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Abstract: In this paper, we investigate the scales at which quantum gravitational corrections
can be detected in a black hole using information theory. This is done by calculating the
Kullback-Leibler divergence for the probability distributions obtained from the Parikh-Wilczek
formalism. We observe that as quantum gravitational corrections increase with decrease
in scale, the increase the Kullback-Leibler divergence between the original and quantum
gravitational corrected probability distributions will also increase. To understand the impact
of such quantum gravitational corrections we use Fisher information. We observe that it
again increases as we decrease the scale. We obtain these results for higher-dimensional black
holes and observe this behavior for Kullback-Leibler divergence and Fisher information also
depending on the dimensions of the black hole. Furthermore, we observe that the Fisher
information is bounded and approaches a fixed value. Thus, information about the nature of

Open Access, © The Authors.
Article funded by SCOAP3. https://doi.org/10.1007/JHEP02(2025)109

https://orcid.org/0000-0001-7827-9476
https://orcid.org/0000-0002-0449-7929
mailto:b.pourhassan@du.ac.ir
mailto:xiaoping.shi@ubc.ca
mailto:sawa54992@hbku.edu.qa
mailto:smalkuwari@hbku.edu.qa
mailto:fkazemian.144@gmail.com
mailto:izzet.sakalli@emu.edu.tr
mailto:naveed179755@st.jmi.ac.in
mailto:mirfaizalmir@googlemail.com
https://doi.org/10.1007/JHEP02(2025)109


J
H
E
P
0
2
(
2
0
2
5
)
1
0
9

quantum gravitational corrections itself is intrinsically restricted by quantum gravity. Thus,
this work establishes an intrinsic epistemic boundary within quantum gravity.
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1 Introduction

Various proposals for quantizing gravity lead to different theoretical modifications of low-energy
quantum phenomena [1–6]. Thus, it is important to detect effects produced by quantum grav-
ity, and various tests have been proposed for such quantum gravitational effects [7, 8]. Among
them, it is speculated that black hole physics can be used to test quantum gravitational ef-
fects [9, 10]. Although several tests for quantum gravity have been proposed, the scale at which
quantum gravity effects are likely to be observed has not been rigorously discussed. To properly
classify and quantify the dependence of quantum gravitational effects on the scale, we analyze
the probability distribution of particles emitted from a black hole in the Parikh-Wilczek formal-
ism [11, 12]. As the Parikh-Wilczek formalism considers the back reaction of particles emitted
during black hole evaporation, it is sensitive to changes in the geometry due to quantum gravita-
tional effects. This feature of the formalism thus allows the determination of the change in the
probability distribution of the emitting particles due to these effects. To quantify the scale de-
pendence of such quantum gravitational effects, we use information-theoretical techniques. We
start by using the Kullback-Leibler divergence [13, 14], which measures the difference between
two statistical probability distributions. While not a metric due to its asymmetry, Kullback-
Leibler divergence effectively quantifies the deviation between two distributions. Thus, a higher
Kullback-Leibler divergence would mean that the corrected probability distribution would have
a higher deviation from the original probability distribution. This, in turn, would make it eas-
ier to experimentally detect the effects of such corrections. Accordingly, the Kullback-Leibler
divergence can clearly quantify and classify the effects of quantum gravitational corrections.

We observe that Kullback-Leibler divergence increases as the mass of the black hole
decreases. We claim that this is due to quantum gravitational effects. To quantify this claim,
we use Fisher information, which effectively quantifies information about a parameter that
can be obtained from a given distribution [15, 16]. We thus directly use Fisher information to
analyze the information we obtain about quantum gravitational corrections. We demonstrate
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that Fisher information about quantum gravity also increases as the mass decreases, and is
bounded by a certain critical value. Moreover, we find that the Kullback-Leibler divergence and
Fisher information depends on dimensions. Our approach allows us to thoroughly evaluate the
influence of quantum gravity on black holes across various scales and dimensions. This can be
directly related to the possibility of detecting quantum gravitational corrections. We also note
that the scale dependence of quantum gravitational effects in higher dimensions has already
been discussed [17–20]. This observation has motivated the study of higher-dimensional
Schwarzschild black holes [21–24]. Here, we analyze the effects of quantum gravitational
corrections using such higher-dimensional Schwarzschild black holes. This allows us to
explicitly investigate the effects of dimensions on quantum gravitational corrections, which can
be determined by using an effective quantum corrected metric and by introducing the concept
of a novel quantum mass [25]. This quantum mass becomes important in analyzing changes
in the probability distribution of emitted particles in the Parikh-Wilczek formalism [11, 12].

The phenomenological consequences of quantum gravitational corrections to black hole
thermodynamics have been used to propose tests of quantum gravitational effects [26–29],
noting that the standard black hole thermodynamics is a semi-classical theory, which is
obtained using quantum field theory in curved spacetime [30–33]. In this approach, the
thermodynamic properties of black holes are obtained by neglecting the quantum gravitational
corrections. Using this equilibrium description, the entropy of black holes scales with the
area of their event horizon, while their temperature scales with the surface gravity [32,
33]. This approximation holds only for sufficiently large black holes. At these larger
scales, the temperature is exceedingly low, allowing us to disregard thermal fluctuations and
use equilibrium thermodynamics. However, as black holes reduce in size due to Hawking
radiation [34–36], quantum gravitational corrections can no longer be neglected. Similarly, at
such smaller scales, the temperature rises and thermal fluctuations cannot be dismissed. These
fluctuations can be explored as perturbative corrections to equilibrium thermodynamics,
leading to logarithmic corrections to the entropy of a black hole [37–41]. Furthermore,
it is known that the geometry can be derived from thermodynamics using the Jacobson
formalism [42]. Therefore, quantum fluctuations in geometry can be connected to thermal
fluctuations in equilibrium thermodynamics using the Jacobson formalism [43]. This insight
has spurred research into quantum gravitational corrections for various black hole scenarios [44–
49]. Additionally, the holographic principle [50, 51] has been used to analyze quantum
gravitational corrections in black hole thermodynamics [52–58]. This was achieved by
investigating the back reaction of the geometry using the finite N limit of boundary conformal
field theory. These corrections correspond to α′ corrections in the geometry, which, in
turn, give rise to higher curvature corrections. These higher curvature corrections are
known to introduce modifications to the standard thermodynamics of black holes [59, 60].
Apart from these approaches, other approaches have also been used to obtain corrections
to black hole thermodynamics [52–58]. These corrections correspond only to perturbative
quantum gravitational corrections to geometry, which are obtained from perturbative thermal
corrections to equilibrium thermodynamics. These corrections occur at a scale so small that
neglecting the perturbative corrections to equilibrium thermodynamics is not permissible.
However, this scale is still much larger than the Planck scale, near which the full non-
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perturbative quantum gravitational corrections become significant, making it impossible to
analyze the geometry using only perturbative quantum gravitational corrections.

