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Abstract We present a coil system designed to generate a
highly uniform magnetic field for the n2EDM experiment at
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the Paul Scherrer Institute. It consists of a main B0 coil and a
set of auxiliary coils mounted on a cubic structure with a side
length of 273 cm, inside a large magnetically shielded room
(MSR). We have assembled this system and characterized its
performances with a mapping robot. The apparatus is able to
generate a 1µT vertical field with a relative root mean square
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deviation σ(Bz)/Bz = 3×10−5 over the volume of interest,
a cylinder of radius 40 cm and height 30 cm. This level of
uniformity overcomes the n2EDM requirements, allowing a
measurement of the neutron Electric Dipole Moment with a
sensitivity better than 1 × 10−27e cm.

1 Introduction

n2EDM is an apparatus connected to the ultracold neutron
source at the Paul Scherrer Institute [1,2], designed to mea-
sure the electric dipole moment (EDM) of the neutron dn with
a sensitivity better than 1 × 10−27e cm [3]. This represents
an order of magnitude improvement compared to the previ-
ous version of the experiment, which set the best upper limit
to date on dn [4]. For a discussion on the landscape of cur-
rent and future experiments searching for non-zero EDMs of
subatomic particles, and their role as sensitive probes of new
physics beyond the Standard Model, we refer to the recent
articles [5–7].

Figure 1 shows a scheme of n2EDM relevant for the
present article. In the experiment, spin-polarized ultracold
neutrons and 199Hg atoms will be stored for several minutes
in two large precession chambers. Each chamber has a cylin-
drical shape of radius R = 40 cm and height H = 12 cm.
The chambers are stacked vertically, with a height separa-
tion of H ′ = 18 cm between their respective centers. During
storage, the neutrons and mercury atoms will be exposed to
(i) a strong vertical electric field, E = 15 kV/cm, of opposite
polarity in the two chambers, and (ii) a weak static vertical
magnetic field, ideally identical in the two chambers. In a
first phase of the experiment, the magnetic field will be set to
the baseline value of 1 µT, as in the previous single-chamber
experiment [4]. In a second phase, the field will be set to the
so-calledmagic value of 10µT intended to suppress the main
systematic effect [8].

The particle spins will precess about the fields due to their
magnetic (and possibly non-zero electric) dipole moments.
The neutron precession frequency will be measured using
Ramsey’s technique of separated rotating fields [9], while
the mercury precession frequency will be read-out optically
during the precession. The (possibly non-zero) EDM of the
neutron will cause a tiny difference in the neutron precession
frequency upon reversal of the electric field. The mercury
atoms are used as a co-magnetometer: the atoms average the
magnetic field in essentially the same volume and during the
same time as the neutrons. In addition, an array of 112 cesium
atomic magnetometers placed around the chambers will be
used for the online control of the uniformity of the magnetic
field.

Fig. 1 Schematic depiction of the n2EDM apparatus inside the mag-
netic shieding room (MSR), view from a vertical cut (top figure) and a
horizontal cut (bottom figure). The coordinate system is defined such
that the y axis points from the MSR door to the back of the MSR in
the horizontal plane. The MSR together with the coil system (in blue)
are designed to generate a uniform vertical field inside the MSR vol-
ume, and especially so inside the double precession chamber volume
(in pink)

A stable and uniform magnetic field has to be generated in
a large volume encompassing the stacked precession cham-
bers. The large volume of the chambers (6× compared to the
previous experiment) allows an increase in the number of
stored neutrons and therefore a boost of the statistical sensi-
tivity [3]. The stack is placed in a nonmagnetic vacuum ves-
sel, which is itself installed in a Magnetically Shielded Room
(MSR). The MSR [10] is a cubic structure of six ferromag-
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netic layers, with an interior volume of side length 293 cm.
In addition, the passive MSR is complemented by an Active
Magnetic Shield [11] with feedback-controlled coils external
to the MSR (not shown in Fig. 1 as it is not directly relevant
to the present subject).

In this article, we present the coil system designed and
built to generate the magnetic field inside the MSR. In Sect. 2,
we discuss the requirements for the field generation, in par-
ticular about the uniformity. Then, in Sect. 3, we lay out the
detailed design of the coil system. Finally, in Sect. 4, we
report on the results of a magnetic field mapping campaign
characterizing the performances of the system at the baseline
value for the magnetic field, B0 = 1 µT.

2 Magnetic field uniformity in n2EDM

The requirements related to magnetic field uniformity are
expressed in a convenient field parametrization, of the form

B(r) =
∑

l≥0

l+1∑

m=−l−1

GlmΠlm(r) (2.1)

=
∑

l≥0

l+1∑

m=−l−1

Ǵlm

Dl−1
l

Πlm(r). (2.2)

The first parametrization (Eq. (2.1)) was introduced in [12]
and is referred to as the harmonic expansion. In the above
equations, the harmonic modes Πlm(r) are polynomial func-
tions of degree l which are determined explicitly by requir-
ing that the field satisfies Maxwell’s stationary equations
∇ ·B = 0 and ∇×B = 0. A table of those polynomials along
with their visual representations in the transverse plane can
be found in Appendix Appendix A. The coefficients of the
expansion Glm are generalized magnetic gradients, usually
expressed in units of pT/cml . However, it is more conve-
nient to compare normalized magnetic gradients Ǵlm , with
units of pT/cm, that we introduce in a new parametrization
(Eq. (2.2)). To this end we define normalizing distances Dl ,
in units of cm, which are determined by the geometry of
the precession chambers through the normalization detailed
in Appendix Appendix B. Their numerical values are spec-
ified in Table 1. In n2EDM the expansion is carried out up
to order l = 7 because, as we will later show, the system-
atic effect generated by terms of order l = 7 and beyond is
negligible.

Table 1 Normalizing distances of the harmonic expansion, up to l = 7

l 1 2 3 4 5 6 7

Dl (cm) 1 18 23.7 −29.1 31.8 39.7 33.8

2.1 Uniformity requirements related to statistical sensitivity

Magnetic field uniformity has a strong influence on the statis-
tical sensitivity of the neutron precession frequency measure-
ment in n2EDM, and is constrained by two requirements [3].

The first of these concerns the decay of the neutrons’ spins
polarization during a Ramsey cycle, which should be kept
minimal in order to maximize the statistical sensitivity. Non-
uniformities in the vertical magnetic field component lead to
a depolarization of the neutrons’ spins. One can show that
the decay rate of the transverse polarization

1

T2
= γ 2

n σ 2(Bz)τc, (2.3)

described by spin-relaxation theory [13], is proportional to
the root mean square of the spatial field variations σ(Bz) =√〈

(Bz − 〈Bz〉)2
〉
, where the angle brackets indicate an aver-

age over the precession volume. In Eq. (2.3), γn is the neu-
tron’s gyromagnetic ratio and τc the autocorrelation time of
UCN motion. The latter was originally determined in the
nEDM experiment by measuring the transverse depolariza-
tion in the presence of a large applied gradient [12]. Based on
this measurement, we extrapolated the value of τc to account
for the increased diameter of the chambers used in the current
experiment, to τc = 120 ms [3]. In the design, we impose
that the neutron spin polarization must not decrease by more
than 2% after 180 s of precession. This translates to a require-
ment on the vertical non-uniformity inside each precession
chamber

σ(Bz) < 170 pT. (2.4)

The second requirement is due to the double chamber
configuration of n2EDM, where the presence of a magnetic
gradient between the two chambers does not allow one to
simultaneously measure the top and bottom precession fre-
quencies at optimal sensitivity. Specifically, since the rotat-
ing field responsible for the Ramsey spin flip is applied to
both chambers simultaneously, its frequency, fRF, should
be set to a value that minimizes the statistical error of the
precession frequency extraction from the Ramsey curves of
both chambers. As the two resonance curves shift with the
vertical magnetic field, we require that the vertical gradient
between the two chambers, defined as the top-bottom gra-
dient GTB = (〈Bz〉TOP − 〈Bz〉BOT

)
/H ′, remains below a

value that corresponds to an imposed 2% loss in sensitivity.
This condition is known as the top-bottom resonance match-
ing condition

|GTB| < 0.6 pT/cm. (2.5)
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The coil system of n2EDM is designed to generate a uni-
form magnetic field that satisfies both of these requirements.

