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Abstract
Motivation: Bottom-up mass spectrometry-based proteomics studies changes in protein abundance and structure across conditions. Since the 
currency of these experiments are peptides, i.e. subsets of protein sequences that carry the quantitative information, conclusions at a different 
level must be computationally inferred. The inference is particularly challenging in situations where the peptides are shared by multiple proteins 
or post-translational modifications. While many approaches infer the underlying abundances from unique peptides, there is a need to distinguish 
the quantitative patterns when peptides are shared.
Results: We propose a statistical approach for estimating protein abundances, as well as site occupancies of post-translational modifications, 
based on quantitative information from shared peptides. The approach treats the quantitative patterns of shared peptides as convex combina
tions of abundances of individual proteins or modification sites, and estimates the abundance of each source in a sample together with the 
weights of the combination. In simulation-based evaluations, the proposed approach improved the precision of estimated fold changes between 
conditions. We further demonstrated the practical utility of the approach in experiments with diverse biological objectives, ranging from protein 
degradation and thermal proteome stability, to changes in protein post-translational modifications.
Availability and implementation: The approach is implemented in an open-source R package MSstatsWeightedSummary. The package is 
currently available at https://github.com/Vitek-Lab/MSstatsWeightedSummary (doi: 10.5281/zenodo.14662989). Code required to reproduce the 
results presented in this article can be found in a repository https://github.com/mstaniak/MWS_reproduction (doi: 10.5281/zenodo.14656053).

1 Introduction
Mass spectrometry (MS)-based proteome profiling experi
ments characterize protein composition of complex biological 
mixtures (Aebersold and Mann 2016, Miller and Smith 
2023). They determine changes in protein abundance and 
structure across conditions (such as treatments) that are more 
systematic than as expected by random chance (Lin et al. 
2022).

In bottom-up proteomics, proteins are enzymatically 
digested into peptides. Some experiments label peptides from 
up to 18 samples, e.g. using tandem mass tags (TMT), and 
combine them into a single mixture called plex (Thompson 
et al. 2003, Sivanich et al. 2022). Each TMT label forms a 
channel, where the intensity is informative of the abundance 
of the peptide in the original sample. The peptides in a 

mixture are subsequently ionized and subjected to mass 
analysis, producing features in mass spectra. Computational 
tools such as MaxQuant (Tyanova et al. 2016), Proteome 
Discoverer (Orsburn 2021), or many others identify the pep
tide ions underlying the spectral features in terms of their 
amino acid sequence, and quantify their abundance.

The peptide ions are the main currency of these experi
ments, and carry the most direct quantitative information. 
However, in applications such as MS-based drug develop
ment, the scientific question focuses not on the peptide ions 
but on proteins targeted by therapeutics (Macklin et al. 
2020). For example, degradation studies characterize changes 
in overall protein abundance over time (B�ek�es et al. 2022), as 
they seek to affect functions of proteins. Similarly, thermal 
profiling experiments (Kurzawa et al. 2023) aim to 
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characterize protein drug targets by monitoring changes in 
thermal stability of proteins. Ideally, these applications 
would distinguish protein isoforms, as well as proteins result
ing from events such as alternative splicing. However, charac
terizing such proteins is challenging, as they have high 
sequence similarity, and produce shared peptides, i.e. pepti
des whose amino acid sequences match multiple proteins. 
The shared peptides can constitute over 50% of all the possi
ble peptides in the experiment, when all such events are con
sidered, as shown in Schork et al. (2022), Madhira (2016), 
and Wilmarth (2020) (https://pwilmart.github.io/blog/2020/ 
09/19/shotgun-quantification-part2).

Since proteins are not observed directly, their identity and 
abundance are computationally inferred. The inference 
involves two aspects. The first aspect is identifying the pro
tein sequence from the observed peptides, referred to as the 
protein inference problem (Nesvizhskii and Aebersold 2005). 
A second aspect of computational inference is inference of 
protein abundance, i.e. summarizing the quantitative infor
mation in the peptide ions into a single quantity per protein 
per sample per run (Kohler et al. 2023a). Proteins with simi
lar but distinct sequences may differ significantly in how their 
abundances change between treatments or conditions 
(Bludau et al. 2021, Plubell et al. 2022, Kurzawa et al. 2023).

There is currently no generally accepted strategy for estimat
ing the abundance of proteins in presence of shared peptides 
(Bludau et al. 2021), and most methods quantify individual 
proteins or protein groups based on unique peptides 
(Goeminne et al. 2018; Dermit et al., 2021, Kohler et al. 
2023a). Some authors advocate forgoing protein-level summa
rization altogether, and proceed with peptide-level statistical 
analysis (Plubell et al. 2022). Alternatively, Triqler (Truong 
et al. 2023) advocates for an integrated approach that com
bines identification and quantification, however it also 
assumes the use of unique peptides. Overall, these approaches 
do not provide a sufficient quantitative insight into protein iso
forms, or proteins resulting from alternative splicing.

The challenge of inference of identity and abundance of 
analytes from shared sequence information extends beyond 
inference of protein abundance. A conceptually similar prob
lem arises in studies focusing on protein post-translational 
modifications (PTMs). Upon digestion, multiple peptides can 
carry a same modification site, and a peptide can carry multi
ple modifications. Therefore, the occupancy of a modifica
tion site must also be computationally inferred. Similarly to 
protein-level summarization, there is no generally accepted 
strategy for estimating site occupancy of PTMs with 
shared peptides.

This article addresses the limitations of the methods above. 
We propose a statistical approach that models the quantita
tive profiles of shared peptides in biological samples as con
vex combinations of the profiles of their sources. It estimates 
the relative abundance of each protein or PTM site, together 
with their weights. The approach is implemented in an open- 
source R package MSstatsWeightedSummary compatible 
with the workflow of R/Bioconductor package MSstatsTMT 
(Huang et al. 2020). Currently, the approach is applicable to 
experiments with isobaric labeling.

1.1 Background
Below, we first review the existing methods relevant for 
detecting differentially abundant proteins in the presence of 
shared peptides. We distinguish three steps of differential 

analysis: protein inference, protein-level summarization, and 
statistical modeling of summarized proteins for relative abun
dance estimation. We then highlight the similarities and the 
differences of detecting differentially abundant proteins and 
detecting differentially abundant PTMs.

