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ABSTRACT 
Soil organic carbon (SOC) content is a key indicator of 

soil health informing about sustainable land management 
practices, but parcel-wide SOC mapping is challenging as it 
requires high-resolution data. Unoccupied Aerial Vehicles 
(UAVs) can collect data with cm-resolution but are not yet 
fully ready to be practically implemented. The aim of this 
study is to provide more insights in the explanatory 
capabilities of UAV-derived spectral and topographical 
variables. To this end, mixed models were employed to 
estimate the SOC content of three agricultural parcels with 
different crop types in Greece. Results showed variations in 
SOC content among parcels, with a vineyard and a kiwi 
orchard having higher values compared to a peach orchard. 
All models, containing topographical and/or spectral 
variables, explained 81% of SOC content variation of the 
training dataset. Besides crop type, other topographical and 
spectral variables were identified as significant predictors. 
The study emphasizes the feasibility of UAV data and 
specific modeling techniques for accurate SOC estimation at 
the parcel level, providing valuable insights for precision 
agriculture. The findings recommend further exploration, 
including machine-learning approaches in future studies. 
 

Index Terms— soil organic carbon, digital soil mapping, 
unoccupied aerial vehicles, photogrammetry, multispectral 
 

1. INTRODUCTION 
 
Being one of the four major components of the soil, soil 
organic matter can be considered as a key indicator of soil 
health. As such, soil organic carbon (SOC) content and stocks 
are important indicators in ecosystem service assessments 
[1,2]. Carbon storage conditions soil properties for plant 
growth and soil activity, ensuring a.o. food security. Spatially 
explicit information about soil health indicators, and SOC in 
particular, at parcel level is becoming increasingly important 
for informing sustainable agricultural practices. Digital soil 

mapping (DSM) approaches, aiming to exploit the covariance 
of a soil variable with one or more of Jenny’s soil forming 
factors [3] extended with geographic position, has often been 
presented as successful methods to generate region- and 
national-wide soil information. In order to be suited for soil 
mapping at parcel level, however, these methods require 
high-resolution input data [4], which cannot always be 
provided by satellite-based remote sensing platforms. To this 
end, Unoccupied Aerial Vehicles (UAVs) show great 
potential, as recent technical and jurisdictional advancements 
allow the collection of sub-meter spatial resolution imagery 
and directed them to the core of the increasingly data-driven 
agriculture [5]. However, more information about the spectral 
bands to be collected or topographical variables to be derived 
is still necessary to facilitate the implementation of UAV-data 
in DSM approaches. The aim of this study is to assess the 
performance of UAV-data as an input in digital soil mapping 
approaches to estimate the SOC content in three agricultural 
parcels. 
 

2. MATERIAL AND METHODS 
 
2.1. Study sites 
The study was conducted in three distinct parcels covered by 
different crop types (kiwi, peach, grape), each located in 
different areas in Greece. Two of them are situated in the 
region of Imathia (the kiwi orchard of 2 ha in Agia Marina, 
the peach orchard of 0.8 ha in Stavros), and the 0.4 ha 
vineyard in Amynteo, Florina, as depicted in Figure 1. In the 
Imathia region, predominant crops include peaches and 
kiwis. Peaches thrive in well-drained loamy or sandy-loamy 
soils, particularly in the south-western area, while kiwis 
prefer loamy or silty loamy soils. Vinegrapes, grown for 
winemaking, adapt well to various soil types, with the region 
predominantly featuring sandy loam. The sandy loam 
composition ensures effective drainage, reducing the risk of 
waterlogged conditions that could contribute to disease 
development. 



 
 
Figure 1: Geographical representation of the study sites: a) grape, b) peach, c) kiwi. The triangles represent the sampling 
locations. 

2.2. Soil sampling 
Soil samples were collected based on a randomized location 
selection strategy, with 20 sampling points distributed across 
the parcel in a zig-zag pathway [6] (Figure 1).This approach 
ensured a representative sampling of the entire parcel, 
capturing within parcel variability. Each sample is a mixture 
of 4 topsoil subsamples distributed at a cross shape next to 
the roots, aiming to avoid parcel areas that might be 
compacted due to the usage of machinery or heavy 
equipment. The mixed soil samples were transferred to the 
laboratory where they were air-dried and analyzed with the 
Walkley-Black method for soil organic carbon content 
determination [7]. 
 
2.3 UAV imagery collection and processing 
For each of three study sites, two flight missions were 
executed. For the peach and kiwi orchards, this was done in 
April 2022, while the flights over the vineyard were carried 
out in June 2022. The first flight consisted of a double grid 
mission at 40 m AGL with a multirotor DJI Phantom 4 RTK 
with RGB (FC6310R_8.8_5472x3648) sensor and a 
horizontal and vertical image overlap of 80%, which were 
found to be the optimal flight parameters in earlier research 

[8]. All collected images were processed using 
Pix4Dmapper-software (Pix4D S.A., Lausanne, 
Switzerland). Following the principle of photogrammetry or 
structure-from-motion (SfM), processing involved image 
calibration, point cloud generation and densification and 
mosaicking of the resulting Digital Terrain Models (DTMs) 
and Digital Surface Models (DSMs). Next, these raster 
datasets were further processed in QGIS 3.22 software and 
used to compute the following variables: Slope, Topographic 
Position Index (TPI), Topographic Ruggedness Index (TRI) 
and Aspect. The second flight consisted of a single grid flight 
(40 m AGL, 80 % image overlap) with a multirotor DJI 
Matrice 210 V2 RTK platform equipped with a Micasense 
Altum sensor. This multispectral sensor collects information 
about the following bands: Blue (Center wavelength 475 nm), 
Green (560 nm), Red (668 nm), Red Edge (717 nm), Near 
infrared (NIR, 842 nm), Longwave Infrared (LWIR, 11 µm). 
The collected imagery was processed in Pix4Dmapper-
software following the Ag Multispectral processing template. 
Apart from the individual bands, the following vegetation 
indices were computed: NDRE and NDVI. During the entire 
duration of the flights, an RTK connection was established 
with the DJI Base Station. 