2.2 The false neutron EDM due to non-uniformities

The largest systematic error in n2EDM is a shift in the neu-
tron to mercury spin precession frequency ratio due to a spin-
relaxational effect experienced by mercury atoms. This effect
is detailed extensively in section 4 of the n2EDM design arti-
cle [3]. Magnetic non-uniformities Bz −〈Bz〉 in combination
with a relativistic motional field v×E/c2 shift the precession
frequencies of both neutrons and mercury atoms, but more
so of mercury atoms. Since the neutron EDM dn is extracted
from the ratio R = fn/ fHg of the two measured frequencies,
the shift in the precession frequencies of the mercury atoms
generates an error on the EDM measurement, referred to as
the false EDM and denoted dfalse

n←Hg. As we seek to measure dn
at a sensitivity of 10−27e cm, we require that the false EDM
is kept below:

dfalse
n←Hg < 3 × 10−28e cm. (2.6)

The issue of precession frequency shifts that generate
false EDM signals have been extensively studied in the past
decades [14–24]. In the case of mercury atoms with a ther-
mal ballistic motion inside a low magnetic field (valid for the
n2EDM 1 µT field), the false EDM is written [3]

dfalse
n←Hg = − h̄

∣∣γnγHg
∣∣

2c2

〈
ρBρ

〉
(2.7)

= h̄
∣∣γnγHg

∣∣
2c2

R2

4

(
GTB + Ǵ3 0 + Ǵ5 0 + · · ·

)

= 1.26 × 10−26e cm

pT/cm
×

(
GTB+Ǵ3 0+Ǵ5 0+ · · ·

)
,

(2.8)

where ρ is the radial coordinate in the transverse plane and
Bρ the radial field component. The angle brackets in the first
equality indicate a volume average over the two precession
chambers. The second equality is obtained by deploying the
harmonic magnetic field expansion (2.2) and is specific to
the geometry of n2EDM. Equation (2.8) tells us that the false
EDM is proportional to a particular set of magnetic gradients.
This is due to the double chamber geometry, for which only
l-odd, m = 0 harmonic modes yield a non-zero false EDM.
We divide these modes into two categories: (i) those visible
in the online monitoring of n2EDM, in that they generate a
top-bottom gradient GTB, and (ii) those that generate a false
EDM while satisfying GTB = 0, and are therefore not fully
accounted for by the online analysis. The latter are for this
reason referred to as phantom modes.

Because of Eq. (2.8), the systematical requirement (2.6)
is effectively a requirement on the uniformity of the n2EDM

magnetic field. There are two strategies to control this sys-
tematic effect in n2EDM.

The first is to simply measure the magnetic non-uniformities
involved in Eq. (2.8) and estimate the false EDM. These
measurements should be accurate enough so that δdfalse

n←Hg <

3 × 10−28e cm. While the top-bottom gradient GTB is accu-
rately monitored online, the phantom gradients Ǵ2k+1 0 are
measured offline with the n2EDM mapper. This imposes an
additional requirement on the reproducibility of the phantom
modes.

The second strategy is to make the n2EDM magnetic field
more uniform in order to suppress the false EDM below its
systematic requirement. This field optimization strategy is
implemented thanks to a set of auxiliary coils designed to
target specific harmonic modes, particularly the l-odd,m = 0
modes responsible for the false EDM.

The success of both strategies relies on the fulfillment
of two common conditions. The core systematical require-
ment (2.6) translates to a requirement on (i) the repro-
ducibility of the generated phantom modes before and dur-
ing data-taking σ(Ǵ3 0), σ (Ǵ5 0), σ (Ǵ7 0) < 23 fT/cm, and
(ii) the accuracy of the offline measurement of these modes
δǴ3 0, δǴ5 0, δǴ7 0 < 23 fT/cm. We also note that while
there still is a way of monitoring the third (and possibly fifth)
degree phantom mode(s) online thanks to a cesium magne-
tometer array, as detailed in [3], a redundant measurement of
the phantom modes with the mapper is crucial to the control
of such a debilitating systematic effect. A summary of both
statistical and systematical requirements and corresponding
measurements is given in Table 4.

3 Design of the n2EDM coil system

The inner coil system of the experiment consists of the main
B0 coil, an array of 56 independent optimization coils, and
seven specific coils referred to as “gradient coils” [3]. The
B0 field is generated by the single B0 coil and the induced
magnetization of the MSR innermost layer. The 56 indepen-
dent optimization coils are used to cancel the remaining field
non-uniformities. Finally, the gradient coils generate specific
magnetic gradients that play an important role in the mea-
surement procedure. The coil system was designed so that
it can produce a B0 field of 1 µT, as in the previous experi-
ment [4], or 10 µT, the magic field value which will be used
in a second phase [8].

3.1 The B0 coil design

The main part of the B0 coil is a vertical square solenoid
installed within the innermost chamber of the MSR. Infinite
solenoids generate uniform magnetic fields. This statement

123



Eur. Phys. J. C           (2025) 85:202 Page 5 of 19   202 

remains true for finite solenoids inserted in a high perme-
ability material. The coupling between the solenoid and the
shield mimics an infinite solenoid on the condition that the
coil extremities are closed off by two high permeability mate-
rial planes perpendicular to the solenoid axis. Both planes
define perfect boundary conditions for the vertical field com-
ponent. The solenoid was therefore designed as long and as
wide as possible given the size of the MSR innermost layer.
However, the solenoid’s mechanical support requires a gap
between the coil and the MSR walls. This gap weakens the
benefit of the coupling between the shield and the coil and
decreases the field uniformity. A remediation was achieved
by adding seven end-cap loops located at both coil extrem-
ities on the top (bottom) horizontal planes. In summary, the
B0 coil is made up of two components connected in series:
a square vertical solenoid and two sets of seven end-caps
loops.

The design of the B0 coil was performed with a finite ele-
ment method simulation (COMSOL software). The goal of
the simulation was twofold: define the detailed coil geometry
which provides a B0 field uniformity meeting the require-
ments and estimate the amplitude of the remaining field non-
uniformities. The simulation included only the innermost
MSR layer, as the addition of a second layer has a negli-
gible influence on the generated magnetic field. This layer
was defined as a cube with an inner side length of 293 cm
and a thickness of 6 mm (as well as a few additional bands
with a thickness of 7.5 mm used to reinforce the wall struc-
ture in the experiment [10]). The relative permeability of the
wall material was set to μ = 35000. All openings were taken
into account. The symmetries of the B0 coil allowed the sim-
ulation of only one eighth of the system volume, defined by
the following conditions on the coordinates: x > 0, y > 0,
and z > 0. The boundary conditions were defined as fol-
lows. Outside the MSR the magnetic field is zero at a large
distance. Inside the MSR, the symmetry planes are defined as
magnetic insulation boundary for the vertical planes XZ and
YZ (these planes are anti-symmetric for the coil currents)
and as perfect magnetic conductor boundary conditions for
the horizontal plane XY (this plane is symmetric for the coil
currents).