1.1.1 Protein inference based on amino acid sequences
Figure 1 illustrates the problem of protein inference in pres
ence of shared peptides via bipartite graphs. In (a), proteins A 
and B share peptides with each other, but also have unique 
peptides. In (b), proteins C and D also share peptides, how
ever only D has a unique peptide. Since proteins in Fig. 1a 
and b do not share peptides, they can be analyzed separately. 
From the graph theory perspective, the two groups of pro
teins form distinct connected sub-graphs, which we will refer 
to as ‘protein clusters’.

The et al. (2018) distinguished three approaches for infer
ring protein identities in the presence of shared peptides: ex
clusion, inclusion, and parsimony. Exclusion removes all the 
shared peptides from the analysis. One example of this ap
proach is in Savitski et al. (2015). In Fig. 1b, this results in a 
loss of protein C. This criterion is often used even more strin
gently, removing proteins with only one unique peptide, and 
losing both proteins C and D. This principle is known as a 
two-peptide rule (Serang et al. 2012). Inclusion assigns every 
shared peptide to each matching protein. For example, in  
Fig. 1a, protein A is characterized by peptides 1, 2, 3, and 4, 
and protein B is characterized by peptides 3, 4, 5, and 6. 
With this approach no protein is lost, and the abundances of 
peptides 3 and 4 are attributed in equal measure to both pro
teins, leading to potential quantitative bias. ProteinProphet 
(Nesvizhskii et al. 2003) is one example of this approach. 
Finally, parsimony aims to find a minimal set of proteins that 
explains the presence of all the identified peptides. In Fig. 1b, 
this either excludes protein C, or leads to a new protein fC, 
Dg. Similarly to inclusion, parsimony can group into a same 
protein peptides with different quantitative patterns. 
Parsimony is most commonly used, and implemented in pop
ular signal processing tools such as MaxQuant (Tyanova 
et al. 2016) and Proteome Discoverer (Orsburn 2021).

1.1.2 Protein inference assisted by peptide abundance
While most protein inference algorithms rely on the amino 
acid information (Huang et al. 2012), several recent 
approaches advocated for using quantitative information: 
Quantifere (Lukasse and America 2014), PeCorA [Peptide 
Correlation Analysis (Dermit et al. 2021)], COPF 
[COrrelation-based functional ProteoForm assessment 
(Bludau et al. 2021)], VIQoR (Tsiamis and Schw Mmle 
2022). We provide additional information about these meth
ods in Supplementary Section S1.1.

1.1.3 Statistical framework for protein summarization
Most protein inference methods output proteins or groups of 
proteins under a common label (protein groups), together 
with their peptides. When the goal of the experiment is to de
tect changes in protein abundance, the step after protein in
ference aggregates the abundances of peptides into a single 
quantity per protein (or protein group) per biological sample, 
comparable between treatments or conditions.

Multiple methods for protein summarization exist, ranging 
from simple means or medians of peptide abundances in each 
sample, to model-based approaches such Triqler (Truong et al. 
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2023) and MSstats (Kohler et al. 2023a). Other approaches 
such as MSqRob (Sticker et al. 2020) work directly with 
peptide-level data. All these methods assume that proteins or 
protein groups are characterized by uniquely matched pepti
des. Below we describe the statistical framework for protein- 
level summarization of experiments with TMT labeling in the 
open-source software MSstatsTMT (Huang et al. 2020).

Consider a protein (or a protein group) characterized by 
f ¼ 1; . . . ;F spectral features, i.e. peptide ions matched to that 
protein or group. The experiment profiles b¼ 1; . . . ;B biolog
ical samples from each of g¼ 1; . . . ;G groups (also called 
conditions), in c¼ 1; . . . ;C channels for each of m¼ 1; . . . ;M 
mixtures. For simplicity, we assume that the experiment has 
no technical replicates. Experiments with M>1 mixtures typ
ically dedicate one channel per mixture for reference material 
used for normalization (Plubell et al. 2017). For the purposes 
of protein summarization, MSstatsTMT models each protein 
and each mixture separately with a linear model 

Xfc ¼ μþFeaturef þChannelcþ εfc;

XF

f¼1

Featuref ¼ 0;
XC

c¼1

Channelc ¼ 0; εfc�
iid
� ð0; σ2

ε Þ;
(1) 

where Xfc denotes the observed log 2-intensity of feature f in 
channel c, μ denotes the overall mean protein abundance, 
Featuref and Channelc denote the additive main effects of fea
ture f and channel c, and εfc denotes independent, identically 
distributed and non-systematic noise. The model is linear in 
parameters μ, Featuref , and Channelc. MSstatsTMT esti
mates the parameters using a robust Tukey Median Polish 
(TMP) (Kohler et al. 2023a) approach. Finally, the estimate 
of protein abundance in channel c is 

Yc ¼ bμþ dChannelc; c ¼ 1; . . . ;C: (2) 

Yc serves as input to the downstream differential analysis. 
The indices of proteins and mixtures in Equations (1) and (2) 
are omitted for simplicity.

1.1.4 Statistical framework for differential  
abundance
Once protein abundances are summarized, the next step 
specifies a statistical model for the protein-level summaries. 

Such a model characterizes the available sources of varia
tion, and serves as a basis for tests for differential abun
dance. Many statistical models have been proposed, e.g. 
DeqMS (Zhu et al. 2020), MSqRob (Sticker et al. 2020), or 
MSstats (Kohler et al. 2023a). They were reviewed in detail 
in Bai et al. (2023). Below we describe MSstatsTMT, which 
flexibly accommodates diverse experimental designs in 
experiments with TMT labels (Huang et al. 2020, 2023). 
MSstatsTMT fits a separate linear model to each protein 
summary. For example, for group comparison designs, 
it fits 

Ygbm ¼ μþConditiongþMixturemþ εmgb; (3) 

where 
PG

g¼1 Conditiong ¼ 0, 

Mixturem�
iid
Nð0; σ2

MÞ; and εgbm�
iid
Nð0; σ2Þ:

As another example, consider a more complex design that 
profiles biological replicates across multiple groups, collects 
repeated measurements on the biological replicates in time, 
and allocates measurements from each biological replicate to 
its own mixture. MSstatsTMT fits the model 

Yctm ¼ μþConditionTimectþMixturemþ εmct; (4) 

where 
P

ct ConditionTimect ¼ 0, 

Mixturem�
iid
Nð0; σ2

MÞ; εctm�
iid
Nð0; σ2Þ:

In this notation, ConditionTimect represents all the combina
tions of conditions and times, and Mixture is confounded with 
Subject. For each model and each protein, tests of differential 
abundance specify a null hypothesis, e.g. H0 : Conditionc ¼

Conditionc0 or H0 : ConditionTimect ¼ ConditionTimect0 . All 
the model parameters are estimated using restricted maximum 
likelihood. The parameter estimates and their standard errors are 
combined into t-statistics to derive P-values, which in turn are ad
justed to control false discovery rate (FDR).