Non-perturbative quantum gravitational corrections to the thermodynamics of various
black holes have been investigated [61–63], leading to the observation that such corrections
can introduce non-trivial modifications to the thermodynamics of black holes. We would
like to clarify that such non-perturbative corrections become important at a scale, when
purely quantum gravitational effects become significant, but are still analyzed at a scale
above the Planck scale. So, these non-perturbative corrections are assumed to occur at a
scale above but close to the Planck scale. Such non-perturbative quantum gravitational
corrections to the thermodynamics of black holes have also been derived using string theoretical
effects [64–66]. Additionally, general arguments based on the properties of conformal field
theories have been used to obtain such corrections [67]. The influence of full non-perturbative
quantum gravitational corrections on the thermodynamic behavior of small four-dimensional
Schwarzschild black holes [68], Born-Infeld black holes [69], AdS black holes [70], Myers-Perry
black holes [71], and a system of M2-M5 branes [25] have been investigated. These non-
perturbative corrections introduce an exponential term to the black hole entropy, consequently
modifying other thermodynamic quantities. Furthermore, these corrections may play a crucial
role in the short-distance stability analysis of quantum-scale black holes, affecting their heat
capacity, which, in turn, determines their stability. This has significant implications for black
hole evaporation, including the black hole information paradox [72–77]. Thus, it becomes
important to properly classify the effects of such corrections at various scales and in various
dimensions, which we accomplish in this paper. However, spacetime is restricted to scales
above the Planck scale, as the black hole thermodynamics and even the spacetime structure
cannot be defined below the Planck scale.

We will explicitly use a quantum-corrected metric to perform this analysis. Here,
the geometry is replaced by a quantum geometry to account for quantum gravitational
corrections, and this has been thoroughly studied for various approaches to quantum gravity.
This quantum-corrected metric can be expressed in terms of the classical metric and quantum
corrections to it. The quantum Raychaudhuri equation has been used to construct such a
quantum metric, and it has been demonstrated that such a quantum metric changes the
Hawking radiation and black hole thermodynamics significantly near the Planck scale [80,
81]. Another proposal to construct quantum metric to account for quantum gravitational
corrections has led to the development of rainbow gravity [82], and here again it has been
demonstrated that the quantum corrected metric modifies the thermodynamics of black
hole near Planck scale [83]. The corrections to Hawking radiation near the Planck scale in
noncommutative geometry have also been studied using this approach [84]. Finally, T-duality
in string theory has also been used to study the quantum corrections to a black hole metric,
and its implication on the thermodynamics near the Planck scale [85]. Using Jacobson
formalism [42], it has been demonstrated that corrections to the entropy of a black hole can
be directly used to construct a quantum-corrected metric for it [43]. This construction of
a quantum-metric using Jacobson formalism has also been generalized to black branes [19].
Thus, motivated by these works, we will also use a quantum-corrected metric to analyze
quantum gravitational corrections to the geometry.

– 3 –
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It is well known that such quantum correction first introduces logarithmic corrections
to the entropy of a black hole [37–41, 86]. Then at very small lengths scales (near Planck
length LP ), the corrections to the black hole entropy can be expressed as an exponential
function [64–67]. We will use this exponentially corrected entropy for our analysis. As
spacetime starts to break down below this scale [87–91], geometry (including black hole
geometry) cannot be defined below this scale Lmin. This brings us to the main physical result
of this paper. Even though the breaking of spacetime is a universal consequence of quantum
gravity [92], the precise scale at which it breaks down is based on heuristic arguments [93, 94].
So, the identification Lmin = LP is only based on heuristic arguments. In fact, it has also been
argued that spacetime metrics might break down above the Planck scale (Lmin > LP ) [92].
Such breaking of spacetime above the Planck scale can also have consequences for quantum
mechanics, which could be detected through ultra-sensitive measurements [95, 96]. Such
back-reaction of Planckian quantum gravitational corrections to quantum mechanics have
been studied for various quantum systems, such as anomalous moment for the muon [97],
optomechanical systems [98], Lamb shift, Landau levels, and even a minute but detectable
effect on the tunneling current in a scanning tunneling microscope [99], transition rate of ultra-
cold neutrons in gravitational field [100], and several other systems [101]. Such modifications
to black hole physics have also been studied, and specifically, the back-reaction of quantum
gravitational corrections to the Hawking radiation has been investigated [102–107]. These
quantum gravitational corrections only modify the Hawking radiation near the Planck scale,
and we obtain the standard Hawking radiation for large black holes, where such corrections
can be neglected. The quantum gravitational corrections to the Parikh-Wilczek have also
been studied [108–111]. Furthermore, as the scale at which spacetime breaks down is based
on heuristic argument [93, 94], it is possible to propose that quantum gravitational effects
break the spacetime metric at length scales below Planck scale (Lmin < LP ), and thus forming
sub-Planckian black holes [112, 113]. If we properly analyze the breaking of spacetime, we
would not find a sharp end to spacetime, but at a scale (Lmin) around the Planck scale, the
structure of spacetime metric would slowly become fuzzy, and thus lose meaning. Thus, if
we analyze black holes at smaller scales, we would initially gain information about them.
However, as the spacetime starts to become fuzzy due to quantum fluctuations, we would
observe that information about this system would approach an constant. It would not be
possible to obtain further information below this scale. This scale at which we cannot gain
any further information about the system due to a breaking of spacetime would occur near
the Planck scale, but can in principle occur about or below it. This behavior can be precisely
quantified using Fisher information. Thus, we will use Fisher information [15, 16] to explicitly
analyze to what scale even a quantum corrected metric cannot obtain new Fisher information
about quantum gravitational corrections, as the spacetime breaks down around that scale.