The solenoid characteristics are constrained by the exper-
imental environment: the solenoid length (273 cm) is lim-
ited by the MSR height and the volume required for its sup-
port. Similarly, the vertical gap between two adjacent loops,
dz = 15 mm, is set to a minimal value, offering at the same
time a sufficient density of surface current (for the produc-
tion of a uniform field) and a gap between two loops large
enough for the coil to be attached to its mechanical support.
As a result, the optimization procedure is mainly carried out
by varying the number and the shape of the end-caps loops.
The variable used for the minimization is the transverse mag-

Fig. 2 Design of the B0 coil. The Lamé curves are located at the
solenoid extremities in the top and bottom horizontal planes. The red
and green frames show a detailed view of the opening bypasses. The
inner volume of the coil is accessed through a square door (drawn in
blue) with a side length of 200 cm

netic field BT =
√
B2
x + B2

y calculated in the MSR central

volume (1 m3).
The optimized geometry of the B0 coil is a square solenoid

attached to a cubic support fixed at about 10 cm from the
innermost layer of the MSR. The solenoid is made of 181
loops vertically spaced by 15 mm, complemented by two
identical sets of 7 end-cap loops. Their design is parametrized
by the Lamé curves, which is an interpolation between a
square and a circle:

⎧
⎨

⎩

xi = ai cosni (ϕ)

yi = ai sinni (ϕ)

zi = ±1365 mm
, (3.1)

where x and y are the space coordinates in the horizontal
plane (Fig. 2), ϕ is the polar angle ranging from 0 to π

2 (the
full loops are then built by symmetry), and ai and ni are
the parameters of the Lamé curves i with i ∈ [1, 7]. For all
curves, ni = 0.30, and ai ranges from 1300 mm to 1360 mm
with a 10 mm step.

The most important deviations from the ideal solenoid
result from its various openings. In order of importance, this
concerns the openings for the UCN guides (2×) and the vac-
uum pipes (2×) with a diameter of 220 mm, the openings
for the laser beam used for the Hg co-magnetometer, the
high voltage feed through, and other miscellaneous holes
with diameters ranging from 55 mm to 160 mm (see [10]
for more details). The gap between loops which bypass the
openings is reduced in order to compensate for the lack of
loops at the opening location. Two examples are shown in the
red and green inserts of Fig. 2. In one side of the solenoid,
a 2 m × 2 m door, depicted as a blue parallelogram, gives
access and permits the transit of experimental components.
The door panel is equipped with wires closing the solenoid
loops. The electrical continuity between wires of the outer
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Fig. 3 Pictures of the built coil system. Left: inside of the B0 coil.
The two openings for the vacuum pipes (UCN guides on the other side)
are visible on the left and the B0 door is closed. Middle: the B0 door

open. On the door edges, the white custom-made connectors are visible.
Right: a typical wire bypass of openings in the B0 coil

walls and of the door panel is ensured by 133 custom-made
non-magnetic connectors. Their design permits a current path
barely deviating from a straight direction. The entire door can
be removed for the insertion of large components such as the
precession chambers.

Magnetic characteristics of all material or pieces used
for the construction of the coils were measured before
installation on site. Small pieces were checked at PSI [25]
while large ones were measured inside the Berlin magnet-
ically shielded Room-2 at Physikalisch-Technische Bunde-
sanstalt [26]. Weakly magnetizable material were selected:
polycarbonate (coil support plates), Aluminum (coil struc-
ture), Copper (wire), polylactic acid (3D printed door con-
nectors) and titanium and polyamide (screws). The limit set
to select a material or a piece was a maximum magnetic field
of 200 pT at 5 cm distance after exposing the surface to a
magnetic field of about 30 mT. Some magnetic contamina-
tion was detected, primarily on the surface of the machined
pieces. To address this, specific cleaning procedures were
applied, including baths with an alcaline detergent and/or
an acidic solution. Bulk contamination was also identified
in a few cases, such as with screws. Approximately 10% of
the titanium screw batches exhibited contamination. In such
instances, the affected screws were replaced (Fig. 3).

The B0 coil wire has a diameter of 1.8 mm and reaches a
length of 2121 m. Its calculated resistance is 11.3 	 (the addi-
tion of the connectors’ resistance leads to a measured resis-
tance of 20 	). The coil constant, extracted from COMSOL
simulations performed with the MSR, is equal to 84 nT/mA.
The field non-uniformity computed inside each precession
chamber is σ(Bz) = 13 pT. The magnetization of the inner-
most MSR layer plays a crucial role. It contributes to approx-
imately one third of the G0 0 term, the uniform component of
the magnetic field in the z-direction, and improves by more
than two orders of magnitude the field uniformity. However,

in the experiment, the coil will be likely not perfectly sym-
metrical due to unavoidable mechanical imperfections. Their
influence needs to be studied in order to establish robust con-
clusions about field uniformity.

3.2 Characterization of field non-uniformities

The description of the field non-uniformities can be split
in two parts: the field non-uniformities produced by the
designed B0 coil (i.e. a mechanically perfect coil) and the
ones resulting from mechanical imperfections.

The symmetries of the designed B0 coil (here the B0 coil
term refers to the coil itself and the innermost layer of the
shield) propagate to its generated magnetic field, which can
only consist of a series of “allowed” harmonic modes. A per-
fectly symmetric B0 coil produces a low number of gradients
while any symmetry-breaking allows other gradients to exist
(see Appendix C). Therefore, the system must be as symmet-
ric as possible. All openings in the MSR and/or the B0 coil
are symmetrically mirrored on opposite walls as shown in
Fig. 2, hence preserving the reflection symmetries w.r.t. the
XY, YZ and XZ planes. The latter can however be broken by
imperfect features of the MSR and B0 doors. In this spirit,
the next paragraph lists the number of modes produced by
the designed B0 coil.

The allowed modes generated by a finite solenoid are given
by the Π2k,4n terms, where k, n ∈ N. They include the uni-
form vertical component of the B0 field, corresponding to
the mode Π0 0, and non-uniform modes Π2 0,Π4 0,Π4 4, . . ..
The magnitude, Gl m , of the different modes is usually
decreasing with mode degree l, meaning that G2 0 is the pre-
dominant gradient. The presence of the openings breaks the
Rz symmetry (π/2 rotation around the vertical axis). This
extends the set of allowed modes to all Π2k,2n , k, n ∈ N, the
dominant one among the newly allowed modes being Π2 2.
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They lead to the non-uniformity of σ(Bz) = 13 pT stated in
the previous section.

The presence of mechanical imperfections can strongly
alter this picture. A vertical displacement of the entire B0

coil with respect to the MSR is the main matter of concern.
Such a misalignment breaks the reflection symmetry w.r.t.
the XY plane, allowing the existence of Π2k+1,2n modes
(k, n ∈ N). More precisely, a vertical shift of the B0 coil
produces a G1 0 gradient (which can easily exceed the limit
defined by the top-bottom matching condition (2.5)), as well
as higher l-odd, m = 0 gradients Ǵ3 0, Ǵ5 0..., inducing a
frequency shift mimicking an EDM signal. The extent of
this issue was investigated using simulations of the B0 coil
placed at different heights with respect to the MSR. Ver-
tical displacements, δz, between the two systems ranging
from 0 to 5 mm were considered. The G1 0 sensitivity to
the displacement δz derived from this set of simulations is
G1 0/δz = 6.45 (pT/cm)/mm, meaning that a 0.1 mm dis-
placement already exceeds the top-bottom matching condi-
tion. Dedicated coils, described in Sect. 3.3, were designed
to compensate the gradients induced by tiny vertical mis-
alignment. The production of higher l-odd, m = 0 gradi-
ents was also observed. Sensitivities to the displacement δz
are reported for normalized gradients in Table 2. While the
Ǵ5 0/δz and Ǵ7 0/δz sensitivities are weak and can be accom-
modated, the Ǵ3 0/δz sensitivity is substantial and requires
specific care. In order to address this flaw, the height of the
B0 coil support was made adjustable in a ± 3 mm range.
In the case of a misalignment, one can change the height of
the B0 coil and determine the optimal vertical position by
measuring the vertical gradient (see Sect. 4).