1.1.5 Relative PTM quantification
The goal of MS-based relative PTM quantification is to assess 
changes in occupancy of a PTM site across conditions, and to 

Figure 1. Simple examples of protein inference. Rectangles are proteins, ovals are peptides. Arrows indicate protein membership of a peptide based on the 
amino acid sequence information. Peptides 1, 2, 5, 6, and 9 are unique, while peptides 3, 4, 7, and 8 are shared. Quantitative profiles of each peptide across 
biological samples (allocated to TMT channels) are shown below the peptide–protein graphs. Solid lines indicate unique peptides, dashed lines indicate shared 
peptides. (a) Proteins A and B have unique peptides, and share two peptides. (b) Proteins C and D share two peptides, but only D has a unique peptide.
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distinguish it from overall changes in protein abundance. 
Similarly to proteome profiling, this requires summarizing 
the quantitative information relevant to a PTM site over mul
tiple peptides. The relationship between PTM sites and pepti
des is similar to the relationship between proteins and 
peptides in proteome profiling. Peptides with a unique modi
fication are used directly to quantify the occupancy of the 
PTM site. Peptides with multiple modifications match differ
ent sites, similarly to shared peptides.

1.1.5.1. PTM site summarization
Two methods have been recently proposed for PTM summa
rization, msqrob2PTM (Demeulemeester et al. 2024) and 
MSstatsPTM (Kohler et al. 2023b). msqrob2PTM repeatedly 
uses peptides with multiple modifications to quantify each 
PTM site, effectively implementing the inclusion approach 
from protein inference. In contrast, MSstatsPTM combines 
the two modification sites into an artificial site (called concat
enation), and estimates a separate log-fold change for this 
combination, effectively implementing protein grouping.

1.1.5.2. Statistical modeling and differential abundance
Similarly to proteome profiling, the next step is statistical 
modeling of the summarized abundances. To distinguish 
changes in PTM site occupancy from overall changes in pro
tein abundance, msqrob2PTM normalizes feature-level 
log 2-intensities by subtracting the estimated abundance of 
the unmodified protein in the sample. The normalized feature 
intensities are then modeled with a robust linear model that 
accounts for differences between biological conditions. In 
contrast, MSstatsPTM separately summarizes the modified 
and the unmodified features corresponding to a PTM site 
with the MSstats workflow (Equation (1)). It then fits a sepa
rate protein-level model (e.g. Equations (3) and (4)) to each 
summary to reflect the experimental design. Finally, the null 
hypothesis compares changes in the expected abundance of 
the PTM site between conditions to the changes of the 
unmodified protein.

2 Materials and methods
We propose to extend protein summarization in 
MSstatsTMT (Equation (1)) for experiments with TMT 
labels to simultaneously estimate the abundances of proteins 
with shared peptides. Similarly to Quantifere, PeCorA, and 
COPF, we consider similarities between the feature-level pro
files, however we do not attempt to cluster the profiles or as
sign them to an isoform. Similarly to VIQoR, we directly 
quantify the contribution of a peptide to protein-level sum
maries in the form of weights, however we output not log- 
fold changes but full protein-level summaries compatible 
with statistical modeling of various experimental designs.

2.1 Proposed statistical model
Following MSstatsTMT, we use the term Feature to describe 
a peptide ion, and denote the log 2-intensity of feature f in 
channel c by Xcf . We proceed with separate summarization 
for each TMT mixture (and omit the mixture indices for sim
plicity). Unlike MSstatsTMT, which summarizes one protein 
at a time, we simultaneously model a cluster of K>1 proteins 
that share peptides, such as in Fig. 1. For each spectral feature 
f , we define the set of protein memberships 

Vðf Þ ¼ fk 2 1; . . . ;K : feature f matches Protein kg

and extend the MSstatsTMT summarization model in 
Equation (1) as 

Xcf ¼ μþ
X

k2Vðf Þ

WeightfkðProteinkþChannelkcÞ

þ Featuref þ εcf ; εfc�
iid
� ð0; σ2

ε Þ (5) 

under the typical linear model constraints 

XK

k¼1

Proteink ¼ 0; 8k

XC

c¼1

Channelkc ¼ 0;

XF

f¼1

Featuref ¼ 0 

and two new additional constraints 

8f

X

k2Vðf Þ

Weightfk ¼ 1; 8f ;k Weightfk ≥ 0 

Similarly to MSstatstTMT, the parameters μ, Proteink, 
Channelkc, and Featuref are unknown and of our primary in
terest. Note that the term Channelkc differs from the additive 
term Channelc in Equation (1). The additive term corresponds 
to the assumption that expression profiles of all proteins in a 
cluster follow the same pattern and differ only by a shift along 
the Y-axis. In contrast, Channelkc allows us to separately model 
each, possibly non-parallel, protein profile in the cluster. 
Parameters Weightfk are unknown auxiliary parameters that 
describe the contribution of protein k to the abundance of fea
ture f . In particular, setting all weights to 1

jVðf Þj is equivalent to 
assigning each feature to every matching protein. Such weights 
can be used to aid protein inference based on the inclusion prin
ciple. We do not impose any distributional assumptions on εcf , 
making this approach adaptable to various types of noise. 
Similarly to Equation (2), protein-level summary for protein 
k¼ 1; . . . ;K in channel c¼ 1; . . . ;C is estimated as 

bYkc ¼ bμþ dProteinkþ
dChannelkc (6) 

These summaries serve as input to statistical models that 
determine differential abundance of proteins. In this article, 
we use MSstatsTMT models defined in Equations (3) and (4).

