or SQL stored procedures, would not
be a good topic for further work.

4 Preliminaries on SHACL

SHACL has been defined with an RDF syntax. As in many research works around
SHACL, however [17,7,16,40,3,4,5,6], we use here a logical syntax instead. We
follow the most complete proposal [21] which covers the entire SHACL core, with
some slight alterations.

Assume three infinite pairwise-disjoint sets I, L and B of IRIs, literals and
blank nodes respectively. We call the union of these sets N = I ∪ L ∪B the set
of RDF terms. Literals generally have three attributes [49]: a value, a datatype
and a language tag. For the purposes of SHACL, we also need to assume a strict
partial order < on N as an abstraction of comparisons between RDF terms.5

An RDF triple (s, p, o) is an element of (I ∪ B × I × N). We refer to the
elements of the triple as the subject, predicate and object respectively. An RDF
graph G is a finite set of RDF triples. We refer to the RDF terms occurring in
the subject or object positions of an RDF graph as nodes.

SHACL shapes can make use of regular path expressions, called property
paths, also known from SPARQL. Efficient regular path queries require special-
ized techniques [8] going beyond SQL, even recursive SQL [19]. In the present
paper we omit them from our treatment. We thus arrive at the syntax for shape
expression φ as given by the following grammar:

E ::= p | p−

F ::= id | E
φ ::= ⊤ | hasShape(s) | hasValue(c) | φ ∧ φ | φ ∨ φ | ¬φ

| #m
n E.φ | ∀E.φ | eq(F, p) | disj (F, p) | closed(P )

| lessThan(E, p) | lessThanEq(E, p) | uniqueLang(E) | test(t)

with p ∈ I; s ∈ I ∪B; c ∈ N ; n a natural number; m is either a natural number
or the symbol ‘∗’; and P ⊆ I finite. Here E represents a limited form of a path
expression. SHACL supports testing whether nodes satisfy certain properties.
We abstract this with the test(t) feature where t represents a well-defined node-
test. Examples of node tests are sh:nodeKind, testing whether a node is an IRI,
blank node or literal; or sh:languagein, testing whether a node has one of the
specified language tags. The specific allowed tests are discussed in Section 5. We
will sometimes use shape expressions of the form ∃E.φ to denote #∗

1E.φ.

5 This operator is defined by the Operator Mapping in SPARQL [32].
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Generally, a shape has an associated shape name and possibly a target dec-
laration. We formalize this notion of a shape as a shape definition, which is a
triple (s, φ, τ) where s ∈ I ∪B; φ is a shape expression; and τ is a target declara-
tion. The latter are specific shapes of one of the four forms: hasValue(c), ∃p.⊤,
∃p−.⊤, and ∃rdf:type.hasValue(c).6 These four forms correspond to the target
declarations sh:targetNode c, sh:targetSubjectsOf p, sh:targetObjectsOf
p, and sh:targetClass c respectively. When no target declaration is desired,
one can use the shape expression ¬⊤. Finally, we formalize a SHACL shapes
graph as a schema. A schema is a finite set of shape definitions where no two
definitions have the same shape name. In this work, we only consider nonrecur-
sive schemas.

We will now define when a node a conforms to a shape φ in graph G, within
the context of a schema H, denoted by H,G, a |= φ. First, the evaluation of a
path expression E, written as JEKG is given as follows. Let p ∈ I: JpKG = {(a, b) |
(a, p, b) ∈ G} and Jp−KG = {(a, b) | (b, a) ∈ JpKG}. Then, the semantics of shape
expressions is given in Table 1.

We use the following notations:

– def (s,H) denotes the shape expression defining shape name s in H. When
s does not have a definition in H, def (s,H) = ⊤ (which is the behaviour of
real SHACL).

– We use the notation JEKG(a) to denote the set {b | (a, b) ∈ JEKG}.
– When X is a set, we use the notation ♯X to denote the cardinality of X.

Table 1. Conditions for conformance of a node to a shape.