2 Quantum gravitational corrected geometry

In this section, we will analyze the effects of quantum gravitational corrections on the
geometry of a higher-dimensional Schwarzschild black hole. We begin by first reviewing the
properties of a higher-dimensional black hole. The metric of d-dimensional Schwarzschild
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black hole can be expressed as follows [86, 114]:

ds2 = −f(r)dt2 + dr2

f(r) + r2dΩ2
d−2, (2.1)

where the metric function f(r) is given by the equation,

f(r) = 1− 16πGdM

(d − 2)Ωd−2rd−3 . (2.2)

Here, Gd represents the d-dimensional Newton’s constant, and M represents the black
hole mass. Additionally, dΩ2

d−2 represents the metric of the d − 2-dimensional unit sphere
with an area of Ωd−2 = 2π

d−1
2 /Γ

(
d−1

2

)
. Using this metric, the radius of the horizon

can be determined by the condition f(r = r0) = 0 and can be explicitly expressed as
r0 = [16πGdM/((d − 2)Ωd−2)]

1
(d−3) . Substituting this expression for the radius of the horizon

into Sd, the original equilibrium entropy of the black hole can be written as [115]

Sd =
∫ 1

T (M) dM = 4π

(d − 2)

(
16π

(d − 2)Md−2
p

) 1
d−3

 Γ
(

d−1
2

)
2π(d−1)/2


1

d−3

· M
d−2
d−3 (2.3)

Hawking temperature T0 of the d-dimensional Schwarzschild black hole is given by T0 = (d −
3)/4πr0. It has been argued that non-perturbative quantum gravitational effects produce an
exponential correction to the equilibrium entropy of the black hole, such that [64–67, 116, 117]

SQ = Sd + η e−Sd , (2.4)

where SQ is the quantum gravitationally corrected entropy of the black hole and η is a
parameter. Here we would like to clarify that for large black holes, when even quantum
gravitational corrections can be neglected, the entropy is given by Sd, and η = 0. However,
for smaller black holes, where leading order perturbative quantum gravitational corrections
cannot be neglected, the corrected entropy is given by SQ1 = α1 logA, where α1 is a parameter
and A is the area of the horizon [37–41]. The next-to-the-leading order corrections are given
by SQ2 = α2/A, where again α2 is another parameter [118, 119]. These parameters depend
on the details of the theory to obtain the quantum gravitational corrections. However,
as the black hole becomes very small (close to but above the Lmin), these perturbative
corrections cannot be used, and the full non-perturbative corrections have to be used. Such
non-perturbative corrections modify the original expression for the black hole entropy to
SQ = Sd + η e−Sd [64–67, 116, 117]. Here, like the value of parameters used in perturbative
quantum corrections, i.e. α1, α2, this parameter obtained from the non-perturbative quantum
gravitational corrections also depends on the details of the theory [68–71]. For large black
holes, η = 0, and for corrections obtained from string theory η = 1 [64–66]. However, since
the parameter governing quantum gravitational corrections to the black hole depends on
the details of the approach [44–49], we shall treat η as a general parameter and analyze the
behavior of the black hole for various values of η [68–71].

We can now utilize this quantum gravitationally corrected entropy to analyze the effects
of quantum gravitational corrections on the geometry of a d-dimensional Schwarzschild black
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hole. It is well-established that this geometry can be derived through thermodynamics in
the Jacobson formalism [42]. Consequently, at short distances, quantum fluctuations in the
geometry can be linked to thermal fluctuations in the thermodynamics of the black hole [43].
Therefore, it becomes possible to use corrections to the equilibrium entropy of a black hole
to derive quantum gravitational corrections to its metric. This approach is designed to
ensure that the quantum-corrected metric directly yields the quantum gravitational corrected
entropy. In pursuit of this objective, we introduce a modified metric for a Schwarzschild black
hole, which naturally generates the corrected entropy in an exponential form. The idea of
replacing geometry, by a quantum geometry to account for quantum gravitational corrections
has been thoroughly studied for various approaches to quantum gravity [80–85]. In fact,
motivated by Jacobson formalism [42], it has been argued that corrections to the entropy of
a black hole can be directly used to construct a quantum-corrected metric for it [43]. This
is possible as according to Jacobson formalism [42], geometry of spacetime emerges from
thermodynamics. Such construction of a quantum-metric using Jacobson formalism has also
been done for black branes [19]. Thus, motivated the construction of quantum corrected
metric used in various different approaches to quantum gravity [80–85], and the Jacobson
formalism [42], we will use the exponential corrections to the entropy [64–67, 116, 117] to
construct a quantum-corrected metric.

Now we use the Jacobson formalism (see appendix) to explicitly analyze the quantum
gravitationally corrections to geometry due to quantum gravitationally corrected entropy.
In fact, it has already been demonstrated that a quantum metric is obtained from the
Jacobson formalism by using quantum gravitationally corrected entropy [43]. Here, we will
use this formalism for a d-dimensional Schwarzschild. So, this framework will enables us to
derive quantum corrected metric, that incorporate quantum corrections to d-dimensional
Schwarzschild black hole entropy. This metric can be written as

ds2 = −f(r)Qdt2 + dr2

f(r)Q
+ h(r)QdΩ2

d−2, (2.5)

where f(r)Q and h(r)Q are corrected metric functions. Now we choose,

h(r)Q = 1
Ωd−2

[
4Gd(Sd + η e−Sd)

] 2
d−2 , (2.6)

and define a quantum gravitationally corrected area AQ, such that it reproduce the quantum
gravitationally corrected entropy as SQ = AQ/4Gd (2.4). The metric (2.5) is constructed so
that the standard entropy obtained from this quantum gravitationally corrected metric is
the quantum gravitationally corrected entropy of a d-dimensional Schwarzschild black hole
given in eq. (2.4). It is easy to see that if we set η = 0, then the original entropy (2.3) is
recovered. Now this quantum gravitationally corrected effective metric can also be used
to investigate the effects of quantum gravitational corrections on various thermodynamic
quantities. Consequently, we observe that the temperature is modified due to quantum
gravitational effects as,

TQ = dM

dSQ
= f ′(r0,Q)Q

4π
, (2.7)