2.2 Objective function for parameter estimation
We propose to fit the model separately for each protein clus
ter and each TMT mixture by minimizing 

min
XC

c¼1

XF

f¼1

L

 

Xcf − μ − Featuref −

P
k2Vðf ÞWeightfkðProteinkþChannelkcÞ

!

where L is a loss function, and the optimization is done si
multaneously with respect to μ, Feature, Weight, Protein, and 
Channel. The choice of loss function corresponds to different 
assumptions about the error term distribution εfc. For exam
ple, normal distribution of εfc leads to L2ðxÞ ¼ x2, while 
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Laplace distribution of εfc leads to L1 ¼ jxj. The latter leads 
to the procedure which is more robust towards the outliers, 
similar to the Tukey Median Polish approach in MSstats 
(Fink 1988). In practice, we observed that our algorithm with 
L1 loss encounters the convergence issues, which may result 
from the loss non-differentiability. Therefore, our default im
plementation uses the smooth robust Huber loss (Huber 
1992) given by 

LHðx;MÞ ¼
2Mjxj− M2; jxj≥ M;

jxj2; jxj<M;

(

where x is a scalar input and M is a positive hyperparameter 
tuned for each experiment. Low values of M ensure robust
ness of the estimates and convergence of the optimization 
procedure, while high values of M may make the estimates 
susceptible to outliers. Hence, Huber loss should be used 
with a small M parameter to ensure robustness. For example, 
case studies presented in this article used values of M¼ 0:001 
or M¼ 10− 6. Supplementary Section S4.7 further discusses 
the importance of using a robust loss. The uncertainty of pa
rameter estimates, in particular of the weights, is determined 
by the diversity of the quantitative profiles of the proteins in 
a cluster, as illustrated in Supplementary Section S4.1.

2.3 Optimization of the objective function
The model in Equation (3.1) is not linear in parameters 
Weightfk and Channelkc, as these parameters enter the loss 
function via the multiplicative terms WeightfkChannelkc. 
However, given fixed values of Weightfk, the model is linear 
in parameters Channelkc. Similarly, given constant values of 
the remaining parameters, the model is linear in Weightfk. In 
both situations, all the loss functions in Section 3.2 are con
vex. A common practice for solving such biconvex problems 
is alternatively updating the two sets of parameters by fixing 
one of them and solving the convex optimization problem for 
the other. Therefore, we propose to estimate the parameters 
of the model with an iterative procedure outlined below, and 
described in more detail in Supplementary Section S2.1.

Following the alternate convex search approach (De 
Leeuw 1994), we initialize the optimization by estimating 
protein-level profiles based on unique features only. This 
allows us to fix the values of parameters Protein and 
Channel, and estimate the parameters Weight. Then we re- 
estimate Protein and Channel with the updated values of 
Weight. These two estimation steps are repeated until the dif
ference between consecutive values of Weight is suffi
ciently small.

Unfortunately, the algorithm does not generally guarantee 
either local or global optimality of the solution (Gorski et al. 
2007, Shen et al. 2017). However, in situations where each 
protein in a cluster has unique peptides, we observed no sig
nificant dependence of the solution on the starting point, and 
the algorithm usually achieved convergence to a meaningful 
solution after a small number of iterations.

2.4 Implementation
We implemented the proposed approach in a free and open 
source R package MSstatsWeightedSummary. The imple
mentation takes as input a list of feature intensities identified 
and quantified by a spectral processing tool, in the same for
mat as MSstatsTMT.

MSstatsWeightedSummary requires that each input 
peptide is annotated with all the proteins in a database that 
match its sequence. For data processing tools that do not pro
vide that, MSstatsWeightedSummary includes a function
ality that takes as input a user-specified database, and 
matches to each peptide all the proteins that contain its se
quence. Moreover, MSstatsWeightedSummary offers 
functionalities for merging proteins identified by a same set 
of peptides, and for removing proteins identified by shared 
peptides only.

The package implements weighted summarization using 
Huber loss. The loss function is optimized with the CVXR R 
package for convex optimization (Fu et al. 2020). The miss
ing feature intensities are ignored. For each protein cluster, 
the package outputs an object that extends a typical 
MSstatsTMT summary, and adds information about the esti
mated peptide–protein weights and the algorithm conver
gence. The package includes a functionality to combine 
MSstatsWeightedSummary output with MSstatsTMT sum
marization results before testing for differential abundance. 
More information is available in the package vignette.

3 Case studies
3.1 Overview
We evaluated the proposed approach in three case studies 
representing three types of experiments with TMT labeling: a 
protein degrader study with a group comparison design; ther
mal proteome profiling (TPP) with both repeated measures 
and group comparison designs; and relative PTM quantifica
tion in a group comparison design. Table 1 summarizes the 
case studies. Protein degrader and PTM case studies exhibited 
simpler structure of peptide sharing, as evident by the average 
number of proteins in a cluster only slightly larger than 1. 
Both parts of the TPP case study exhibited more complex 
structure. Hence, unlike in case of other datasets, subset pro
teins were retained and provided summaries include proteins 
that were only identified by shared peptides. Removing such 
proteins would lead to a loss of one-third of all peptide ions. 
In clusters that consist of only shared peptides, selecting a 
leading protein may not be obvious.

Overall, the experiments also included protein clusters of 
different sizes, with varying amounts of unique and shared in
formation. The clusters affected the number of quantifiable 
proteins, and served as the basis for the case studies. We also 
evaluated the proposed approach in computer simulations.

3.2 Case study 1: protein degrader
3.2.1 Experimental design
This previously unpublished case study evaluated BET bro
modomain degradation by GNE-0011 BET binder in EOL-1 
cells. Samples treated with either DMSO (control group) or 
GNE-001 (treatment) were measured at 0, 30, 60, 120, and 
480 min in a group comparison design to estimate changes on 
protein abundances in time. The experiment only included 
one biological replicate per time and condition. The samples 
were labeled with TMT-10plex in a single TMT mixture. 
Supplementary Section S3 provides additional details.

3.2.2 Data acquisition and processing
Mass spectra were acquired on an Orbitrap Fusion Lumos 
Mass Spectrometer (ThermoFisher Scientific) coupled to an 
RSLCnano U3000 liquid chromatography system 
(ThermoFisher Scientific), and are available in MassIVE 
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MSV000094252, password BRD4Degrader. The spectra 
were searched against Swissprot human protein database 
(version 2017.08) and processed with in-house software and 
the Mojave algorithm (Zhuang et al. 2013). The original 
processing matched shared peptides to an arbitrary selected 
single protein. As part of the MSstatsWeightedSummary 
pre-processing, we matched each peptide to all the proteins 
that contain its sequence, and removed proteins identified by 
shared peptides only.