φ H,G, a |= φ if:

hasValue(c) a = c
test(t) a satisfies t
hasShape(s) H,G, a |= def (s,H)

#m
n E.ψ

{
n ≤ ♯{b ∈ JEKG(a) | H,G, b |= ψ} ≤ m if m ̸= ∗
n ≤ ♯{b ∈ JEKG(a) | H,G, b |= ψ} otherwise

∀E.ψ every b ∈ JEKG(a) satisfies H,G, b |= ψ
eq(F, p) the sets JF KG(a) and JpKG(a) are equal
disj (F, p) the sets JF KG(a) and JpKG(a) are disjoint
closed(P ) for all triples (a, p, b) ∈ G we have p ∈ P
lessThan(E, p) b < c for all b ∈ JEKG(a) and c ∈ JpKG(a)
lessThanEq(E, p) b ≤ c for all b ∈ JEKG(a) and c ∈ JpKG(a)
uniqueLang(E) for every b ̸= c ∈ JEKG(a), b and c have different language tags.

6 Actually, in the case of targetclass, we simplify to only targeting direct type decla-
rations.
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In general, it is easy to see that if a shape expression does not refer to
other shapes, we do not need to include the schema as part of the conformance
definition: in that case G, a |= φ is well defined.

Finally, we can define when a graph conforms to a schema. An RDF graph
G conforms to a shape schema H if for every shape definition (s, φ, τ) ∈ H and
for every a ∈ N such that H,G, a |= τ we have H,G, a |= φ.

Since we focus on nonrecursive schemas, we can, for the purposes of con-
formance, abstract away the hasShape(s) construct from the shape expression
grammar because we can always expand the shape expression with the definition
of that shape name, resulting in a semantically equivalent shape expression. We
define the expansion of a shape expression φ in context of a schema H as the
shape expression ψ which replaces every shape name s occurring in the construct
hasShape(s) in φ with def (s,H) resulting in the expression φ′. We inductively
apply this principle to φ′ until we end up with a shape expression that does not
refer to any other shape definitions.

As mentioned in the Introduction, we leverage the negation normal form [50]
of a shape expression to acquire an efficient translation. The negation normal
form of a shape expression φ is the shape expression φ′ in which we push every
negation of a subshape through. We define the negation normal form by giving
the rewrite rules that need to be performed on φ to obtain φ′:

– ¬(φ1 ∧ φ2) becomes ¬φ1 ∨ ¬φ2;
– ¬(φ1 ∨ φ2) becomes ¬φ1 ∧ ¬φ2;
– ¬¬φ becomes φ;
– ¬∀E.φ becomes ∃E.¬φ;
– when m ̸= ∗ and n ̸= 0, ¬#m

n E.φ becomes #n−1
0 E.φ ∨#∗

m+1E.φ;
– when m ̸= ∗ and n = 0, ¬#m

n E.φ becomes #∗
m+1E.φ; and

– when m = ∗ and n ̸= 0, ¬#m
n E.φ becomes #n−1

0 E.φ.

5 Translation

Our translation covers all the SHACL-core features formalized in the previ-
ous section. The only technical limitation is that we only support datatype-
comparisons for numerical values and strings. For example, we do not support
sh:minInclusive tests on literals that represent dates.

In order give this translation, we first need to describe the relational database
schema that represents the underlying RDF data. The relational schema de-
scribed here tries to be very close to the definition of the RDF data model. We
adopt a standard technique “pooling” technique which associates a unique iden-
tifier to all RDF nodes, which is then used in the central Triples relation. The
full schema is given by the following relations:

IRIs(Node: int64, Value: string) This relation stores all nodes that are IRIs.
The Value attribute stores the IRI as a string, and relates it with a unique
node identifier given by the Node attribute.
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Blanks(Node: int64, Alias: string) Similarly to the IRI table, we keep track
of blank nodes by associating an identifier with them.

Literals(Node: int64, Value: string, Type: string, Lang: string) Again,
similar to the IRIs table, we keep track of the literals used in the graph. Fur-
thermore, it relates node identifiers to the value that they represent, the
type that they are designated and the language tag that may be present.
The language tag field is not NULL precisely when the datatype attribute
value is rdf:langString, as expected.

Nodes(Node: int64) This relation stores all node identifiers.
Triples(Subject: int64, Predicate: string, Object: int64) This is the cen-

tral relation of our schema. The Subject and Object attributes refer to the
node identifier used in the Node attribute of one of the previous three rela-
tions. We do not need to use node ids in the predicate column, since property
names cannot be treated as nodes in SHACL.