Horizontal displacements of the B0 coil along the X and
Y directions are less penalizing. They break the reflection
symmetry w.r.t. the XZ and YZ planes and respectively allow
Π2k+1,−2n−1 and Π2k+1,2n+1 modes, with k, n ∈ N. The
new possible gradients alter the field uniformity to a limited
extent, increasing σ(Bz) by a few pT for displacements of
5 mm in both horizontal directions.

The MSR layers are made of several mu-metal plates
between which the relative permeability may vary by at most
20% [10]. Such a variation between the roof and the floor
layers breaks the z-symmetry and may introduce a source
of non-uniformity for the vertical magnetic field component.
A simulation with a difference of 20% between the perme-
ability of the roof and the floor material showed no relevant
decrease of magnetic field uniformity. We conclude, that the
material’s absolute permeability is large enough making 20%
relative changes negligible.

Possible displacements of the B0 coil wire from its ideal
path may also be a source of non-uniformity. Taking into
account the groove width in which the B0 wire is inserted,
2 mm, and the wire diameter, 1.8 mm, simulations were per-
formed with undulating wires (with a periodicity and a phase

Table 2 Sensitivities of the l-odd, m = 0 normalized gradients to the
vertical displacement δz and sensitivities of theG1 1 andG1 −1 gradients
to the horizontal displacements δx and δy

Sensitivity Values (fT/cm)/mm

G1 0/δz 6450

Ǵ3 0/δz 38

Ǵ5 0/δz 6.1

Ǵ7 0/δz 7.3 × 10−2

G1 1/δx 360

G1 −1/δy 340

Table 3 Simulated and measured values of the harmonic coefficients
allowed by three coil symmetries

Allowed by idealized symmetry

Gradients Ǵ2 0 (pT/cm) Ǵ4 0 (pT/cm) Ǵ4 4 (pT/cm)

Simulated 0.32 6.90 × 10−2 −0.94 × 10−3

Measured 1.27 −12.25 × 10−2 −12.20 × 10−3

Allowed by hole-broken symmetry

Gradients Ǵ2 2 (pT/cm) Ǵ4 2 (pT/cm)

Simulated −0.30 5.91 × 10−2

Measured −0.67 −1.44 × 10−2

Allowed by door-broken symmetry

Gradients Ǵ1 −1 (pT/cm) Ǵ3 −1 (pT/cm) Ǵ3 −3 (pT/cm)

Simulated 0.04 2.09 × 10−2 0.47 × 10−2

Measured 1.54 5.18 × 10−2 −0.56 × 10−2

at the origin different from one loop to another). They did not
show any significant influence on the field uniformity, likely
due to an overall compensation effect between all loops.

Finally, a more realistic model of the MSR innermost
layer is implemented in the COMSOL simulation after con-
struction of the MSR. This simulation takes into account the
exact wall dimensions, slightly larger than in the ideal model
(Δx = +2.3 mm, Δy = +2.8 mm, Δz = +0.6 mm). Fur-
thermore, the coil geometry now includes a recession of the
MSR door (Δy = 6 mm), a feature that breaks the σy symme-
try (reflection in the XZ plane). This allows the Π2k+1,−2n−1,
k, n ∈ N, modes in the coil’s harmonic spectrum, the domi-
nant one being Π1 −1, on top of the already allowed Π2k,2n ,
k, n ∈ N, modes. All of these allowed gradients are pro-
duced in the simulation and recorded in Table 3. The field
non-uniformity in each precession chamber σ(Bz) resulting
from this model is increased from 13 pT to 16 pT.

123



  202 Page 8 of 19 Eur. Phys. J. C           (2025) 85:202 

3.3 Design of the auxiliary coils

The remaining magnetic field non-uniformities can be sup-
pressed by adjusting currents in the correction coil array.
The array is made of 9 independent (30 × 30 cm) square
coils mounted on each surface of the B0 coil support (there
are indeed 10 coils on the sides where the UCN guide and
the vacuum pipe openings are located). A full description of
the coils is given in figure 20 of [3]. The array can produce
harmonic modes Πlm up to the 6th l-order and therefore can
be used to suppress all harmonics at orders lower than the
6th. The procedure used to optimize the field uniformity is
described in Sect. 4.5.

Seven additional coils, the gradient coils, can also be used
to produce specific gradients of the Bz components [3]. The
G1 0, G1 1 and G1 −1 coils produce the linear gradients ∂z Bz ,
∂x Bz and ∂y Bz while the G2 0 and G3 0 coils describe the
quadratic and cubic gradients of the Bz component. Finally,
the G0 1 and G0 −1 produce the constant term of the hori-
zontal components Bx and By respectively. Beside their role
in the optimization of the magnetic field, they are used to
fulfill the top-bottom matching condition (G1 0), to control
the gradients that induce a false motional EDM (G1 0 and
G3 0), to achieve the requested field uniformity (G2 0), and to
benchmark the Cs magnetometer locations (G1 1 and G1 −1).
Their geometrical description is given in Appendix D.

All coils are powered by true bipolar current sources devel-
oped in the collaboration. The power supplies of the opti-
mization coils have a current range of ± 200 mA with a
setting resolution of 1 µA while the current ranges for the
gradient power supplies is ± 20 mA with a setting reso-
lution of 0.1 µA. The current stability was assessed by the
Allan standard deviation measured with an applied current
of 10 mA or 100 mA. The deviation was found to be below
1 ppm after 3 min which fulfills the requirements defined
in [3].

4 Characterization of the B0 coil

4.1 Magnetic field mapping

The offline mapping of the magnetic field is performed using
an automated field mapper, pictured in Fig. 4. The map-
per consists of a three-axis low-noise Bartington MAG13
fluxgate [27], mounted on a motorized arm that allows it
to explore a cylindrical volume of 78 cm radius and 82 cm
height. The fluxgate can also be rotated along the ρ axis to
determine its DC-offset. Magnetic field maps are recorded in
a series of rings (ρ, z) performed inside a given cylindrical
volume. One ring takes 74 s, during which the fluxgate mea-
sures the field with a sampling frequency of 10 Hz. A plot

Fig. 4 The n2EDM mapper inside the empty vacuum vessel. The flux-
gate mounted on the mapper’s arm can travel to any point inside a cylin-
drical volume of radius 78 cm and height 82 cm, at which it measures
the three projections of the magnetic field

Fig. 5 An example of a magnetic field map of the field generated by
the n2EDM coil system and recorded by the mapper. Each point corre-
sponds to the vertical projection of the magnetic field inside a cylindrical
volume of radius 78 cm and height 82 cm

of the vertical field projection of a B0 coil map is shown in
Fig. 5.

The characterization of the magnetic field consists in the
extraction of the harmonic spectrum {Glm}l≤7, with −l −
1 ≤ m ≤ l + 1, of the polynomial expansion (2.2) from
a map. This extraction is performed by first fitting all rings
(ρ, z) with a Fourier series in ϕ, and then fitting the Fourier
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Fig. 6 Horizontal cut at z = 0 of the deviations of the vertical B0 mag-
netic field, in the positive coil polarity. The simulated values from [30]
are compared to the 2022 measurements before and after optimization

with auxiliary coils. The latter successfully cancels the main contribu-
tions of the Π2 0 and Π2 2 modes. The dashed black lines show where
the walls of the precession chambers are positioned

coefficients with the polynomials functions in ρ and z of the
harmonic expansion. The fits presented here are done up to
order l = 7. This procedure was already employed for the
nEDM experiment and is explained more thoroughly in [28].
While we present here the most significant measurements of
the n2EDM mapping campaign, the full results are discussed
in chapters 7, 8, and 9 of [29].

The following subsections will demonstrate that all
requirements on magnetic field uniformity are satisfied by
analyzing magnetic field-mapping data. All the measured B0

field maps presented here were recorded with a coil current
I = 11.25 mA.