– 6 –



J
H
E
P
0
2
(
2
0
2
5
)
1
0
9

where r0,Q is the root of f(r = r0,Q)Q = 0. We will now obtain an explicit expression for
f(r)Q. In order to do that we assume it in the following form,

f(r)Q = f(r) + ηg(r), (2.8)

where f(r) is given by the eq. (2.5) and g(r) is an unknown function which should be
determined. Now using SQ in the first law of thermodynamics (TQ = dM/dSQ), we observe

TQ = T0 + ηT0e−Sd , (2.9)

where T0 = dM/dSd. Putting the eq. (2.8) into the eq. (2.7) and compare the result with
the eq. (2.9), we obtain

(
g′Q

)
r=r0,Q

= 4πT0e−Sd = (d − 3) e−Sd

r0
. Now, we can express g(r)

as following,

g(r) = − 4Gd(d − 3)
(d − 2)Ωd−2rd−2

0
exp

(
−Ωd−2rd−2

4Gd

)
. (2.10)

Using this solution in the eq. (2.8), we obtain,

f(r)Q = 1− 16πGdM

(d − 2)Ωd−2rd−3 − η
4Gd(d − 3)

(d − 2)Ωd−2rd−2
0

exp
(
−Ωd−2rd−2

4Gd

)
. (2.11)

Using the quantum metric functions given by eqs. (2.11) and (2.6), we constructed the
quantum correction to the metric function given in eq. (2.5). Now quantum corrected horizon
radius r0,Q is obtained by f(r)Q = 0. This can be used to obtain a quantum correct mass
for the black hole as,

MQ = (d−2)Ωd−2rd−3
0

16πGd

[
1− 4Gd(d−3)η

(d−2)Ωd−2rd−2
0

exp
(
−Ωd−2rd−2

0
4Gd

)]
= M

[
1−ηCM

2−d
d−3 e−Sd

]
,

(2.12)
where C = [(4Gd(d − 3))/((d − 2)Ωd−2)][((d − 2)Ωd−2)/(16πGd)]

d−2
d−3 . Here, the original mass

of this black hole M = (d − 2)Ωd−2rd−3
0 /16πGd is obtained by setting the eq. (2.5) equal

to zero at r = r0. It can be observed that the first law of black hole thermodynamics is
satisfied by these quantum gravitationally corrected expressions. Now the main aim of the
quantum corrected mass given in eq. (2.12) is to act as a physical quantity that can quantify
the effects of quantum gravitational effects on important information theoretical aspects of
this black hole. This will be done in the next section.

3 Kullback-Leibler divergence

In the previous sections, we analyzed the modifications to a higher-dimensional black hole
from quantum gravitational corrections. Now, we quantify the deviations from the standard
behavior due to such corrections. This will be done using Kullback-Leibler divergence [13, 14],
which measures how much two probability distributions differ from each other. Even though
Kullback-Leibler divergence is not symmetric, and hence not a metric, it does give a realistic
estimation of how far a given probability distribution is from another probability distribution.
It is possible to obtain the probability distribution of the particles emitted from a black
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hole during its evaporation using the Parikh-Wilczek formalism [11, 12], which considers
the back reaction of the emitted particles on the black hole geometry and proposes that the
entropy of the black hole can be expressed in terms of the probability distribution of the
emitted particles. As the entropy of the black hole is modified by quantum gravitational
corrections, this probability distribution in the Parikh-Wilczek formalism will also be modified.
We will explicitly analyze such modifications to the probability distribution of the emitted
particles, and use them to estimate the deviation of the behavior of a quantum-corrected
black hole from the original black hole. For a higher dimensional Schwarzschild black hole,
we assume that Pn is the probability that the black hole evaporates by radiating n particle.
We can write this probability as

Pn(0) =
Ωn

Ωtotal
, (3.1)

where Ωn is the number of microstates when a particle evaporates into n particle, and
Ωtotal =

∑∞
1 Ωn is the total number of the possible microstates of the system. It has been

demonstrated that for a Schwarzschild black hole of mass M , Pn can be expressed in terms
of M [12]. Although the expression was explicitly analyzed for a four-dimensional black
hole, the arguments used to obtain this distribution [12] are very general and hold in any
dimension. The higher dimension gravitational constant Gd is related to the Planck mass
MP as Gd = M2−d

P . To simplify the expressions, we define a new constant as

µd = 1√
π(d − 2)


8Γ

(
d−1

2

)
d − 2


1

d−2
1

MP


d−2
d−3

(3.2)

The probability distribution Pn is normalized. As the black hole evaporates by emitting
n particles, the probability that one among Ωn microstates occurs is qα. Since it is assumed
that all of the Ωtotal microstates occur with the same probability, we can write qα = 1/Ωn.
The total probability distribution for both the probabilities of the number of particles that
a four-dimensional Schwarzschild black hole emits during its evaporation and the possible
microstates has been obtained [12]. This can be easily generalized to higher dimensions,
where this probability distribution can be written as

Pn(0) = qα × Ωtotal =
(4πµdM

d−2
d−3 )n−1

(n − 1)! e−4πµdM
d−2
d−3 = Sn−1

d

(n − 1)! · e−Sd , (3.3)

where the zero in Pn(0) denotes the absence of any quantum gravitational corrections. Here,
we observe that this probability distribution depends on the mass of the black hole.

As the arguments are general, these also hold for a quantum-sized black hole, with the
mass being replaced by the novel quantum mass of the black hole. This is because the quantum
mass naturally reproduces the quantum-corrected entropy of the quantum-sized black hole.
As the entropy obtained from the Parikh-Wilczek formalism [11, 12] has to be consistent with
the entropy of the black hole obtained from standard methods, the quantum gravitationally
corrections to the entropy produced by the Parikh-Wilczek formalism [11, 12] should also
coincide with such corrections to the entropy obtained using standard methods. Thus,
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we can also write the probability distribution for a quantum-corrected higher-dimensional
Schwarzschild black hole, by replacing the usual mass M with the novel quantum mass
MQ = M

(
1− ηCM

2−d
d−3 e−Sd

)
. This replacement is done as the novel quantum mass was

constructed so that the entropy obtained from it using standard methods is the quantum-
corrected entropy. Thus, using the novel quantum mass, we obtain the quantum-corrected
probability distribution as

Pn(η) =
(4πµdM

d−2
d−3

Q )n−1

(n − 1)! e−4πµdM
d−2
d−3

Q = SQ
n−1

(n − 1)!e
−SQ (3.4)

