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SUMMARY
Digital PCR (dPCR) is an accurate technique for quantifying nucleic acids, but variance estimation remains a
challenge due to violations of the assumptions underlying many existing methods. To address this, we pro-
pose two generic approaches, NonPVar and BinomVar, for calculating variance in dPCR data. These
methods are evaluated using simulated and empirical data, incorporating common sources of variability. Un-
like classical methods, our approaches are flexible and applicable to complex functions of partition counts
like copy number variation (CNV), fractional abundance, and DNA integrity. An R Shiny app is provided to
facilitatemethod selection and implementation. Our findings demonstrate that thesemethods improve accu-
racy and adaptability, offering robust tools for uncertainty estimation in dPCR experiments.
INTRODUCTION

The use of a digital polymerase chain reaction (dPCR) to quantify

nucleic acids has markedly increased in the last decade. The

method involves massive partitioning of a sample in thousands

of nanoliter-sized individual PCR reactors. dPCR has demon-

strated many attractive characteristics, including a high accu-

racy, no need for a standard curve, and an unsurpassed repeat-

ability.1–3 Thanks to this, dPCR is becoming the recommended

method for highly precise quantification of nucleic acids, such

as absolute concentration, minority species detection, copy

number variation (CNV) estimation, fractional abundance quanti-

fication of mutations, linkage, template integrity, and many

more.4–8 As a highly precise measurement method, dPCR theo-

retically offers enhanced repeatability (reduced variation within

measurements conducted in the same experimental run) and

reproducibility (diminished variation between measurements

carried out in different experimental runs). These aspects are

commonly assessed by examining the standard deviation of

measurements.9–12

Accurate standard deviation estimation is crucial for

enhancing the reliability of these methods, reducing false posi-

tives and negatives, and ultimately contributing to more robust

scientific and clinical outcomes. For example, CNV is a critical

factor in cancer research. Accurate estimation of CNV is essen-
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tial for understanding disease mechanisms, developing targeted

therapies, and making informed clinical decisions.13 Poor stan-

dard deviation estimates could lead to incorrect CNV calls, re-

sulting in misinterpretation of genetic risk factors or therapeutic

targets, potentially impacting patient outcomes.13 Similarly, frac-

tional abundance measurements are crucial in liquid biopsy ap-

plications, where detecting and quantifying low-frequencymuta-

tions in circulating tumor DNA is essential for early cancer

detection, monitoring treatment response, and identifying resis-

tance mutations.14 In this context, a reliable standard deviation

estimate of fractional abundance is critical to distinguish be-

tween true biological signals and technical noise, ensuring

reliable clinical decisions. DNA integrity is an important quality

control measure in various genomic applications, such as

next-generation sequencing and forensic analysis.15 Accurate

standard deviation estimation here is vital to assess the quality

and reliability of DNA samples, influencing downstream analyses

and interpretations.

In dPCR, calculations are based on a binary outcome: a parti-

tion can be either positive or negative, respectively indicating the

presence of one or more target nucleic acids or its absence in a

partition. Absolute quantification of the target nucleic acids is

subsequently based on the Poisson distribution that estimates

the average number of target molecules per partition. Because

of the binary outcome of partition classification, a binomial
arch 21, 2025 ª 2025 The Authors. Published by Elsevier Inc. 1
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Figure 1. Empirical coverage of the 95% CIs (solid lines, left axis) and relative bias of the variance estimates (dashed lines, right axis) for

absolute quantification in different scenarios

(A–F) The horizontal axes represent varying concentrations of target molecules from low to high.

(A) only sampling variation and random partitioning (B) 3% pipetting error (C) 20% partition loss (D) coefficient of variation of 10% in partition size

(E) misclassification with 0.01% false positive rate and 5% false negative rate (F) all variation included. The reference for empirical coverage is set at 95% (black

solid line). The constructed CIs are expected to cover the true values in 95% of the cases. The closer other solid lines are to this reference, the better the CIs are.