Numerics(Node: int64, Value: double) The primary purpose of this rela-
tion is to have quick access to a numeric (double) value associated with liter-
als that represent numerics. The Node column is a subset of the Node column
in the Literals table. This relation is used to support some of the node-tests
that check for numeric constraints, like sh:lessThan of sh:minExclusive.

In general, given an RDF graph G and a shape expression φ that does not
refer to other shapes, our translation gives us a unary SQL query Qφ that re-
trieves all nodes in G that satisfy φ. In the case of shapes that do refer to other
shapes in context of a schema H, we can also translate the shape using the same
techniques, by first expanding the shape expression with respect to H.

We will now give the translation for shape expressions in negation normal
form. For now, we leave out the details for supporting inverse properties. Gen-
erally, when p is inverse, we need to swap the operations relating to the Subject
and Object columns of the Triples relation. For shape expressions φ of the form
φ1 ∧ φ2, query Qφ is ( Qφ1 ) INTERSECT ( Qφ2 ). For shape expressions φ of
the form φ1 ∨ φ2, query Qφ is ( Qφ1 ) UNION ( Qφ2 ). Next, for the counting
shapes of the form #m

n p.ψ, we consider four cases. First, when n > 0, m ̸= ∗,
and n ̸= m, query Qφ is

SELECT Subject AS Node FROM Triples, (Q(ψ)) AS Q(Node)

WHERE Predicate = p AND Object = Q.Node

GROUP BY Subject

HAVING COUNT(*) >= n AND COUNT(*) <= m

When n = m, we replace the last line with HAVING COUNT(*) = n; when m = ∗
(and thus n > 0), we replace it with HAVING COUNT(*) >= n. When n = 0 (and
thus m ̸= ∗), we instead have the query:

SELECT Node FROM Nodes WHERE Node NOT IN (Q#∗
m+1p.ψ))

Indeed, we cannot simply use HAVING COUNT(*) >= 0 in this case (compare the
infamous “count bug” [28].) Lastly, when the subshape ψ is simply ⊤, we can
leave out the subquery: (Q(ψ)) AS Q(Node).

Next, for the case where φ is of the form ∀p.ψ we have the query:
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SELECT Node FROM Nodes WHERE NOT EXISTS (

SELECT * FROM Triples, (Qψ) AS Q(Node)

WHERE Predicate = p AND Subject = Node AND Object NOT IN Q )

The remaining non-test shapes are listed in Table 2. Before discussing the test
shapes, we will list the allowed node-tests in SHACL. These are: nodeKind(X)
with X ∈ {i, b, l} representing the test whether a node is an IRI, blank node or
literal; datatype(d) with d ∈ I checking whether a node has a certain datatype,
e.g., xsd:integer; minIncl(n), minExcl(n), maxIncl(n), maxExcl(n) which rep-
resent the value range constraint components of SHACL [37]; minLength(n),
maxLength(n) which state that the string representation of literals must have
a minimal, maximal length; pattern(p, f) state that the string representation
of literals must satisfy some regular expression p (with flags f); and finally
languagein(L) which states that the literal must have one of the language tags
from the set L.

The test shapes are listed in Table 3 with the exception of numeric and
string length constraints. For the numeric length constraints, like minExcl(n) we
get the following query: SELECT Node FROM Numerics WHERE Value > n. It is clear
what queries we get for every one of its variations; we simply need to change the >
operator: minIncl(n) (inclusive, >=), maxExcl(n) (max exclusive <), maxIncl(n)
(max inclusive <=). When combinations of these tests are used, we can simply add
boolean combinations in the where-clause, for example minIncl(n)∧maxExcl(m)
becomes: SELECT Node FROM Numerics WHERE Value <= n AND Value > m.

Similar techniques are applied to the string length tests minLength(n) and
maxLength(n).

Table 2: Translation of shape expressions to unary SQL queries.
We omit the case where φ is ⊤.