Here SQ is the entropy of the corrected black hole. Now using Pn(η)|η=0 = Pn(0), we can
calculate the Kullback-Leibler divergence between the original and quantum gravitationally
corrected probability distributions. Thus, we now use the Kullback-Leibler divergence [13,
14] to measure deviations from quantum gravitational corrections. The Kullback-Leibler
divergence is given by

DKL(Pn(η)||Pn(0)) =
∞∑

n=1
P ′

n

(
(n − 1) log

(
SQ

Sd

)
− (SQ − Sd)

)

= log
(

SQ

Sd

) ∞∑
n=1

P ′
n(n − 1)− (SQ − Sd)

∞∑
n=1

P ′
n

= SQ log
(

SQ

Sd

)
− (SQ − Sd)

= 4πµdM
d−2
d−3

Q

d − 2
d − 3 log

(
MQ

M

)
− 4πµd

(
M

d−2
d−3

Q − M
d−2
d−3

)
(3.5)

We approach this problem by treating it as a black-box analysis, focusing on the particles
emitted from an evaporating black hole as it decreases in size. The probability distribution of
these emitted particles is influenced by quantum gravitational effects, which can be measured
at a distance from the black hole itself. This methodology allows us to capture the behavior
of the black hole near the Planck scale. To quantify the quantum gravitational corrections,
we utilize the Kullback-Leibler divergence. We first observe from figure 1 that the DKL

increases with decreases in scale. We also observe that it depends on the dimensions. For large
black holes, the DKL is maximum for higher dimensional black holes, however, after Planck
scale DKL is maximum for lower dimensional black holes. This indicates that some kind of
new physics occurs near Planck scale. This is expected as quantum gravitational effects are
expected to break the spacetime down around this scale. However, to properly analyze the
effects of quantum gravitational corrections, we will have to use Fisher information.

4 Fisher information

In the previous section, we analyzed the Kullback-Leibler divergence between the original
and corrected probability distributions and observed that its behavior changed near critical
value near Planck scale. In this section, we will properly analyze this by using the concept of
Fisher information. Fisher information measures the information about a parameter that
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(a) Plot for DKL at a fixed value of η = 0.5.

(b) Plot for DKL for various values of η.

Figure 1. Plots for DKL in various different dimensions.

can be obtained from a probability distribution [15, 16]. To analyze how much information
can be obtained about quantum gravitational corrections from the probability distribution of
particles emitted from a black hole during its evaporation, we obtain Fisher information of
the parameter η. In other words, we are investigating how the information about quantum
gravitational corrections depends on the scale. As Fisher information is related to Kullback-
Leibler divergence [120, 121], we measure Fisher information by first defining Kullback-Leibler
divergence between two corrected probability distributions over different values of η; namely:
Pn(η) and Pn(η + δη). We measure the Fisher information associated with η, as we move
in the η space between η and η + δη. In the limiting case, we will get our previous results
back, when we set η = 0. Now we can use the Taylor expansion to expand Pn(η + δη),
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(a) Plot for FI for a fixed value of η = 0.5.

(b) Plot for FI for different values of η.

Figure 2. Plots FI for different dimensions.

and find its relation to Pn(η)

Pn(η + δη) ≈ Pn(η) + δη
∂Pn(η)

∂η
= Pn(η) + δPn(η). (4.1)

Here, we define the correction to the probability distribution from η to η+δη as δPn(η). We can
write the Kullback-Leibler divergence between the probability distributions at η and η+ δη as

DKL(Pn(η + δη)||Pn(η)) =
Ω∑

n=1

(
Pn(η + δη) log Pn(η + δη)

Pn(η)

)
. (4.2)

– 11 –



J
H
E
P
0
2
(
2
0
2
5
)
1
0
9

We write the argument of the logarithm as (1 + δPn(η)/Pn(η)), and thus obtain

DKL(Pn(η + δη)||Pn(η)) =
Ω∑

n=1

(
Pn(η) + δPn(η) log

Pn(η) + δPn(η)
Pn(η)

)
(4.3)

=
Ω∑

n=1

(
Pn(η) log

(
1 + δPn(η)

Pn(η)

))
+

Ω∑
n=1

log
(
1 + δPn(η)

Pn(η)
)δPn(η)

)
.

We expand the logarithm term up to the second order in δPn, and neglect other higher order
terms. Thus, using log(1+ δPn(η)/Pn(η)) ≈ (δPn(η)/Pn(η))− ((δPn(η))2/2Pn(η)2), we write

DKL(Pn(η + δη)||Pn(η)) ≈
Ω∑

n=1
δPn(η) +

1
2

Ω∑
n=1

(
Pn(η)

(δPn(η))2

Pn(η)2

)
. (4.4)

We can use the expression for the probability distributions, and obtain an explicit expression
for the Kullback-Leibler divergence in terms of the mass of the black hole. Moreover, we
express δPn(η) = δη∂Pn(η)/∂η , and (δPn(η))2 = (δη)2(∂Pn(η)/∂η)2. Putting these back in
the expression above we can express the Kullback-Leibler divergence as

DKL(Pn(η + δη)||Pn(η)) ≈
Ω∑

n=1
δη

∂Pn(η)
∂η

+
∑ 1

2(δη)2Pn(η)
(

1
Pn(η)

∂Pn(η)
∂η

)2

Since Kullback-Leibler divergence has a minima at η = 0, the first derivative of Kullback-
Leibler divergence is zero at η = 0,

DKL(Pn(η + δη)||Pn(η)) =
1
2(δη)2E

(∂ logP (η)
∂η

)2 ∣∣∣∣∣
η=0

. (4.5)

Here E denotes the expectation value. Thus, the Fisher Information FI can be obtained
from the Kullback-Leibler divergence as

FI(η) ≈ ∂2

∂2η
DKL(Pn(η + δη)||Pn(η))|δη=0 = E

(
∂ logP (η)

∂η

)2

. (4.6)

Now using the explicit expression for the Kullback-Leibler divergence between a corrected
value and an original value at η = 0, we can also write an explicit expression for the Fisher
information

FI(η) = E
[(

∂

∂η
logP ′(n)

)2]
≈ E

(∂SQ

∂η

(
n − 1
SQ

− 1
))2

 (4.7)

Factor out ∂SQ

∂η , we can write the Fisher information

FI(η) ≈
(

∂SQ

∂η

)2
E

(n − 1
SQ

− 1
)2
 (4.8)

Now we can write an expression for SQ as

E

(n − 1
SQ

− 1
)2
 = 1

SQ
(4.9)
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Thus, the Fisher information with respect to η can be expressed as

FI(η) ≈
(

∂SQ

∂η

)2
· 1

SQ
(4.10)

We observe from figure 2, that the Fisher information about quantum gravitational
corrections decreases as the size of black holes become large, and can be neglected for larger
black holes. This is expected, as the quantum gravitational corrections only have negligible
effects at larger scales. We also observe from figure 2(b) that for small black holes, where the
Fisher information cannot be neglected, it is less for lower dimensional black holes than higher
dimensional black holes. However, around Planck scale, this behavior of Fisher information
changes, and it becomes more for lower dimensional black holes than higher dimensional black
holes. Thus, again we observe a change in the behavior of Fisher information near Planck scale.