3.2.3 Protein cluster
We considered an example cluster of four proteins BRDT, 
BRD2, BRD3, and BRD4 with sequence similarity of approx
imately 60% (Madeira et al. 2022). The peptide–protein 
graph for this cluster along with a profile plot is shown in  
Fig. 2. The cluster contained five shared peptides, of which 
five matched to BRD4, four matched to BRD3, and three 
matched to BRD2. This investigation had no ground truth of 
differential abundance. However, a western blot assay con
firmed that both BRD2 and BRD4 had significant BET bro
modomain degradation, but with different rates.

3.3 Case study 2: thermal profiling
3.3.1 Experimental design
Xu et al. (2021) investigated protein targets in K562 cell ly
sate treated with Staurosporine (kinase inhibitor) as com
pared to treatment with a control DMSO. The authors 
performed two thermal profiling experiments that studied 
drug target engagement: TPP and its OnePot counterpart.

The TPP experiment treated the samples with 
Staurosporine at 25× the concentration of DMSO. It utilized 
a repeated measures design, whereby each biological sample 
was heated at 11 increasingly high temperatures. Two biolog
ical samples per condition, heated at different temperatures, 
were labeled with TMT-10plex, and each allocated to a dif
ferent TMT mixture. All the proteins were expected to de
crease in abundance in response to the treatment, but at a 
different rate. Here, we compared protein abundances of 
treated versus control samples at mid-temperature point.

The OnePot experiment involved physical pooling of all of 
the temperature-subjected aliquots of a same biological repli
cate prior to isobaric labeling. Therefore, this version of the 
experiment had a group comparison design. The OnePot ex
periment included not one but four concentrations of 
Staurosporine (1 × ;5 × ;10 × ;25 × ) and DMSO (control), 
and three biological replicates per condition. The pooled 
samples were labeled with the first 15 labels from TMTpro 

16plex in a single mixture. Here, we also compared protein 
abundances of samples treated with Staurosporine at 25× the 
concentration of DMSO to the controls. Since the OnePot ex
periment had a larger number of concentrations and of bio
logical replicates it was expected to produce more accurate 
conclusions.

3.3.2 Data acquisition and processing
In both experiments, mass spectra were acquired with an 
Orbitrap Fusion Lumos Tribrid mass spectrometer (Thermo 
Fisher Scientific), searched against Homo Sapiens Swissprot 
database (v2017-10–25) and processed using Proteome 
Discoverer 2.4 (Orsburn 2021), and made available online 
(links can be found in the README file of a GitHub reposi
tory linked above). The original processing used the protein 
inference algorithm by Proteome Discoverer. For each shared 
peptide, the algorithm concatenated the identifiers of all the 
matching proteins that had at least one unique peptide. As 
part of the MSstatsWeightedSummary pre-processing, we 
matched the identified peptides to all the proteins in the data
base, merged proteins with identical sets of peptides, and re
moved proteins identified by a single shared peptide. In the 
TPP experiment, the lowest temperature was used as 
between-mixture normalization channel, and the highest tem
perature was discarded from the analysis. Details of data ac
quisition and processing can be found in the original article.

3.3.3 Protein clusters
Although the experiment had no direct ground truth, we used 
a set of known interactors (Figueroa-Navedo 2023) from the 
KinHub database (Davis et al. 2011, Eid et al. 2017) as a 
proxy of true changes in protein abundance. Moreover, we 
compared the detected changes in abundance to those of the 
more sensitive OnePot portion of the study.

We used non-trivial clusters of proteins that included at 
least one known interactor and considered proteins with at 
least one unique peptide. In the TPP part of the study, there 
were 27 such clusters which consisted of 75 proteins. In the 
OnePot portion of the study, there were 34 such clusters and 
93 proteins. For each non-trivial cluster, we compared the 
outcome of tests for differential abundance with the proposed 
summarization to the results based on summarization with 
unique peptides or all peptides matching to each protein.

Moreover, we considered a cluster of three proteins 
P16591, P16591-2, and P16591-3. Proteins P16591 and 
P16591-2 were identified by three peptides unique to these 
two proteins, and these two proteins could not be 

Table 1. Including peptides matching to multiple proteins changed the number of quantifiable proteins in each case study.a

Case study

1 2a 2b 3

Number of protein labels Original 7482 7043 8447 26 004
Proposed 6323 11 084 25 043 24 809

Number of peptide ions Original 81 851 89 423 164 863 43 585
Proposed 73 881 90 223 165 906 43 585

Number of protein clusters Proposed 5818 5699 6559 22 285
Mean number of proteins per cluster Proposed 1.09 1.94 3.81 1.11
Mean number of shared peptides per cluster Proposed 7.06 15.2 24.8 1.71

a Lines 3 and 4 count both trivial clusters consisting of single proteins and their unique peptides, and non-trivial clusters. Line 5 describes non-trivial 
clusters only. Case study 2a refers to the OnePot portion of the study, while 2b refers to TPP part. The large difference in number of protein labels between 
original and proposed processing in the latter was due to use of the Master Protein Accessions column of the Proteome Discoverer output which by design 
groups multiple proteins under a single label.
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distinguished. Therefore, the proposed processing merged 
them into a single protein identifier. Proteoform P16591-3 
was approximately 90% similar to the first two proteins 
(Madeira et al. 2022) but was identified by two unique pepti
des. This protein was present in both the set of known inter
actors and in the list of differentially abundant OnePot 
proteins based on the original data processing.

3.4 Case study 3: multi-site PTM
3.4.1 Experimental design
Maculins et al. (2021) quantified the abundance of total pro
tein and phosphorylation in wildtype (WT) and ATG16L1- 
deficient (cKO) samples of primary murine macrophages 
uninfected and infected with Shigella flexneri. Quantification 
was performed at three time points: uninfected, early infec
tion, and late infection, in a group comparison design. This 
study made nine comparisons: KO Early-WT Early, KO Late- 
WT Late, KO Uninfected-WT Uninfected, KO Early-KO 
Uninfected, KO Late-KO Uninfected, WT Early-WT 

Uninfected, WT Late-WT Uninfected, Infected-Uninfected, 
and KO-WT, while adjusting changes of modified peptides 
for changes in global protein abundance. Twenty-two biolog
ical samples were split between two 11-plex TMT mixtures. 
Mixture 1 had one replicate of uninfected WT and two repli
cates of uninfected cKO. Mixture 2 had one replicate to unin
fected cKO and two to uninfected WT.