2.4. Digital soil mapping 
To detect collinearity between the predictors, Pearson 
correlation coefficients (r) were calculated using R-software 
4.1.3 (R Core Team, 2022). Of each pair of highly correlated 
predictor variables (|r| > 0.70), the variable with the weakest 
correlation with the SOC content was omitted from 
modelling. 
Given the hierarchical nature of the dataset – 20 samples per 
crop type – a mixed model approach was selected as the most 
appropriate. In total, three different models were trained 
using the mgcv package in R [9]: (A) with only topographical 
variables resulting from SfM: Slope, Aspect, TPI and TRI (B) 
with only spectral variables: Blue, Green, Red, Red Edge, 
NIR, LWIR and indices NDVI and NDRE and (C) with a 
combination of topographical and spectral variables. In each 
model, crop type was added as a random intercept by 
representing it as a smooth term. Next, model selection was 
based on multimodel inference using the ‘MuMIn’-package 
of R-software [10]. The global model contained all model 
variables mentioned for each model type (A, B, C), except 
those omitted after the collinearity analysis. With MuMIn’s 
dredge function, a set of submodels nested in the global 
model was generated and ranked according to the Second-
order Akaike Information Criterion (AICc). As 
recommended for small datasets [11], this criterion was used 
instead of AIC as the former takes into account an additional 
small-sample bias-correction term to prevent overfitting. 
Model averaged coefficients were calculated using the 
submodels with ΔAICc < 2, since these models are 
considered to substantially explain variation in the data [11]. 
The relative importance of each variable in the multimodel 
average (MMA) is reflected by the sum of the Akaike weights 
over all submodels. 
 

3. RESULTS & DISCUSSION 
 

3.1. Soil indicators 
The SOC content varied across and within the different 
parcels (Figure 2), with higher values found in the vineyard 
(1.50 ± 0.22 %) and kiwi orchard (1.33 ± 0.05 %), and the 
lowest in the peach orchard (0.84 ± 0.05 %).  

 
Figure 2: Histogram of the observed soil organic carbon 
(SOC) content for the three parcels. 

3.2. Digital soil mapping 
Based on the collinearity analysis, the following variables 
were dropped: Blue, Green, Red, Red Edge and NDRE. In 
general, the goodness-of-fit indicators did not vary 
considerably between the three model types (Table 1). These 
models were capable to explain 81 % of the variation in the 
SOC content based on the training dataset, which is in line 
with similar research [12]. In each model, the most important 
variable was the smooth term describing the crop type (Table 
2). Since the parcels were located in different regions with 
different soil characteristics, this was to be expected. In both 
models taking topographical variables into account, TPI was 
found to be the second most important variable. The variable 
coefficient was in both cases negative, which can be 
explained by the geomorphological interpretation of this 
index. As observed by [13], low TPI values generally 
correspond to concave landscape positions found in valley 
bottoms and at the foothill, which typically have higher 
carbon contents. 
 

 

Table 1: Goodness-of-fit indicators of each trained model. 

Goodness-of-fit 
indicator 

Model A: SfM-variables Model B: MS variables Model C: combination of SfM and MS 

𝑅𝑅²𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡  0.83 0.83 0.84 
𝑅𝑅²𝑡𝑡𝑎𝑎𝑎𝑎,𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡  0.81 0.81 0.81 
𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡 (%) 0.13 0.13 0.13 
𝑟𝑟𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡 (%) 10.60 10.59 10.50 

 



Table 2: Importance and coefficients of the variables 
contained in each multimodel average. 

Model 
type  

Variable Relative 
Importance 

Variable 
coefficient 

A Intercept  1.21 
 Grape / Kiwi / Peach 1.00 0.27 / 0.11 

/ -0.39 
 TPI 0.26 -2.47 
 Slope 0.19 0.002 
 TRI 0.17 0.35 
B Intercept  1.31 
 Grape / Kiwi / Peach 1.00 0.28 / 0.11 

/ -0.39 
 Blue 0.26 0.31 
 NIR 0.22 0.05 
 LWIR 0.15 -3.87 10-6 
C Intercept  1.25 
 Grape / Kiwi / Peach 1 0.27 / 0.11 

/ -0.38 
 TPI 0.30 -2.93 
 Blue 0.23 0.28 
 NIR 0.19 0.04 
 Slope 0.09 0.0008 
 TRI 0.08 0.18 
 LWIR 0.08 -2.02 10 -6 

 
4. CONCLUSION 

 
Recent studies have investigated the potential of utilizing 
UAV data from bare soil, combined with terrain attributes, to 
estimate and map SOC, yielding comparable results. Despite 
employing limited spectral bands, we assessed performance 
across diverse fields, delving into the concept of mapping 
UAV data in multiple fields with different crops by following 
specific protocols in data acquisition. Furthermore, relying on 
a minimal set of indices allowed us to explore edge 
processing techniques for real-time estimation in the future, 
as extensive calculations are not necessary and can be 
executed on the edge. Therefore, the study recommends the 
inclusion of these approaches in studies using UAV-based 
solutions and other explanatory variables to improve the 
estimate of SOC, though further studies are still required, 
amongst others taking into account the inclusion of AI-based 
or machine-learning approaches such as random forest 
models or extreme gradient boosting methods. 
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