φ Qφ Q¬φ

disj (p, q)
SELECT Node

FROM Nodes

EXCEPT ( Q¬disj(p,q) )

SELECT T1.Subject AS Node

FROM Triples AS T1,

Triples AS T2

WHERE T1.Subject = T2.Subject

AND T1.Predicate = p
AND T2.Predicate = q
AND T1.Object = T2.Object

disj (id , p)
SELECT Node

FROM Nodes

EXCEPT ( Q¬disj(id,p) )

SELECT Subject AS NODE

FROM Triples

WHERE Predicate = p
AND Subject = Object
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eq(p, q)

SELECT Node FROM Nodes

WHERE NOT EXISTS (

(( SELECT Object

FROM Triples

WHERE Predicate = p
AND Subject = Node

) EXCEPT (

SELECT Object

FROM Triples

WHERE Predicate = q
AND Subject = Node

)) UNION ((

SELECT Object

FROM Triples

WHERE Predicate = q
AND Subject = Node

) EXCEPT (

SELECT Object

FROM Triples

WHERE Predicate = p
AND Subject = Node )))

SELECT Node FROM Nodes

WHERE EXISTS ((

SELECT * FROM Triples

WHERE Predicate = p
AND Object NOT IN (

SELECT Object From Triples

WHERE Subject = Node

AND Predicate = q )

) UNION (

SELECT * FROM Triples

WHERE Predicate = q
AND Object NOT IN (

SELECT Object From Triples

WHERE Subject = Node

AND Predicate = p )))

eq(id , p)

SELECT Subject AS Node

FROM Triples AS T1

WHERE Predicate = p
AND Subject = Object

AND NOT EXISTS (

SELECT *

FROM Triples AS T2

WHERE Predicate = p
AND T2.Subject = T1.Subject

AND T2.Object <> T1.Object )

SELECT Node FROM Nodes

WHERE Node NOT IN (

SELECT * FROM Triples

WHERE Subject = Node

AND Predicate = p
) OR EXISTS (

SELECT * FROM Triples

WHERE Predicate = p
AND Object <> Node )

closed(P )
SELECT Node

FROM Nodes

EXCEPT ( Q¬closed(P ) )

SELECT Subjects AS Node

FROM Triples

WHERE

Predicate NOT IN (P) )
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lessThan(p, q)

SELECT Node

FROM Nodes WHERE (

SELECT MAX(N.Value)

FROM Triples AS T,

Numerics AS N

WHERE T.Predicate = p
AND T.Subject = Nodes.Node

AND T.Object = N.Node

) < (

SELECT MIN(N.Value)

FROM Triples AS T,

Numerics AS N

WHERE T.Predicate = q
AND T.Subject = Nodes.Node

AND T.Object = N.Node )

SELECT T1.Subject AS Node

FROM Triples AS T1,

Triples AS T2,

Numerics AS N1,

Numerics AS N2

WHERE T1.Predicate = p
AND T2.Predicate = q
AND T1.Object = N1.Node

AND T2.Object = N2.Node

AND N1.Value >= N2.Value

uniqueLang(p)

SELECT Node FROM Nodes

WHERE NOT EXISTS (

SELECT L.Lang

FROM Triples AS T,

Literals AS L

WHERE T.Predicate = p
AND T.Subject = Nodes.Node

AND T.Object = L.Node

AND L.Lang NOT NULL

GROUP BY L.Lang

HAVING COUNT(*) > 1 )

SELECT Subject AS Node

FROM Triples AS T1,

Tripples AS T2,

Literals AS L1,

Literals AS L2

WHERE T1.Subject = T2.Subject

AND T1.Predicate = p
AND T2.Predicate = p
AND T1.Object = L1.Node

AND T2.Object = L2.Node

AND L1.Lang <> L2.Lang

6 Experiments

We implemented the translation from SHACL to SQL in Python, using the
popular library RDFLib. Our implementation can translate real SHACL shapes
graphs into SQL queries that retrieve all nodes satisfying a shape expression,
or all violations of a shape definition. It supports all features discussed in the
previous section. To load RDF graphs into a DuckDB database, we also wrote a
simple translation tool. DuckDB automatically creates min-max indexes for all
table columns.

We validated the correctness of our implementation by running it against the
SHACL core test suite. Our implementation passed 70 percent of the core tests.
The non-passed tests either have to do with property paths, or with tests on
datatypes as already mentioned in the beginning of Section 5.