4.2 Magnetic field uniformity

The vertical component of the simulated and measured B0

fields, in the z = 0 plane, is plotted in Fig. 6. Moreover, Fig. 7
shows the corresponding harmonic spectra. Even though the
measured field is not as uniform as the simulated field, it nev-
ertheless satisfies the requirement (2.4). As discussed earlier,
the relevant quantity for n2EDM is the RMS on the vertical
field component inside each precession chamber, which for
the measured B0 field amounts to

σ(Bz)TOP = 48 pT, σ (Bz)BOT = 38 pT. (4.1)

For comparison, the residual field in the MSR without
the B0 coil has a uniformity of σ(Bz)TOP = 15 pT and
σ(Bz)BOT = 11 pT. The B0 coil is then the primary source
of non-uniformities.

The vertical field RMS of Eq. (4.1) receives contribu-
tions from all harmonic modes. The orthogonality of the
trigonometric functions inmϕ enforces that harmonic modes
of different m index add up quadratically inside σ(Bz) =√〈

(Bz − 〈Bz〉)2
〉
, while those with same index m can inter-

fere. As apparent in Fig. 7, the dominant contributions are
|G1 −1|σ(Πz,1−1) = 31 pT, |G2 0|σ(Πz,20) = 17 pT, and
|G2 2|σ(Πz,22) = 24 pT. The quadratic sum of these three
contributions amounts to 43 pT. The interference between
the Πz,20 and Πz,30 modes is responsible for the difference
between σ(Bz)TOP and σ(Bz)BOT.

The horizontal profile of the vertical field component
depicted in Fig. 6 is also well described by its dominant
harmonic modes. Considering only the Π2 0 and Π2 2 contri-
butions from the polynomial expansion (2.2), we write the
vertical field component as Bz = −(G2 0/2 − G2 2)x2 −
(G2 0/2+G2 2)y2. The parabolic shape witnessed in the hor-
izontal field profile is consistent with this expression when
plugging in the generalized gradients from Fig. 7. Visually,
it can be thought as a linear combination of the graphical
representations of Π2 0 and Π2 2 included in 10. As for the
y-odd structure that appears only in the measured fields, this
can be attributed to the presence of l-odd harmonic modes,
especially of Π1 −1. The vertical field consisting only of this
mode is written Bz = G1 −1y. The sign of G1 −1, which is
non-zero because of the presence of the MSR door, explains
the global shift of the parabola in the transverse plane.

Overall, the magnetic field generated by the B0 coil
achieves the desired uniformity consistent with a departure
from the ideal coil symmetry taking into account the presence
of the neutron guides, vacuum pipes, and MSR door. This is
shown by the measured harmonic gradients of Table 3. Fur-
thermore, its vertical component satisfies the n2EDM unifor-
mity requirements.

4.3 Magnetic field gradient generated by a vertical coil
displacement

Our first measurements of the vertical gradient G1 0 for both
B0 coil polarities, taken after mounting the coil and plot-
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Fig. 7 Harmonic spectrum of the B0 coil, in the positive polarity, for
the simulated field and measured field before and after optimization.
The fit is performed up to order l = 7 but here only modes of indices
l = 1, 2 are shown. The considered volume for all spectra is the mapped
cylindrical volume. Note that purely transverse harmonic modes with
m = ±(l + 1) (in faded colors) do not contribute to the total non-
uniformity σ(Bz)

Fig. 8 The triangle points show measurements of the vertical magnetic
field gradient, in both polarities of the coil, at three different vertical
positions of the coil center with respect to the magnetic origin of the
MSR. The measurements were taken from right to left in chronological
order. The slope of the linear fit matches the predicted gradient value

ted on Fig. 8 as the rightmost red and blue points, were far
above the 0.6 pT/cm limit imposed by the top-bottom gra-
dient. As discussed in Sect. 3.2, a vertical displacement of
the coil with respect to the MSR generates a vertical gradient
G1 0 proportional to the displacement, by breaking the reflec-
tion symmetry w.r.t. the horizontal plane. By moving the coil
vertically by 1 mm, we verified that the linear slope matched
our calculations. This allowed us to calculate the ideal posi-
tion, another 1 mm lower, satisfying our requirement. In its
final position, the B0 coil satisfies without optimization the
top-bottom resonance matching condition (2.5).

Fig. 9 Normalized gradients responsible for the false EDM through
Eq. (2.8), extracted from the magnetic field maps. These maps were
recorded in three different magnetic configurations: residual field (B0
coil is turned off), B0 coil turned on in the positive polarity, B0 coil
turned on in the positive polarity along with a combination of optimiza-
tion coils and gradient coils that suppress problematic harmonic gradi-
ents. The magnetic field reproducibility with respect to a full demag-
netization of the MSR is common to non-optimized and optimized B0
measurements. The 23 fT/cm limit imposed on the gradients corre-
sponds to a false EDM of 3 × 10−28e cm. The effect at order l = 7 is
not significant even without optimization, so the harmonic expansion is
not carried out beyond that order

4.4 Reproducible gradients for the correction of systematic
effects

We finally determine from the coil’s harmonic spectra the
problematic phantom modes of orders three, five, and seven
generated by the B0 coil alone, and estimate their repro-
ducibility.

To determine the reproducibility of the B0 coil’s harmonic
spectrum, maps were recorded after a full reset of the exper-
iment’s magnetic environment. This reset consists in open-
ing and closing the MSR to allow thermal excitation and
relaxation, followed by a procedural demagnetization – or
degaussing – of the internal field, between each map. We thus
define the reproducibility of the magnetic field as the standard
deviation of the field over a set of maps separated by such
a magnetic reset. Further details on the n2EDM degaussing
procedure are given in [31].

As shown in Fig. 9, although the systematic effect gener-
ated by modes Π́3 0 and Π́5 0 of the non-optimized B0 field
through Eq. (2.8) is above the systematical limit (2.6), it is
in all cases reproducible below this limit. In other words, the
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Table 4 Table of n2EDM requirements on magnetic field generation
for statistical and systematical errors (second column), and their mea-
sured values with associated standard deviations (two last columns).
The second-to-last column comes from the characterization of the field
produced by the B0 coil alone, while the last column concerns the opti-

mized field produced by the B0 coil and a well-chosen combination
of optimization coils. The systematical requirements concern both the
measured false EDM values and the associated deviations due to field
reproducibility

Required W/o optim. W/ optim.

Statistical requirements

Non-uniformity σ(Bz)TOP (pT) < 170 48 ± 1 32 ± 1

Non-uniformity σ(Bz)BOT (pT) < 170 38 ± 1 21 ± 1

Top-bottom condition |G1 0| (pT/cm) < 0.6 0.35 ± 0.25 0.16 ± 0.25

Systematical requirements

dfalse
n←Hg(Ǵ3 0Π́3 0) (10−28e cm) < 3 81.7 ± 2.9 2.3 ± 2.9

dfalse
n←Hg(Ǵ5 0Π́5 0) (10−28e cm) < 3 9.2 ± 0.7 0.7 ± 0.7

dfalse
n←Hg(Ǵ7 0Π́7 0) (10−28e cm) < 3 0.3 ± 0.1 0.2 ± 0.1

typical variations of the magnetic field are small enough to
allow an estimate of the false EDM below the target sensitiv-
ity. As mentioned in Sect. 2, the top-bottom gradient shown
in the leftmost set of bars will be accounted for by the online
analysis.

While the B0 coil is, as discussed earlier, responsible for
the larger share of the non-uniformities Glm of the mag-
netic field, it is however not the limiting factor regarding the
reproducibility of the total field. In fact, the reproducibility
measured with and without the B0 coil was found to be of the
same level. This is true in particular for the reproducibility of
the phantom gradients, shown in Fig. 9, which is only slightly
larger than without the B0 coil. A dedicated study showed
that the residual field is not a random noise but exhibits a dis-
tinctive pattern, as it is generated by thermo-electric currents
flowing through the vacuum vessel (chapter 8 of [29]). In
order to maintain this field as stable as possible, the n2EDM
MSR is thermally insulated from the rest of the thermohouse
and a complete demagnetization of the shield is performed
before mapping or data-taking.