3.4.2 Data acquisition and processing
Mass spectra were acquired on an Orbitrap Fusion Lumos 
mass spectrometer coupled to an EASY nanoLC-1000 (or 
nanoLC-1200) (ThermoFisher) liquid chromatography sys
tem. Spectra were searched against a UniProt mouse and S. 
flexneri protein sequences database and processed with the 
Mojave algorithm (Zhuang et al. 2013). Modifications 
searched included phosphorylation on serine, threonine, and 
tyrosine. Localization was performed with a modification of 
AScore algorithm (Beausoleil et al. 2006). The dataset is 
available in MassIVE under identifier MSV000085565. In 

Figure 2. Protein degrader: proteins RD2, BRD3, and BRD4. Modeling the contribution of shared peptides transformed the disjoint sub-graphs into a 
connected graph with heterogeneous peptide patterns. (a) Proteins characterized by unique peptides. Grey nodes: unique peptides. Edges: matches 
between peptide and protein sequence. (b) As in (a), but with shared peptides (colored nodes). Protein BRDT did not have unique peptides and was 
filtered out by the proposed processing. (c) Quantitative profiles of the peptides. Line colors match node colors in (a) and (b). At later time points, the 
unique quantitative profiles of the three proteins diverged. The patterns of shared peptides deviated from the patterns of the unique peptides.
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the original processing, peptides with multiple modifications 
were assigned a new modification that concatenated all the 
sites. As part of the MSstatsWeightedSummary pre- 
processing, we modified the original site annotation by 
assigning peptides with multiple modification sites to all pos
sible sites. Since the experiment lacked a normalization chan
nel, all the analyses proceeded without normalization. Details 
of data acquisition and processing can be found in the origi
nal article.

3.4.3 Protein cluster
We considered an example of two modification sites S236 
and S240 on a single protein E9Q6J5. Since this experiment 
had no ground truth of differential abundance, we compared 
the precision of the proposed approach in terms of the char
acterized modification sites to previously published results 
(Kohler et al. 2023b) available in a MassIVE.quant reposi
tory RMSV000000357.

3.5 Simulated data and resampled data
To evaluate the proposed approach in a setting with known 
ground truth, we conducted extensive computer simulations. 
We simulated a cluster of five proteins, and simulated pepti
des such that each pair of proteins shared peptides. We simu
lated the peptide-level abundances according to Equation 
(3.1), and protein-level abundances according to the 
MSstatsTMT model in Equation (3). We varied effect sizes, 
numbers of shared and unique peptides, and number of bio
logical replicates. We also conducted a resampling study 
based on Case study 1. Since the BRD cluster had more than 
10 unique peptides per protein, we randomly sampled their 
subsets in various configurations. For each configuration, we 
created protein-level summaries, performed group compari
sons, and compared the results to those obtained with all the 
available unique peptides. We evaluated the performance of 
the proposed approach in terms of the mean-squared error 
(MSE) of log 2-fold change estimation with respect to the 
ground truth (for the simulation), or with respect to the 
results obtained with all the available unique peptides (for 
the resampling study based on Case study 1). Supplementary 
Sections S3.1 and S3.2 provide details of both model- and 
resampling-based simulations, and define the evalua
tion metrics.

4 Results
Since most existing methods for relative protein quantifica
tion with shared peptides (Section 1.1.2) are not directly ap
plicable to experiments with TMT labels, and are 
incompatible with experiments with complex designs such as 
repeated measures, we compared the proposed approach to 
an analysis that only uses unique peptides (which we also re
fer to as unique-only approach), and to naïve inclusion (i.e. 
an analysis that uses all the available peptides for all the pro
teins in a cluster as if they were unique, also referred to as all- 
peptides approach). To enable the evaluation, we focused on 
clusters where each protein is identified by at least one unique 
peptide in addition to shared peptides. Supplementary 
Sections S4.5 and S4.6 discuss the properties of the proposed 
approach in situations where some proteins lack unique pep
tides from the perspective of convergence and quantification 
of subset proteins, respectively. The proposed approach was 
fitted using version 0.99.6 of the MSstatsWeightedSummary 

package. For each case study, the loss function used Huber 
norm. Case studies 1 and 3 used a value of M¼ 10− 3, while 
case study 2 used a smaller value of M¼ 10− 6. The estima
tion was done by ignoring missing values while fitting the 
proposed model. Supplementary Section S4.2 studies the im
pact of modeling shared peptides while varying the extent of 
unique peptides and with a more complex peptide–pro
tein structure.

4.1 Accounting for shared peptides produced a 
more parsimonious set of testable proteins
4.1.1 Protein degrader
While the original processing assigned each shared peptide to 
an arbitrary protein, the proposed approach modeled the 
weighted contribution of each shared peptide to all the possi
ble proteins. This, combined with removing proteins identi
fied only by shared peptides, resulted in an overall reduction 
of the number of testable proteins (Table 1). Moreover, it en
abled proper modeling of the peptide–protein structure. This 
is illustrated in the case of BRD cluster in Fig. 2a and b. The 
BRDT protein was only identified by a single shared peptide. 
It was assigned to BRD3 by the original processing but was 
removed from the analysis by the proposed approach.

4.1.2 Thermal profiling, OnePot
Similarly, Table 1 shows an overall decrease in the number of 
protein labels after the proposed processing. Table 2 illus
trates this in the selected protein cluster. The original 
Proteome Discoverer processing combined peptides from 
three proteins Q7Z5L9, Q7Z5L9-2, and Q9H1B7 into five 
protein groups. Groups labeled with multiple proteins con
sisted of peptides that match to more than one protein. 
Simplified protein set is beneficial from the perspective of 
downstream statistical analysis which uses multiple test
ing correction.