We compare our SQL approach to two other SHACL engines: the Apache
Jena SHACL validator, as a representative of a dedicated SHACL engine, and
Trav-SHACL, as a representative of the SHACL-to-SPARQL approach [58]. Our
experiments measure the execution time of validating a shape against a graph.
For the SQL approach, we measure the query execution time of DuckDB. For
Apache Jena we first parse the shape schema and load the data into a TDB
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Table 3. Translation of shape expressions to SQL for the hasValue and test features.
In this table, ci ∈ I, cl ∈ L. We omit nodeKind(b) and nodeKind(l).

φ Qφ Q¬φ

hasValue(ci)
SELECT Node

FROM IRIs

WHERE Value = ci

SELECT Node FROM Literals

UNION

SELECT Node FROM Blanks

UNION

SELECT Node FROM IRIs

WHERE Value <> ci

hasValue(cl)

SELECT Node

FROM Literals

WHERE Value = cl.value
AND Type = cl.datatype
AND Lang = cl.language

SELECT Node FROM IRIs

UNION

SELECT Node FROM Blanks

UNION

SELECT Node FROM Literals

WHERE Value <> cl.value
OR Type <> cl.datatype
OR Lang <> cl.language

hasValue(b) Q¬⊤ Q⊤

nodeKind(i) SELECT Node FROM IRIs

SELECT Node FROM Blanks

UNION

SELECT Node FROM Literals

datatype(d)
SELECT Node

FROM Literals

WHERE Datatype = d

SELECT Node FROM IRIs

UNION

SELECT Node FROM Blanks

UNION

SELECT Node FROM Literals

WHERE Datatype <> d

pattern(p, f)

SELECT Node FROM Literals

WHERE regex(Value,p,f)
UNION

SELECT Node FROM IRIs

WHERE regex(Value,p,f)

SELECT Node FROM Blanks

UNION

SELECT Node FROM Literals

WHERE NOT regex(Value,p,f)
UNION

SELECT Node FROM IRIs

WHERE NOT regex(Value,p,f)

languagein(L) SELECT Node FROM Literals

WHERE Language IN (L)

SELECT Node FROM IRIs

UNION

SELECT Node FROM Blanks

UNION

SELECT Node FROM Literals

WHERE Language NOT IN (L)
OR Language IS NULL



Compiling SHACL into SQL 13

database, we then measure the execution time of the ShaclValidator.validate
function. For Trav-SHACL, we first setup an Jena Fuseki SPARQL endpoint
exposing the data, and parse the shape schema. We then measure the execution
time of the ShapeSchema.validate function.

Other validation engines were also considered. PySHACL requires the graph
to be loaded in main memory, and ran out of memory for most of our datasets.
We also observed that TopQuadrant’s engine performs very similarly to Jena, so
we omit TopQuadrant from the presentation of our results to avoid clutter.

We used a 8 core AMD EPYC 2.595GHz processor with 16GB DDR4 RAM
and 400GB SSD to run all experiments.

Synthetic shapes and data As a starting point, we formulated 10 SHACL shapes,
shown in Table 4. These shapes were purposely invented to explore a variety
of SHACL features. For each shape, we generate suitable synthetic data. For
datasets of 5 million triples, we obtain the timings represented in Figure 1 (a),
logarithmic scale. Some of the shapes are not supported by Trav-SHACL. We
can see that DuckDB is an order of magnitude faster on most shapes, except,
curiously, Shape 7.

Table 4. The 10 synthetic shape definitions. All shapes target nodes of type ‘human’,
except for shape 7, which targets all objects of the ‘email’ property.

Name Expression

Shape 1 ∃phone.⊤ ∧ ¬∃email .⊤
Shape 2 #∗

5managedBy .⊤
Shape 3 ∃friend .∃ceoOf .hasValue(company1 )
Shape 4 ¬disj (colleague, friend)
Shape 5 closed(property1 , property2 , property3 )
Shape 6 ∃phone.⊤ ∨ ∃email .⊤
Shape 7 #1

0email−.⊤
Shape 8 eq(property1 , property2 )
Shape 9 uniqueLang(firstName)
Shape 10 lessThan(startWork , endWork)

To show that the results of this synthetic experiment scale, we generated
datasets of 20 million triples and ran the same experiments with DuckDB and
Jena SHACL (not with Trav-SHACL, due to memory limitations). These results
can be found in Figure 1 (b), also logarithmic scale.