We conclude that the n2EDM magnetic field matches the
requirements on field uniformity with respect to both sta-
tistical errors and systematical errors. These are summa-
rized in Table 4. In particular, offline measurements show
that problematic phantom modes are reproducible enough to
either (A) allow for an estimate of the generated systematic
effect through (2.8), or (B) successfully implement a field-
optimization strategy to cancel these modes and bring the
systematic effect below the requirement (2.6).

4.5 Magnetic field optimization with gradient and
optimization coils

Individual mapping of the 56 optimization coils and 6 gra-
dient coils allow us to determine their respective coil con-

stants. These correspond to the ratio between the current
driven through the coil and the amplitude Glm of the gen-
erated harmonic modes, for all modes of the spectrum. One
can then determine from the measured harmonic spectrum
the coil currents that cancel a given set of harmonic modes.

As the primary target of the magnetic field optimization
is to suppress the false EDM, we choose a set of currents
that cancels harmonic modes Π3 0, Π5 0, and Π7 0. However
we are also able to simultaneously cancel other problematic
modes Π2 0 and Π2 2, which, as explained in the previous sec-
tion, greatly contribute to the non-uniformity on the vertical
magnetic field component. Figure 9 shows that the phantom
modes of the optimized B0 field all generate a false EDM
below the limit given by Eq. (2.6). This agreement is also
featured in Table 4.

Furthermore, the cancellation of Π2 0 and Π2 2, as visible
in Fig. 7, reduces the vertical non-uniformity in each chamber
to

σ(Bz)TOP = 32 pT, σ (Bz)BOT = 21 pT, (4.2)

nearly one order of magnitude below the statistical require-
ment. The middle plot of Fig. 6 confirms that it is indeed the
cancellation of the parabolic modes Π2 0 and Π2 2 that lowers
the non-uniformity. Finally, the non-uniformity over the vol-
ume of interest encompassing the two precession chambers,
of radius 40 cm and height 12 cm, amounts to

σ(Bz) = 27 pT. (4.3)

In conclusion, we are not only able to match the repro-
ducibility requirements for the control of the false EDM, but
also to largely cancel the latter. Furthermore, the optimized
B0 vertical field is nearly one order of magnitude more uni-
form than the design requirement.
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5 Conclusion

We designed and commissioned a coil system to generate
a highly uniform magnetic field for n2EDM, an upcoming
experiment to measure the electric dipole moment of the neu-
tron with a sensitivity of 1 × 10−27e cm.

The design of the coil is a finite square solenoid wired
inside a magnetic shield, the MSR of n2EDM [10]. The coil
together with the shield mimics an infinite solenoid and gen-
erates a vertical uniform magnetic field of 1 µT. Furthermore,
the solenoid wiring goes around several geometrical features
that break the inherent symmetries of a finite square solenoid.

The field generated by this coil system is expressed in the
convenient harmonic polynomial expansion. Because of the
conservation of the coil symmetries in the generated mag-
netic field, we expect the harmonic spectrum of the coil to
contain not only a uniform vertical mode, but also a deter-
mined set of non- uniform modes that depend on the amount
of symmetry-breaking caused by the geometrical imperfec-
tions included in the coil design. Finite-element simulations
(COMSOL) of the field generated by the coil system, as well
as later measurements with an automated field mapper, yield
a harmonic spectrum consistent with these expectations.

The measured magnetic field satisfies the uniformity
requirements of n2EDM. In particular, we showed that
the problematic “false EDM” generated by the coil sys-
tem was reproducible below the systematical requirement
of 3 × 10−28e cm. Pushing the capabilities of the coil sys-
tem even further, we used a dedicated set of coils to target
problematic modes of the coil’s harmonic spectrum in order
to generate an even more uniform field. The resulting opti-
mized field generates a false EDM strictly smaller than the
systematical limit

Finally, the uniformity of the optimized magnetic field,
which we characterize as the RMS deviation on its vertical
component, is measured at σ(Bz) = 27 pT over the volume
of the two precession chambers. The n2EDM coil system
is thus able to generate a 1 µT vertical field with a relative
root mean square deviation σ(Bz)/Bz = 3 × 10−5 inside a
cylinder of radius 40 cm and height 30 cm.
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Appendix A The harmonic magnetic field expansion

The harmonic expansion of the magnetic field given in Eq.
(2.2) depends on a set of harmonic modes Πlm(r) determined
by solving Maxwell’s equations in a region with no charge
or magnetization

∇ · B = 0, (A.1)

∇ × B = 0. (A.2)

Equation (A.2) implies that the field can be written as the
gradient of a potential V , with B = ∇V . Equation (A.1)
imposes that this potential is a solution of Laplace’s equation
ΔV = 0, which in this case is expressed in the spherical
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Table 5 The basis of harmonic polynomials in Cartesian coordinates, sorted by degree up to l = 3

l m Πx Πy Πz

0 −1 0 1 0

0 0 0 0 1

0 1 1 0 0

1 −2 y x 0

1 −1 0 z y

1 0 − 1
2 x − 1

2 y z

1 1 z 0 x

1 2 x −y 0

2 −3 2xy x2 − y2 0

2 −2 2yz 2xz 2xy

2 −1 − 1
2 xy − 1

4

(
x2 + 3y2 − 4z2

)
2yz

2 0 −xz −yz z2 − 1
2 (x2 + y2)

2 1 − 1
4

(
3x2 + y2 − 4z2

) − 1
2 xy 2xz

2 2 2xz −2yz x2 − y2

2 3 x2 − y2 −2xy 0

3 −4 3x2y − y3 x3 − 3xy2 0

3 −3 6xyz 3(x2z − y2z) 3x2y − y3

3 −2 − 1
2 (3x2y + y3 − 6yz2) − 1

2 (x3 + 3xy2 − 6xz2) 6xyz

3 −1 − 3
2 xyz − 1

4 (3x2z + 9y2z − 4z3) 3yz2 − 3
4 (x2y + y3)

3 0 3
8 (x3 + xy2 − 4xz2) 3

8 (x2y + y3 − 4yz2) z3 − 3
2 z(x

2 + y2)

3 1 − 1
4 (9x2z + 3y2z − 4z3) − 3

2 xyz 3xz2 − 3
4 (x3 + xy2)

3 2 −x3 + 3xz2 −3yz2 + y3 3(x2z − y2z)

3 3 3(x2z − y2z) −6xyz x3 − 3xy2

3 4 x3 − 3xy2 −3x2y + y3 0

coordinate system (ρ, θ, ϕ):

1

ρ2

∂

∂ρ

(
ρ2 ∂V

∂ρ

)
+ 1

ρ2 sin θ

∂

∂θ

(
sin θ

∂V

∂θ

)

+ 1

ρ2 sin2 θ

∂2V

∂ϕ2 = 0. (A.3)

The Laplace equation can be solved by separation of vari-
ables V (ρ, θ, ϕ) = R(ρ)Θ(θ)Φ(ϕ), which yields a set of
solutions indexed by two integers l and m, with −l − 1 <

m < l + 1. It was shown in [12] that, for some choice of
normalization, these solutions can be written as

Vlm(ρ, θ, ϕ) = (l − 1)!(−2)|m|

(l + |m|)! ρl P |m|
l (cos(θ))

×
{

cos (|m|ϕ) if m ≥ 0

sin (|m|ϕ) if m < 0
, (A.4)

where the Pm
l are the associated Legendre polynomials. The

l-degree harmonic polynomials are finally determined by dif-
ferentiation of the l + 1-degree field potential:

Πlm(r) = ∇Vl+1,m(r). (A.5)

In Cartesian coordinates, the Πlm are l-degree polynomial
functions of x, y, z, given up to order l = 3 in Table 5,
where Πlm = Πx,lmex + Πy,lmey + Πz,lmez . To obtain the
harmonic functions in cylindrical coordinates, we let