The reference for relative bias is set at 0% (black dashed line). The closer other dashed lines are to this reference, the lower the relative bias is.
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distribution is assumed. This allows for the calculation of a theo-

retical measure of uncertainty, such as a standard deviation and

a confidence interval (CI) for a single reaction.16 However, previ-

ous work has indicated that the assumption of a binomial distri-

bution may not be valid in dPCR because additional sources of

variation are not accounted for.17–19

The binomial ormultinomial assumption for the number of pos-

itive partitions, imposed for single- and multiplex experiments,

respectively, stands when there is only sampling variation pre-

sent.17,20 However, this may not be realistic because other

important sources of bias and variability may come in during

the pre-analytical, analytical, and data analysis phase of dPCR

experiments.17 For example, pipetting errors may be introduced

when preparing the specimen, partition volume variation comes

to play during the experiment,17,21 or misclassification of parti-

tions may arise after the amplification and reaction readout pro-

cess. Hence, the binomial or multinomial assumption will be

violated and the existing methods will fail to provide correct

results.
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A popular method for estimating the variance of a non-linear

function of counts is the delta method.22 The core idea behind

the delta method is to simplify a nonlinear function by using a

linear approximation. By doing this, we can more easily propa-

gate the error from the input variable to the output of the function.

A non-linear function of counts means that the quantity of inter-

est is not linearly related to the counts, such as a ratio of counts

or the logarithm of a count as in Poisson statistics for absolute

quantification. The delta method approximates the non-linear

function by a linear function of counts, whereby the variance esti-

mator of a linear function is straightforward if the distribution of

the count is known (e.g., a binomial distribution for the number

of positive partitions). Logarithmic and exponential functions

are often well approximated by the delta method, but ratios,

such as CNVs, are often not well approximated by a linear func-

tion and hence the delta method may perform poorly. Moreover,

for every quantity of interest some mathematical operations

(e.g., differentiation of the nonlinear function) are required, which

may be cumbersome.23



Figure 2. Empirical coverage of the 95%CIs (solid lines, left axis) and relative bias of the variance estimates (dashed lines, right axis) for high

DNA integrity (=80%, that is, 20% of the target molecules are fragmented) in different scenarios

(A–F) The horizontal axes represent varying concentrations of intact molecules from low to high.

(A) only sampling variation and random partitioning (B) 3% pipetting error (C) 20% partition loss (D) coefficient of variation of 10% in partition size

(E) misclassification with 0.01% false positive rate and 5% false negative rate (F) all variation included. The reference for empirical coverage is set at 95% (black

solid line). The constructed CIs are expected to cover the true values in 95% of the cases. The closer other solid lines are to this reference, the better the CIs are.

The reference for relative bias is set at 0% (black dashed line). The closer other dashed lines are to this reference, the lower the relative bias is.
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This paper focuses on genericmethods for uncertainty estima-

tion, more precisely variance and CI estimation for all quantities

of interest (absolute quantity, CNV, fractional abundance, .),

without requiring mathematical operations. We propose two

methods, named BinomVar and NonPVar.

RESULTS

Simulation results
For absolute quantification, the estimators of lwere nearly unbi-

ased (relative bias C0:5%), except in the presence of partition size

variation and misclassification (Figures S2–S7). The effect of

partition size variation was limited (the relative bias can increase

to 1%), but misclassification had a larger impact with relative

bias as large as 10%; this agrees with the findings of the study

by Jacobs et al.17

With only sampling variability and random partitioning, all

methods gave good CIs (empirical coverage z95%, Figure 1).

In the presence of pipetting error, both the delta method and

BinomVar covered the true value with a probability of less than
50% when l> 0:5 (Figure 1B). The NonPVar method was more

robust against such errors and performed best. The GLMM

method was the runner-up.

In terms of the variance estimation, NonPVar had low relative

bias in all scenarios (the absolute value of the relative bias C5%).

With additional pipetting error, the NonPVar variance estimator

was much less biased compared to BinomVar, delta method,

and GLMM. The absolute bias and the distribution of the vari-

ance estimates were also checked (Figures S8–S19). In partic-

ular, the results (boxplots of the variance estimates) show that

the NonPVar estimates had a larger variance than the alternative

methods. Consequently, the variance estimates were less pre-

cise and less stable compared to the other methods. This is

due to the empirical nature of the NonPVarmethod for estimating

the variance (in the absence of distributional assumptions),

which typically only uses a few replicates. With additional pipet-

ting error, only variance estimates by NonPVar and GLMM were

close to the true value. The BinomVar and delta methods under-

estimated the variance. Partition size variation and especially

misclassification had an impact on the CI coverage. All methods
iScience 28, 111772, March 21, 2025 3



Figure 3. CIs of estimated copy numbers in sample 15 after normalization using the CLIC6 locus (accounting for inter-replicate variability)

This is an example of what the output of the web app looks like. Data are represented as mean ± SEM.
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failed to cover the true value when partitions were misclassified

and the error was consistent for all replicates.