Remark 1. In Figure 1, we see that for the synthetic experiments shape 7, Jena
outperforms DuckDB. We reused the dataset for shape 6 to also test shape 7.
However, this dataset has very few targets for shape 7. DuckDB retrieves many
conforming nodes but subtracts these from the small list of targets. It still does
this in 1 second, but Jena just looks at the very few targets. We already noted
in the Tyrol experiments that small target sizes skew the comparison. When
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Fig. 1. Execution time in milliseconds for the synthetic and benchmark experiments.
From top to bottom, these figures are referred to as (a), (b), (c) and (d).
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rerunning the experiments on a more balanced dataset, the quirk disappears.
The additional balanced dataset can be found in the supplementary material.

Tyrol benchmark We also ran a selection of shapes from the SHACL benchmark
by Schaffenrath et al. [52]. They define 57 shapes over the “Tyrolean Knowledge
Graph” which consists of 30 million triples. We selected a random 10 million
triple slice of this graph, and selected 10 of the 57 shapes that had the most
targets in our slice. We then ran our SQL approach and Jena on this slice. We
had to leave out Trav-SHACL, since its current implementation is still rather
limited and does not support the features used in the selected shapes.

The performance results are shown in Figure 1 (c). The benchmark shapes
are ordered left to right from most to fewest number of targets. We can see that
Jena SHACL outperforms our SQL approach for half of the shapes. This can
be explained by the fact that the last five shapes have significantly less target
nodes to check, compared to the first five shapes. Jena SHACL is a specialized
SHACL engine, and can quickly retrieve these targets and perform the vali-
dation. However, if we adjust the shapes such that they target all subjects of
rdf:type, which lies closer to shape querying, Jena loses this advantage. This
is illustrated in Figure 1 (d). We report that DuckDB ran out of memory for
‘SportsActivityShape’. This may be due to the large number of constraints used
by this shape.

One major difference between the synthetic data and the benchmark data is
that in the synthetic experiments almost all of the data needs to be checked to
decide conformance. Here, only small parts of the data needs to be checked for
some shapes. This explains why the execution times are generally lower.

DBLP data DBLP published their database as a large RDF graph containing
400 million triples [18]. This RDF graph contains information about publications
and their authors. We created three analytical shapes for this dataset:

PersonShape: the shape expression #1
1p.⊤ ∧ ¬disj (p, a), with p representing

primary affiliation and a affiliation. It is run against all nodes of type ‘Person’
(which represent authors).

TeamplayerShape: the shape expression ∃a−.#∗
3a.⊤, with a representing ‘au-

thored by’, again run against all authors.

PublicationShape: of a less analytical nature, this is the shape expression
∃dblp:authoredBy.∃rdf:type.hasValue(dblp:Person), run against all nodes
of type ‘Publication’.

We run these shapes on purpose against large sets of targets (all authors, or all
publications) to get information on shape querying performance. We used a slice
of the DBLP database that contains all publications together with their author
information for the years 2022 and 2023. This results in an RDF graph of 8.5
million triples. The results are given in Figure 2. Again, DuckDB significantly
outperforms Jena SHACL, also on PublicationShape.
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Fig. 2. Execution time in milliseconds for a slice of the DBLP database consisting of
8.5 million triples. Logarithmic scale.

7 Conclusion

We have shown that through a compilation into SQL, shape queries and vali-
dations can run on an efficient relational database, without having to make any
tweaks. This already significantly outperforms dedicated SHACL engines as well
as approaches via SPARQL. Of course, our main message is not that RDF data
management should move to relational systems. Rather, our message is that the
techniques used in these systems, which certainly can be applied in RDF systems
as well, will be beneficial for SHACL performance.

It will be interesting to see how usage of SHACL features evolves in practice
in the future, e.g., [41]. This will undoubtedly also depend on how fast these
features run in RDF systems.

Supplemental Material Statement: For data, shapes and source code, see https:
//github.com/MaximeJakubowski/shaclsql-supplementary.
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