Πρ,lm = cos (mϕ)Πx,lm + sin (mϕ)Πy,lm, (A.6)

Πϕ,lm = − sin (mϕ)Πx,lm + cos (mϕ)Πy,lm, (A.7)

so that Πlm = Πρ,lmeρ + Πϕ,lmeϕ + Πz,lmez . Furthermore,
we usually separate the polynomial and angular functions
and write

Πlm(r) = Π̃lm(ρ, z) · ylm(ϕ), (A.8)

where the reduced harmonic functions Π̃lm(ρ, z) are poly-
nomials in ρ, z, and
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Table 6 The basis of harmonic polynomials in cylindrical coordinates, sorted by degree up to l = 7. Only the m = 0 modes are given for l > 3

l m Πρ Πϕ Πz

0 −1 sin ϕ cos ϕ 0

0 0 0 0 1

0 1 cos ϕ − sin ϕ 0

1 −2 ρ sin 2ϕ ρ cos 2ϕ 0

1 −1 z sin ϕ z cos ϕ ρ sin ϕ

1 0 − 1
2 ρ 0 z

1 1 z cos ϕ −z sin ϕ ρ cos ϕ

1 2 ρ cos 2ϕ −ρ sin 2ϕ 0

2 −3 ρ2 sin 3ϕ ρ2 cos 3ϕ 0

2 −2 2ρz sin 2ϕ 2ρz cos 2ϕ ρ2 sin 2ϕ

2 −1 1
4

(
4z2 − 3ρ2

)
sin ϕ 1

4

(
4z2 − ρ2

)
cos ϕ 2ρz sin ϕ

2 0 −ρz 0 − 1
2 ρ2 + z2

2 1 1
4

(
4z2 − 3ρ2

)
cos ϕ 1

4

(
ρ2 − 4z2

)
sin ϕ 2ρz cos ϕ

2 2 2ρz cos 2ϕ −2ρz sin 2ϕ ρ2 cos 2ϕ

2 3 ρ2 cos 3ϕ −ρ2 sin 3ϕ 0

3 −4 ρ3 sin 4ϕ ρ3 cos 4ϕ 0

3 −3 3ρ2z sin 3ϕ 3ρ2z cos 3ϕ ρ3 sin 3ϕ

3 −2 ρ
(
3z2 − ρ2

)
sin 2ϕ 1

2 ρ
(
6z2 − ρ2

)
cos 2ϕ 3ρ2z sin 2ϕ

3 −1 1
4 z

(
4z2 − 9ρ2

)
sin ϕ 1

4 z
(
4z2 − 3ρ2

)
cos ϕ ρ

(
3z2 − 3

4 ρ2
)

sin ϕ

3 0 3
8 ρ

(
ρ2 − 4z2

)
0 1

2 z
(
2z2 − 3ρ2

)

3 1 1
4 z

(
4z2 − 9ρ2

)
cos ϕ 1

4 z
(
3ρ2 − 4z2

)
sin ϕ ρ

(
3z2 − 3

4 ρ2
)

cos ϕ

3 2 ρ
(
3z2 − ρ2

)
cos 2ϕ 1

2 ρ
(
ρ2 − 6z2

)
sin 2ϕ 3ρ2z cos 2ϕ

3 3 3ρ2z cos 3ϕ −3ρ2z sin 3ϕ ρ3 cos 3ϕ

3 4 ρ3 cos 4ϕ −ρ3 sin 4ϕ 0

4 0 1
2

(
3ρ3z − 4ρz3

)
0 1

8

(
8z4 − 24ρ2z2 + 3ρ4

)

5 0 5
16

(−8ρz4 + 12ρ3z2 − ρ5
)

0 1
8

(
8z5 − 40ρ2z3 + 15ρ4z

)

6 0 3
8 ρ

(−8z5 + 20ρ2z3 − 5ρ4z
)

0 1
16

(
16z6 − 120ρ2z4 + 90ρ4z2 − 5ρ6

)

7 0 7
122 ρ

(−64z6 + 240ρ2z4 − 120ρ4z2 + 5ρ6
)

0 1
16 z

(
16z6 − 168ρ2z4 + 210ρ4z2 − 35ρ6

)

ylm(ϕ) =
{

cos (mϕ)eρ + sin (mϕ)eϕ + cos (mϕ)ez if m ≥ 0,

sin (mϕ)eρ + cos (mϕ)eϕ + sin (mϕ)ez if m < 0.

(A.9)

These cylindrical harmonic functions are given up to order
l = 7 in Table 6. A few useful harmonic modes are repre-
sented in the z = 0 transverse plane in Fig. 10.

Appendix B Phantom modes and magnetic gradient
normalization

We recall here the explicit expressions of the two contribu-
tions to the false EDM in the geometry of n2EDM, and give
a useful normalization of the generalized gradients.

The top-bottom magnetic gradient existing between the
two chambers of n2EDM is defined in [3] as

GTB = 〈Bz〉TOP − 〈Bz〉BOT

H ′
= G1 0 − L2

3G3 0 + L4
5G5 0 − · · · , (B.1)

where H ′ = 18 cm is the height difference between the
centers of the two chambers, and where the second line is
obtained by using the harmonic expansion of Bz . The Ll are
then geometric coefficients with a unit of distance, provided
in Table 7.

The false EDM in the n2EDM geometry expressed by Eq.
(2.8) is generated by l-odd, m = 0 harmonic modes, some of
which also generate a top-bottom gradient. The rest, which
satisfy GTB = 0, are the so-called phantom modes. These
can be written as

Π́2k+1,0 = L2k
2k+1

D2k
2k+1

[
Π1 0 − (−1)k

L2k
2k+1

Π2k+1,0

]
. (B.2)
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Fig. 10 Vertical field component of single harmonic modes in the z = 0 plane. The field ranges in magnitude from blue to red

Table 7 Geometrical coefficient L2k
2k+1 for each 2k + 1 term of the top-bottom gradient expansion (B.1), up to order 2k + 1 = 7

Coef. Expression Value

L2
3

3R2

4 − H2+H ′2
4 (32.9 cm)2

L4
5

5R4

8 − 5R2(H2+H ′2)
8 + 3H4+10H2H ′2+3H ′4

48 (32.7 cm)4

L6
7

1
16

(
35R6

4 − 70R4(H2+H ′2)
3 + 21R2(3H4+10H2H ′2+3H ′4)

12 − H6+7H4H ′2+7H2H ′4+H ′6
4

)
(32.5 cm)2

The geometric coefficents Dl are determined by the nor-

malization condition
〈
ρΠ́

(ρ)
l0

〉

TOP
= −R2/4. For odd-order

modes, this yields

D2k
2k+1 =

⎡

⎣L2k
2k+1 − (−1)k

〈
ρΠ

(ρ)
2k+1,0

〉

−R2/4

⎤

⎦ . (B.3)

For even degree modes, which do not generate a top-bottom
gradient, we simply obtain

D2k−1
2k =

〈
ρΠ

(ρ)
2k,0

〉

TOP

−R2/4
. (B.4)

Their numerical values for l ≤ 7 are given in Table 1. Com-
bining the above, a magnetic field of the form

B = GTBΠ1 0 + Ǵ3 0Π́3 0 + Ǵ5 0Π́5 0 + · · · , (B.5)

with the normalized gradients Ǵl = Dl−1
l Gl , generates pre-

cisely the false EDM given by Eq. (2.8).