Now we make an interesting observation. Using heuristic arguments it has been suggested
that spacetime will break at the Planck scale LP , and hence LP will act as a minimal length
Lmin for spacetime. However, this minimal scale at which spacetime breaks has been assumed
to be both above Planck scale Lmin > Lp [102–107], and below it Lmin < Lp [112, 113]. The
important observation here is that no matter if Lmin is above, below or at Planck scale, there
will be a bound to the Fisher information about quantum gravitational corrections. This is
because it would not be possible to obtain information about quantum gravity beyond such
a breaking of spacetime. Furthermore, we would also expect the breaking of spacetime to
depend on the strength of quantum gravitational corrections. If these corrections are strong
(η is large), then spacetime would break faster as compered to weak corrections (η is small).
This would imply that Fisher information should be inversely proportional to η.

However, there is a problem with this heuristic arguments. We expect that quantum
gravitational effects would slowly break spacetime around Planck scale, rather than at a sharp
point around Planck scale. The spacetime becomes fuzzy around Planck scale, and slowly
become less well defined. Now the problem is to make this heuristic arguments rigorous.
This can be done by addressing the problem from purely information theoretical perspective.
Instead of analyzing the breaking of geometry, and the bounds it has on Fisher information, we
can directly analyze the bounds on Fisher information. If the Fisher information is bounded,
then it is indicative of a breaking of spacetime around Planck scale. We also observe that this
is actually the case, and the Fisher information about quantum gravity reaches a fixed value
as the black hole evaporates, and this scales as 1/η. It is interesting to note that this fixed
value is inversely proportional to the strength of quantum gravitational corrections, as was
physically expected from the heuristic arguments. Hence, we have been able to rigorously
analyze the breaking of spacetime around the Planck scale, which had been precisely heuristic
argued. This was done by directly relating such breaking to the bounds on Fisher information
about quantum gravitational effects. So, this breaking limits the Fisher information about
quantum gravity that can be obtained from the system. Hence, quantum gravity could restrict
access to the information about itself, as such information here would be bounded by 1/η.

The observation that the Fisher information about quantum gravitational effects reaches
a fixed value during black hole evaporation, scaling as 1/η, where η quantifies the strength of
quantum gravitational corrections, has profound implications for the black hole information
paradox and even the broader issue of meta-information. The fixed Fisher information
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value indicates a fundamental limit on the precision with which quantum gravitational
corrections can be inferred from physical observables, such as the radiation emitted by an
evaporating black hole. This inverse scaling with η is consistent with heuristic expectations, as
stronger quantum gravitational effects impose stricter bounds on the retrievable information.
Consequently, while quantum gravitational corrections may partially resolve the black hole
information paradox by modifying the Hawking radiation spectrum to restore unitarity, they
simultaneously restrict the accessibility of information about their own underlying framework.

This limitation introduces what can be described as a meta-information paradox, wherein
not only is information about the black hole’s initial state is lost, but information about
the nature of quantum gravitational corrections themselves is intrinsically restricted. The
bounded Fisher information suggests that quantum gravity corrections obscure aspects of
their structure even as they modify the dynamics of black hole evaporation. The black
hole information paradox has been addressed through various proposed solutions, most of
which suggest that the paradox arises as an inferred problem at the black hole’s horizon.
These approaches argue that the paradox will be resolved by a complete quantum theory
of gravity in the ultraviolet limit [72–79]. In these proposals information paradox is expected
to be solved in the ultraviolet limit. Thus, in these proposals it is suggested that either
information irretrievably lost and cannot be computationally recovered, or it is not lost and
can be computationally recoverable. Now this only possible if we can in principle have a full
information about quantum gravitational corrections in the ultraviolet limit. However, we have
demonstrated that quantum gravity prevents the full information about its own corrections
in the ultraviolet limit. Thus, these quantum gravitational corrections obscure details about
the fundamental quantum gravitational degrees of freedom. This reflects the theory’s self-
referential nature limits the construction of a complete and consistent quantum theory of
gravity. Such behavior bears resemblance to incompleteness theorems in formal logic and
could, in principle, be connected to them [123, 124]. Thus, according to this work, we cannot
even address the information paradox in the ultraviolet limit, as the meta-information about
the formalism that can be used to address it is also obscured by its own self-referential nature.

These results further suggest that the breaking of spacetime at the Planck scale, which
is directly related to the bounds on Fisher information, limit the parameter space over which
quantum gravitational effects can be discerned. This effectively restricts the distinguishability
of competing quantum gravitational models from the observational data. For example,
models such as string theory or loop quantum gravity, which predict deviations from classical
physics at small scales, may become indistinguishable near Planck scale, due to the intrinsic
boundedness of meta-information. The information associated with quantum gravitational
corrections thus reaches a finite value, implying that even in principle, there is a limit
to how much of the theoretical framework governing these effects can be obtained from
computational aspects of a physical systems.

This inherent boundedness has profound consequences for the study of black hole physics
and quantum gravity. It imposes constraints on observational and computational approaches
to resolving the black hole information paradox, suggesting that while it was suggested that
the information paradox could have been addressed by quantum gravitational corrections,
our understanding of the corrections themselves remains fundamentally computationally
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incomplete. The implications extend beyond black hole thermodynamics, hinting at deeper
properties of quantum gravity, such as its potential self-referential nature. In this view,
quantum gravity conceals aspects of its structure, reflecting a fundamental feature of the
theory.