4.1.3 Multi-site PTM
In the approach proposed by Kohler et al. (2023b), peptides 
with multiple modification sites were viewed as carrying a 
separate concatenated multi-site modification. Across the en
tire data set, modeling the contributions of peptides covering 
multiple sites instead of creating a new multi-site modifica
tion, combined with filtering, reduced the number of testable 
sites. In the example cluster (Table 3), the original processing 

Table 2. Thermal profiling, OnePot: inclusion of shared peptides 
simplified the set of testable proteins.a

Proteome Discoverer protein groups

Proposed Q7Z5L9; Q7Z5L9;
protein Q7Z5L9 Q7Z5L9-2 Q9H1B7 Q7Z5L9-2 Q7Z5L9-2;

group Q9H1B7

Q7Z5L9 1 0 0 15 3
Q7Z5L9-2 0 2 0
Q9H1B7 0 0 13 0

a The Proteome Discoverer protein inference algorithm allocated 
peptides from proteins Q7Z5L9, Q7Z5L9-2, and Q9H1B7 into five distinct 
protein groups, namely Q7Z5L9, Q7Z5L9-2, Q9H1B7, Q7Z5L9 and 
Q7Z5L9-2, Q7Z5L9; Q7Z5L9-2; and Q9H1B7. In contrast, the proposed 
approach did not expand beyond the three protein labels. The table counts 
the number of peptides in each allocation. For example, while Proteome 
Discover allocated 15 peptides to a new protein group Q7Z5L9; Q7Z5L9- 
2, the proposed approach distributed each of the 15 peptides between the 
existing proteins Q7Z5L9 and Q7Z5L9-2 with contribution weights based 
on the quantitative profiles.
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assigned two peptides for each of S236, S240, and 
concatenated S236_S240, and the proposed approach only 
kept the individual sites.

4.2 Shared peptides improved log 2-fold change 
estimation for proteins with few unique peptides
4.2.1 Protein degrader
Since the study had no known ground truth, we investigated the 
benefits of modeling the contributions of shared peptides by pep
tide resampling. Figure 3 summarizes the estimated log 2-fold 
changes in 100 instances of randomly selecting two unique pep
tides per protein and all five shared peptides. The proposed ap
proach reduced the bias as compared to the estimation with all 
the peptides, and reduced the variance as compared to the esti
mation with a subset of the unique peptides.

Figure 4 details the results of the same resampling-based in
vestigation in terms of mean-squared error, as function of the 
number of unique peptides per protein. The proposed ap
proach improved the accuracy of the estimation as compared 
to using all the peptides, or using a selected subsets of the 
unique peptides, and was particularly effective when the 
number of unique peptides per protein was small.

4.2.2 Multi-site PTM
Figure 5 visualizes the improved log 2-fold change estimation 
in the selected cluster. Mixture 2 contained two peptides 
modified both at site S236 and site S240, however their quan
titative profiles resembled closely the peptides with S236 
alone. The proposed approach allocated these peptides to 
S236, each with weight 1. This reduced the total number of 
modification sites as compared to the concatenation ap
proach. It improved the similarity of estimated quantitative 
profiles in Mixtures 1 and 2 as compared to the estimation 
using all the peptides for all the sites. Supplementary Section 
S4.3 shows that in this example the estimated log 2-fold 
changes tended to be larger in absolute value.

4.2.3 Model-based simulation
In order to investigate the estimation of log 2-fold change in a 
context of known ground truth, we simulated 50 instances of 
five proteins with two biological replicates, two unique pepti
des per protein, and five shared peptides per pair of proteins, 
with a range of true log 2-fold changes. The simulation 
(Fig. 6) leads to the same conclusions as the experimental 
datasets. The proposed approach reduced the bias of the esti
mation as compared to using all the peptides, and reduced 
the variance of the estimation as compared to using the 
unique peptides only. The difference was particularly pro
nounced for large absolute values of log 2-fold change.

4.3 Shared peptides improved robustness of 
protein summarization for proteins with noisy 
unique peptides
4.3.1 Protein degrader
Interferences and measurement errors may produce noisy 
peptides, i.e. peptides with irregular quantitative patterns 
that differ from the majority of other peptides of a same pro
tein. We once again used peptide resampling to evaluate the 
impact of the presence of unique but noisy peptides on the 
log 2-fold change estimation. In each resampling instance, we 
sampled a fixed number of unique peptides and used all the 
available shared peptides. The unique peptides included a 

Table 3. Multi-site PTM: inclusion of peptides covering multiple 
modification sites simplified the set of testable sites.a

Proposed PTM sites  
of protein E9Q6J

Original PTM sites of protein E9Q6J

S236 S240 S236_S240

S236 2 0 2
S240 0 2

a For peptides of protein E9Q6J covering sites S236 and S240, the 
original processing (Kohler et al. 2023b) created a new multi-site 
modification S236_S240. In contrast, the proposed approach did not 
expand beyond the two modification sites. The table counts the number of 
peptides in each allocation. While the original processing allocated two 
peptides to the new S236_S240, the proposed approach distributed each of 
the two peptides between the existing S236 and S240, with contribution 
weights based on the quantitative profiles.

Figure 3. Protein degrader: modeling the contributions of shared peptides improved the log 2-fold change estimation for the BRD cluster. The boxplots 
summarize 100 instances of randomly selecting two unique peptides per protein and all five shared peptides, and estimating log 2-fold changes with 
respect to the control sample at the same time point. The solid line denotes log 2-fold changes estimated using all the available unique peptides, i.e. the 
ground truth. Narrower boxes with median closer to the blue line indicate better performance. The change in protein abundance for BRD2 and BRD4 was 
confirmed experimentally by Western blot.
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single noisy peptide for each protein, selected from the pool 
of three unique peptides with the lowest average correlation 
to the other peptides matching the same protein. The pro
posed approach reduced the bias of log 2-fold change estima
tion as compared to using all the peptides or selected unique 
peptides (Fig. 7). In particular for BRD4, noisy unique pepti
des unduly influenced protein-level summaries based on 
unique peptides, while using all the peptides underestimated 
the change in abundance.

4.4 Modeling the contribution of shared peptides 
balanced the sensitivity and the specificity of 
detecting differentially abundant proteins
4.4.1 Computer simulations
We evaluated the ability of the proposed approach to distin
guish differentially abundant proteins for a range of 

log 2-fold changes by computer simulation as described in 
Supplementary Section S3.2. The simulation generated a clus
ter of five proteins, where three proteins were differentially 
abundant, and each pair of proteins shared peptides. We 
tested the proteins for differential abundance in a design that 
mimics the protein degrader case study with five conditions. 
However, for simplicity, the comparisons were made between 
a single reference group and each of the remaining four con
ditions. The MSstatsTMT modeling approach was used, and 
the P-value cutoff was set to 0.05. The P-values were not ad
justed for multiple testing to avoid the dependence of the con
clusions on different total numbers of tests between the 
evaluations.