Appendix C Symmetries of the coil system and allowed
harmonic modes

Here we determine the symmetries of several geometrical
configurations of the n2EDM coil system, and derive the
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Table 8 Augmented character table of several symmetry groups of the
coil system. The leftmost column specifies a more or less ideal coil
geometry. The second column gives the coil representation of a sym-
metry group G satisfied by this geometry. The following four columns
provide the representation ρc(T ) of a given symmetry T ∈ G, which

altogether constitute the character of ρc(G). The rightmost columns
specifies the harmonic modes whose magnetic representation ρb(G)

shares the same character as the coil representation, and are therefore
allowed by the corresponding coil geometry

Coil geometry Irrep(Group) Coil character Allowed modes

σx σy σz Rz

Solenoid ρc(D4h) −1 −1 1 1 {Π2k,4n}k,n∈N
W/ tubes or guides ρc(D2h) −1 −1 1 Broken {Π2k,2n}k,n∈N
W/ x-shift ρc(C2v(x)) Broken −1 1 Broken {Π2k,2n,Π2k+1,2n+1}k,n∈N
W/ y-shift or door ρc(C2v(y)) −1 Broken 1 Broken {Π2k,2n,Π2k+1,−2n−1}k,n∈N
W/ z-shift ρc(C2v(z)) −1 −1 Broken Broken {Π2k,2n,Π2k+1,2n}k,n∈N

harmonic shape of the magnetic field that preserves these
symmetries.

The current system described by the B0 coil current loops,
pictured in 2, and the innermost layer of the MSR, is invariant
to a factor ±1 under a number of spatial transformations that
depends on the inclusion of some symmetry-breaking fea-
tures in the coil’s design. Because the magnetic field induced
by a current running through a solenoid is a pseudo-vector
while the current field is a vector, we know that the symme-
tries (factor 1 transformations) of the coil’s current system
are anti-symmetries of the induced magnetic field, and that its
anti-symmetries (factor −1 transformations) correspond to
magnetic field symmetries. After identifying the symmetries
and anti-symmetries of the coil system, we determine which
modes of the harmonic expansion are anti-symmetric and
symmetric in the coil’s geometry, and are therefore allowed
by the coil’s design. These results are featured in Table 8.

We explain this process for an idealized B0 coil, which
consists of a perfect square solenoid where none of the
symmetry-breaking features represented in red, green, and
blue in Fig. 2 are considered. The current system of the ide-
alized coil is invariant to a factor ±1 under a set of 16 spatial
transformations

D4h = {I, P, σx , σy, σz, R
2
x , R

2
y, R

2
z , Rz, R

−1
z ,

σxy, σ−xy, R
′
z, R

′−1
z , σ ′

xy, σ
′−xy}. (C.1)

These are invertible 3 × 3 matrices, which together with
matrix multiplication possess the mathematical structure of a
group. This group can be generated by three of its elements,
one of the two vertical plane reflections σx , σy , the horizontal
plane reflection σz , and the π/2-rotation around the vertical
axis Rz , such that D4 h = 〈σx , σz, Rz〉. We give the explicit
forms of these generators:

σx =
⎛

⎝
−1 0 0
0 1 0
0 0 1

⎞

⎠ σy =
⎛

⎝
1 0 0
0 −1 0
0 0 1

⎞

⎠ σz =
⎛

⎝
1 0 0
0 1 0
0 0 −1

⎞

⎠

(C.2)

Rz =
⎛

⎝
0 −1 0
1 0 0
0 0 1

⎞

⎠ , (C.3)

while the remaining group elements can be found through
the following combinations:

I = σ 2
x = σ 2

y = σ 2
z P = σxσyσz

R2
x = σyσz R2

y = σxσz R2
y = σxσy

σxy = σx Rz σ−xy = σy Rz

R′
z = σz Rz σ ′

xy = σzσxy σ ′−xy = σzσ−xy

(C.4)

In more specific terms, the current system is transformed
by a representation, hereafter referred to as the current rep-
resentation, of the D4h group

ρc : D4h −→ GL(Vc), (C.5)

where GL is the general linear group, Vc is the vector space
where the current field lives, and where the elements of
ρc(D4h) satisfy by definition

ρc(T1T2) = ρc(T1)ρc(T2), ∀T1, T2 ∈ D4h . (C.6)

The elements ρc(T ) are determined by considering that these
are linear transformations of the current field I(r), given by

ρc(T ) : I(r) �−→ ρc(T )I(r) = T I(T−1r). (C.7)

Solving the above for T = σx , σz, Rz , which are generators
of D4h , yields the idealized coil character given in Table 8
and completely determines the symmetry of the idealized
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coil system. For instance, applying the reflection symmetry
w.r.t. the YZ plane σx to the idealized solenoid B0 coil in Eq.
(C.7), using σx from Eq. (C.3), leads to ρc(σx ) = −1.

The shape of the magnetic field that preserves this symme-
try is obtained by considering themagnetic representationρb ,
whose elements are linear transformations of the magnetic
field such that

ρb(T ) : B(r) �−→ ρb(T )B(r) = det(T )TB(T−1r). (C.8)

Requiring that the symmetry of the magnetic representation
matches the symmetry of the current representation, with
ρb(σx ) = −1, ρb(σz) = 1, and ρb(Rz) = 1, amounts to
looking for a field that satisfies the three following equations
simultaneously:

⎛

⎝
Bx

By

Bz

⎞

⎠ (x, y, z) =
⎛

⎝
−Bx

By

Bz

⎞

⎠ (−x, y, z) (C.9)

⎛

⎝
Bx

By

Bz

⎞

⎠ (x, y, z) =
⎛

⎝
−Bx

−By

Bz

⎞

⎠ (x, y,−z) (C.10)

⎛

⎝
Bx

By

Bz

⎞

⎠ (x, y, z) =
⎛

⎝
−By

Bx

Bz

⎞

⎠ (y,−x, z) (C.11)

Making use of the harmonic field expansion (2.2), we identify
the harmonic modes that satisfy these equations and thus
preserve the idealized coil symmetry. These are referred to
as allowed modes and are given by Table 8. We then see
that harmonic modes Π2 0,Π40,Π44, . . . are allowed by the
idealized coil geometry.

The harmonic modes allowed by less ideal thus more
restrictive coil geometries are determined in the same fash-
ion and featured in the same table, by considering subgroups
of D4h . Incorporating the vacuum pipes and neutron guides
in the coil geometry (in green in Fig. 2) breaks the idealized
coil symmetry D4h as it is no more invariant under the π/2-
rotation around the vertical axis. The symmetry of this hole-
broken coil is given by theD2h group, the largest subgroup of
D4h which does not contain Rz . Similarly, the C2v(x), C2v(y),
and C2v(z) subgroups are obtained by removing σx , σy , and
σz respectively from D2h . C2v(y) in particular corresponds to
a coil symmetry broken by the MSR door (in blue in Fig. 2).

Appendix D Geometrical description of the gradient
coils

The following figures present the design of the seven gradient
coils built for the experiment. The G10, G20 and G30 coils
are fixed on the B0 coil support while all others are fixed on
an additional support attached to the B0 one. The scale unit
showed on the cube sides is the meter. The axis origin is at the
center of the system. The B0 door is schemed in the front face
by the black parallelogram. The blue pattern corresponds the
current path, the red arrows give the direction of the current
flow. All coils have their own power supply (Figs. 11, 12,
13).

Fig. 11 Left: G10 gradient coil. The coil is made of four horizontal
square loops located at z = ±1335 mm and z = ±1035 mm. Middle:
G20 gradient coil. The G20 coil is made of six horizontal square loops

located at z = ±1335 mm, z = ±1035 mm and z = ±1005 mm. Right:
G30 gradient coil. The G30 coil is made of four horizontal square loops
located at z = ±937.5 mm, z = ±1035 mm and z = ±892.5 mm
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Fig. 12 Design of the G01
(left) and G0−1 (right) gradient
coils. The G01 coil is made of
four vertical square loops
located at x = ±1118 mm and
x = ±359 mm. The G0−1 coil is
made of four vertical square
loops located at y = ±1118 mm
and y = ±359 mm

Fig. 13 Design of the G11 gradient coil. The G1−1 gradient coil has
exactly the same design rotated by 90 degrees i.e. symmetric with
respect to (Ox, Oz) instead of (Oy, Oz)
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