5 Stability at quantum scales

Understanding the stability of black holes at quantum scales is important for understanding the
interplay between quantum gravity and black hole thermodynamics. Classical black holes, such
as Schwarzschild black holes, are thermodynamically unstable due to their negative specific
heat, but quantum gravitational corrections can change this behavior. These corrections
introduce parameters, such as η, that capture the effects of quantum fluctuations on the black
hole’s thermodynamic quantities. By analyzing how η modifies the Helmholtz free energy,
internal energy, and specific heat, we can explore new stability regimes and phase transitions
that arise due to quantum effects. Moreover, the role of η can be understood through Fisher
information, which provides a quantitative measure of the sensitivity of black hole stability
to these quantum corrections. Thus, thermodynamic stability and information geometry can
be related to each other, and this offers a powerful tool for probing the quantum gravity.

So, as that quantum gravitational corrections may change the stability at quantum scales,
we will explicitly analyze them. This can be done by first using the quantum corrected metric
to explicitly calculate the corrections to other thermodynamic quantities. Therefore, we
can express the Helmholtz free energy of the black hole corrected for quantum gravitational
effects as

FQ = −
∫

SQdTQ = F0 + ηF1, (5.1)

where F0 = Ωd−2rd−3
0 /16πGd is uncorrected Helmholtz free energy. The corrected part F1 is a

complicated function of WhittakerM. In order to see the effects of correction we draw typical
behavior of FQ for d = 4 and d = 5 in figure 3 (a) and (b) respectively. We can see that at
large r0 (large black hole) where quantum effects are negligible, then FQ ≈ F0, however there
are important deviation as small radii as expected. Opposite sign of the Helmholtz free energy
at smaller r0 may be sign of some important differences in large/small black hole stability.

We can use the quantum gravitationally corrected Helmholtz free energy to obtain the
expression for quantum gravitationally corrected internal energy

EQ = FQ + TQSQ = E0 + ηE1 = Ωd−2
16πGd

(d − 2)rd−3
0 + ηE1, (5.2)

where E1 is a complicated function of WhittakerM.
We observe that various thermodynamic quantities for a higher-dimensional black hole

can also be directly obtained from the quantum gravitationally corrected metric. However, to
analyze the stability of a quantum gravitationally corrected black hole, we use the quantum
gravitationally corrected specific heat in terms of the original entropy as follows,

CQ = TQ
dSQ

dTQ
=

(d − 2)Sd

(
ηe−Sd + 1

) (
ηe−Sd − 1

)
1 + η(1 + Sd)e−Sd

. (5.3)
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Figure 3. Typical behavior of the d-dimensional Schwarzschild black hole Helmholtz free energy
(Gd = 1 is used).

We can see that at η = 0 the uncorrected specific heat of the d-dimensional Schwarzschild
black hole (C0 = −(d − 2)Sd) is completely negative as well as 4-dimensional Schwarzschild
black holes.

In equation (5.3), the numerator is positive, which means that to have a positive specific
heat, the denominator should be positive. Using the condition for thermodynamics stability,
CQ ≥ 0, we obtain η ≥ esd . For a fixed mass of a black hole, we can find the lower limit
for η for which the black hole is stable. We know that the Schwarzschild black hole is
unstable (at η = 0), but in the presence of the exponential correction with the correction
coefficient η ≥ esd , it may become stable at small radii. It is interesting to note that the
thermodynamics stability, CQ ≥ 0, can be related to η as η ≥ esd . We note that the Fisher
information FI(η) about η is bounded by 1/η. As quantum gravitational effects quantified by
η increases, the black hole becomes more thermodynamically stable. However, a more stable
system responds less to external perturbations or fluctuations, reducing the information
extractable from such changes. Fisher Information measures the sensitivity to measure
quantum gravitational corrections. Now the system is highly sensitive (FI(η) is large), when
the quantum gravitational effects are small, and so η is small (and 1/η is large). Thus, there
is a trade-off between Fisher information and stability.

In plots of figure 4, we can see the behavior of the specific heat in terms of r0 and see
that in the presence of the exponential correction, the Schwarzschild black hole may be stable
at small radii. Although, we have only presented two cases, i.e., d = 4 (figure 4 (a)) and
d = 5 (figure 4 (b)), we find similar behavior in other dimensions. From the figure 4 we can
see a second order phase transition may happen to have a stable black hole at small horizon
radius. However, this stable phase only exists for η > 1, which is not our case of interest.
Therefore, we find that small d-dimensional Schwarzschild black holes are also instable for
0 < η < 1, and this hold for the four dimensional Schwarzschild black hole too.
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Figure 4. Specific heat versus r0 with Gd = 1 for Schwarzschild black hole in 4 and 5 dimensions.

6 Conclusion

In this paper, we have analyzed the effects of quantum gravitational corrections on higher-
dimensional Schwarzschild black holes. This was achieved by calculating the Kullback-Leibler
divergence, which measures the difference between the original probability distribution of
particles emitted during black hole evaporation and the corrected probability distribution in-
fluenced by quantum gravitational effects. Our results demonstrate that the Kullback-Leibler
divergence depends on both the dimensionality and the scale of the black holes. Initially,
higher-dimensional black holes exhibit a larger divergence compared to lower-dimensional ones,
indicating that quantum gravitational corrections are more pronounced in higher dimensions.
However, as the black hole approaches a critical scale near the Planck regime, this behavior re-
verses. At this stage, quantum fluctuations dominate, and new quantum gravitational degrees
of freedom become significant, leading to a greater divergence for lower-dimensional black holes.