Figure 8 summarizes the specificity of differentially abun
dant proteins across 50 replicates of the experiment. The pro
posed approach increased the specificity of the results as 

Figure 4. Protein degrader: modeling the contributions of shared peptides improved the mean-squared error of log 2-fold change estimation for the BRD 
cluster, particularly with few available unique peptides. The boxplots summarize 100 instances of randomly selecting unique peptides per protein and all 
five shared peptides, and estimating log 2-fold changes with respect to the control sample at the same time point, where the log 2-fold changes 
calculated based on all available unique peptides served as ground truth. The MSE was plotted as function of the number of unique peptides per protein. 
Lower and narrower boxes indicate better performance. While all-peptides achieved lower error for the BRD2 protein, it overfitted to that particular 
quantitative pattern, resulting in much higher errors for the other proteins.

Figure 5. Multi-site PTM: modeling the contributions of shared peptides improved the estimation of site-specific quantitative profiles of protein E9Q6J. 
Mixture 2 contained two peptides modified at sites S236 and S240. The proposed approach allocated each peptide to site S236 with weight 1. It 
eliminated the concatenated modification without distorting the quantitative patterns in the summary for site S240 (right panel), while the pattern for site 
S236 (left panel) better captures the pattern observed in the other mixture.
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compared to the all-peptides approach. The all-peptides ap
proach overfitted to peptides with the largest differences be
tween conditions, and produced many false positive 
detections. Thus, this approach is not suitable for detection 
of differentially abundant proteins in clusters that include 
proteins that do not change between conditions.

Figure 9 summarizes the sensitivity of the proposed ap
proach over 50 instances of the simulation, as a function of 
the true log 2-fold change. The proposed approach increased 
the sensitivity as compared to the analysis using unique pepti
des only. With the increased sample size due to the inclusion 
of shared peptides, proposed approach produced smaller 
standard errors compared to the unique-only approach. 
While all-peptides approach appears to perform well, its high 
sensitivity is associated with very large error rates, as seen by 
the low specificity.

4.4.2 Thermal proteome profiling
We evaluated the ability of the proposed approach and summa
rization based on either unique peptides or all matching peptides 
to capture the differential abundance. Figure 10 compares the 
three approaches to summarization (proposed weighted summa
rization, unique-only analysis, and all-peptides approach) from 
this perspective by showing the overlap in discovered differen
tially abundant proteins among the known interactors between 
the three approaches (proposed weighted summarization, 
unique-only analysis, and all-peptides approach).

Supplementary Section S4.4 details the comparison be
tween protein-level summaries for one cluster of proteins for 
which inclusion of shared peptides helped discovering a dif
ferentially abundant known protein interactor in the TPP 
portion of this study, and which was not identified as differ
entially abundant by alternative approaches.

Figure 6. Simulated data: modeling the contribution of shared peptides improved the estimation of a range of log 2-fold changes. White dots indicate true 
values. The boxplots summarize 50 instances of simulating five proteins with two biological replicates, two unique peptides per protein, normal random 
error with a standard deviation of 0.2, with a range of true log 2-fold changes. Narrower boxes with median closer to the white dot indicate better 
performance.

Figure 7. Protein degrader: modeling the contribution of shared peptides improved log 2-fold change estimation for the BRD cluster in presence of noisy 
unique peptides. The boxplots summarize 100 instances of randomly selecting two unique peptides per protein and all five shared peptides, and 
estimating log 2-fold changes with respect to the control sample at the same time point. One unique peptide per protein was noisy. The solid line 
denotes log 2-fold changes estimated using all the available unique peptides, i.e. the ground truth. Narrower boxes with median closer to the blue line 
indicate better performance. The change in protein abundance for BRD2 and BRD4 was confirmed experimentally by Western blot.
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5 Discussion
We introduced an approach for modeling the contributions 
of peptides shared across protein clusters to individual quan
titative protein-level summaries. The proposed approach is 
most effective when the proteins in a cluster have a limited 
number of unique peptides, and each unique protein has a 
distinct quantitative profile. Although the number of non- 
trivial protein clusters with such properties is typically small, 
our results indicate that the modeling can substantially im
pact the biological conclusions for some proteins. The impact 
stems from a more accurate estimation of log 2-fold changes 
and their standard errors, as well as from an overall reduced 
number of testable proteins and alleviated multiple testing.

The proposed approach is currently implemented in the 
context of experiments with TMT labeling. Although it is 
conceptually applicable to label-free experiments, it must be 
adapted to a larger extent of missing values in label-free 
measurements. In the presence of shared peptides, treatment 

Figure 8. Simulated data: the proposed approach increased the specificity of detecting true differentially abundant proteins as compared to the analysis 
using all the peptides. Five proteins with three differentially abundant ones and a range of true log 2-fold changes were simulated. Y-axis: specificity of 
the test for differential abundance. The panels distinguish two versus three biological replicates per condition, as well as the standard deviations of the 
random error. Narrower and higher boxes with median closer to 1 indicate better performance.

Figure 9. Simulated data: the proposed approach increased the sensitivity of detecting differentially abundant proteins as compared to the analysis using 
unique peptides only. The boxplots summarize 50 instances of the simulation of five proteins with three differentially abundant ones and a range of 
log 2-fold changes. X-axis: true log 2 fold change. Y-axis: sensitivity of the test for differential abundance. The panels distinguish two versus three 
biological replicates per condition and sizes of the standard deviation of the random error term. Narrower boxes with median closer to 1 indicate better 
performance.

Figure 10. Thermal proteome profiling: the proposed approach improved 
sensitivity of differential abundance testing compared to the unique-only 
approach. Left-hand side plot describes the proposed summarization 
approach, while center and right-hand side plots describe unique-only and 
all-peptides approaches, respectively. In the TPP portion of the study, 
proposed approach achieved the highest sensitivity. In the OnePot 
portion it improved on the sensitivity of unique-only analysis. As indicated 
by the simulation study, high sensitivity of the all-peptides approach 
typically came at a cost of low specificity.
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of missing values such as imputation must be considered for 
all the proteins in a cluster jointly, and requires multivariate 
assumptions that differ from those implemented by most 
standard approaches. Such extensions will be the focus of our 
future work. Despite the opportunities for future extensions, 
we believe that the proposed approach in its current form is 
already valuable for many investigations.

6 Conclusion
We introduced a statistical approach to the problem of joint esti
mationof abundance profiles across biological samples for pro
teins or post-translational modifications that share peptides. The 
proposed modelenabled a more precise estimation of changes be
tween conditions insuch cases. The method was implemented in 
a free and open source Rpackage MSstatsWeightedSummary 
compatible with the MSstatsworkflow.
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