This behavior is further illuminated through the analysis of Fisher information, which
quantifies the sensitivity of an observable probability distribution to changes in a parameter of
interest. This parameter here quantifies the strength of quantum gravitational corrections. We
observe that Fisher information about quantum gravitational effects follows a similar pattern:
it is initially larger for higher-dimensional black holes but becomes more significant for
lower-dimensional black holes near the Planck scale. Moreover, as the black hole evaporates,
the Fisher information attains a finite maximum value, providing an upper bound on the
retrievable information about quantum gravitational corrections. This is an information
theoretical result, which is equivalent to the heuristic breaking of spacetime around Planck
scale. Such a breaking would also produce a bound on the Fisher information about quantum
gravitational effects. Here, we have obtained such a bound in a rigorous way, using a black-box
approach. This is done by analyzing the probability distribution of particles emitted during
the evaporation of a black hole. Furthermore, the maximum value of Fisher information
and the corresponding peak in the Kullback-Leibler divergence highlight the scale at which
quantum gravitational corrections are most detectable. This occurs at the critical point
where quantum fluctuations dominate.
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This work demonstrates fundamental limitations on the information retrievable about
both the black hole’s initial state and the quantum gravitational corrections that govern its
evolution. The finite maximum value of Fisher information, inversely proportional to the
strength of quantum gravitational effects, quantifies the constraints imposed by quantum
gravity. This boundedness addresses the black hole information paradox by suggesting
that quantum gravitational corrections could encode a finite information. However, it
simultaneously introduces a meta-information limit on information, wherein the ability to
extract information about the nature of quantum gravity itself is intrinsically limited. This
self-concealing property of quantum gravitational corrections implies that they predict an
ultraviolet limit on the information near the Planck scale. They obscure details about the
underlying quantum gravitational degrees of freedom. This behavior creates an intrinsic
epistemic boundary within quantum gravity, reflecting its self-referential nature and presenting
challenges for reconstructing a complete and consistent quantum theory of gravity. This
resembles inconsistencies theorems in formal logic and could in principle be connect to them.

We have also shown that quantum gravitational corrections, encapsulated by the pa-
rameter η, can significantly alter the thermodynamic stability of Schwarzschild black holes,
particularly at small horizon radii where quantum effects dominate. These corrections modify
key thermodynamic quantities such as Helmholtz free energy, internal energy, and specific
heat, revealing the possibility of stable black hole configurations for η ≥ eSd . However, in
the regime 0 < η < 1, small black holes remain thermodynamically unstable, and only for
η > 1 can stable phases with a second-order phase transition emerge, though this is outside
our primary focus. Additionally, a trade-off between stability and sensitivity to quantum
corrections is highlighted through Fisher Information, suggesting that as quantum effects
stabilize the black hole, the system becomes less sensitive to perturbations. This work has
the potential of using quantum gravitationally corrections to enhance our understanding of
black hole physics, and even computational limitations of quantum gravity.

This work highlights several open problems and future directions that could extend
the understanding of quantum gravitational corrections and their implications for black
hole physics. One interesting possibility is the analysis of quantum gravitational effects
in black holes with additional parameters, such as rotating Kerr black holes or charged
Reissner-Nordström black holes. These cases introduce angular momentum and electric
charge, which could interact with quantum gravitational corrections in interesting ways.
This could potentially modifying the emission of particles, and dynamics of evaporation.
Furthermore, black holes in asymptotically anti-de Sitter (AdS) or de Sitter (dS) spacetimes
provide opportunities to explore how quantum corrections using holographic dualities or
in cosmological settings, respectively. For AdS spacetimes, such corrections could have
implications for the AdS/CFT correspondence, particularly near the Planck scale, where
deviations from classical physics become significant. In dS spacetimes, the interplay between
black hole evaporation and cosmological expansion raises new questions about how quantum
gravitational effects influence horizons in an accelerating universe.

Another important extension involves black holes in modified theories of gravity, such
as those incorporating higher curvature corrections (e.g., Einstein-Gauss-Bonnet gravity) or
alternative metric formulations. These scenarios could provide insights into the behavior of
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quantum gravitational corrections in regimes beyond standard general relativity. Similarly,
investigating time-dependent black holes and dynamical horizons, such as those encountered
in black hole mergers or other highly non-equilibrium processes, could uncover the influence
of quantum corrections in dynamically evolving systems. Applications to primordial black
holes are particularly interesting, as these small black holes are expected to approach the
Planck scale during evaporation, making them ideal candidates for studying the observational
consequences of quantum gravitational effects. Such studies could connect to broader
astrophysical phenomena, including the potential role of primordial black hole remnants in
dark matter models or the detection of modified Hawking radiation spectra.

Observationally, the Fisher information and Kullback-Leibler divergence may offer critical
insights into detecting quantum gravitational effects. These values represent the optimal
regime for experimental sensitivity to quantum corrections. Beyond specific black hole types
and observational considerations, this work opens new avenues for exploring quantum infor-
mation theoretical perspectives on black hole physics. Quantities such as quantum complexity,
entanglement entropy, and mutual information may complement Fisher information in charac-
terizing the influence of quantum gravity on black hole systems. These approaches could also
provide a deeper understanding of the information paradox and its resolution, particularly
in terms of how quantum gravity encodes and conceals information. The implications of
this study are not limited to black hole systems. They raise broader questions about the
fundamental nature of spacetime and the self-referential behavior of quantum gravity, where
corrections can obscuring the theoretical framework underlying them.
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A Jacobson formalism

In order to explicit construct the quantum geometry, we will now use the Jacobson formal-
ism [42, 122]. This can be done by considering a two-surface element P at point p with
an associated Killing field χa generating orthogonal boosts. The system exhibits an Unruh
temperature given by ℏκ/2π, where κ, which represents the acceleration along the Killing
orbit. Heat flow is characterized by the boost-energy current Tabχ

a, with a local Rindler
horizon through p generated by χa. The heat flux H through P can be expressed as,

δQ =
∫
H

Tabχ
adΣb, (A.1)

where dΣa = kadλdA, with ka denoting the horizon’s tangent vector. The affine parameter λ

vanishes at P and takes negative values in its past. Using the area element dA, we obtain,

δQ = −κ

∫
H

λTabk
akbdλdA. (A.2)
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The horizon’s expansion θ can be related to the area’s variation as

δA = −κ

∫
H

θdλdA. (A.3)

The Raychaudhuri equation which governs the horizon’s evolution is dθ/dλ = −θ2/2− σ2 −
Rabk

akb. Now integration, we obtain the following expression

δA = −
∫
H

λRabk
akbdλdA (A.4)

The thermodynamic relation δQ = TdS = (ℏκ/2π)ξδA holds when Tabk
akb = (ℏξ/2π)Rabk

akb

for all null vectors ka. This leads to,

Rab −
1
2Rgab + Λgab =

2π

ℏξ
Tab, (A.5)

where ξ relates to Newton’s constant as Gd = 1
4ℏξ . In the paper, we applied this formalism

to corrected entropy by defining an corrected area, where the entropy obtained from the
corrected area coincides with the quantum gravitationally corrected entropy.
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