ForCNV in singleplex, target and referencemolecules are quan-

tified separately. This means that additional sources of variability,

such as pipetting errors will be different for target and reference

molecules. In this case, pipetting errors can’t cancel out, with a

concomitant impact on the variance estimation (see Figure S20).

The effects of unequal partition size and misclassification were

not negligible. NonPVar performed at least as good as the other

methods in terms of empirical coverage, while its relative bias re-

mained quite low (the absolute value of the relative bias C5%.

In the simulations for DNA integrity, the concentration and

intactness percentage were varied from low to high. Results in

Figure 2 (see also Figures S61 and S62) show that the effect of

pipetting error, which commonly had a big impact on the varia-

tion and CI of the estimates in absolute quantification or the

CNV singleplex set-up, canceled out. The empirical coverage

of BinomVar was close to 95%, even in the presence of pipetting

error. The relative biases of NonPVar and BinomVar were both

close to 0. However, the NonPVar estimates were less precise

(Figures S49–S60), as also observed for absolute quantification

(see earlier).

For fractional abundance of a mutation, results in Figure S40

show that without misclassification, the performances of

NonPVar and BinomVar were quite comparable. With misclassi-

fied partitions, the empirical coverage of BinomVar was similar to

that of NonPVar in low or medium concentration scenarios, but it

was considerably lower in the high concentration scenarios.

In CNV duplex, all target DNA molecules are quantified within

the same reaction, and thus additional sources of variation apply

equally to them. The pipetting error is canceled out and the effect

of partition size variation diminished, as in DNA integrity and frac-

tional abundance of a mutation (see Figure S39). The variance

estimates are still accurate despite the errors.
4 iScience 28, 111772, March 21, 2025
Case study
For the mutation data, CIs given by BinomVar and NonPVar

were quite different for some samples while for others

they were comparable. Note that the sample concentrations

were low, and that the simulation results show that at low

concentration, the random sampling variability was domi-

nating. Other sources of error, such as misclassification,

did not have a big impact. In this scenario, BinomVar was ex-

pected to give more precise variance estimates and thus

should be preferred.

For the CNV dataset, CIs given by BinomVar, the delta method

and GLMM were overall close (Figures 3 and S63 for more de-

tails). It is important to observe that for the gene DSCR3, the

NonPVar approach produced a CI that was over twice as wide

as those generated by BinomVar and the delta method. This sig-

nificant disparity may suggest the possibility of additional error

sources beyond sampling variability contributing to the large

variance among replicates. In this case, the binomial assumption

was likely too optimistic.

Demonstration of the R shiny app
An R Shiny app was developed to enable estimation and visual-

ization of the CIs. Here, sample 1 and 2 of the fractional abun-

dance data (see Figure 4) are used for demonstration.

As a first step, the quantity of interest must be selected. The

next step is to load the data into the application; the appropriate

data format can be learned from the demo data that come with

the Shiny app. Following the data loading step, users can initiate

the analysis by clicking the ‘‘Start Analysis’’ button. The Shiny

app then processes the data, and within seconds generates a

comprehensive output, comprising both a table and a figure

showing the CIs. A download option is provided to facilitate

further exploration. See Figure 5 for a visualization of the

process.



Figure 4. The plot shows CIs of the frac-

tional abundance of a mutation calculated

with BinomVar and NonPVar from themuta-

tion data

Data are represented as mean ± SEM. (A) Sam-

ples 1 and 2. (B) Samples 14, 18, 22, and 23.
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DISCUSSION

In digital PCR data, variation stems not only from random parti-

tioning and sampling, but also from additional sources like pipet-

ting errors, partition misclassification, partition size variability,

etc. Traditional methods such as the delta method for estimating

uncertainty of the quantities of interest do not consider those

additional experimental sources of variability.

These different sources of variability have different impacts

on the variance estimates (Figures 1, 2, S20, S39, and S40).

In absolute quantification and the CNV singleplex set-up,

ignoring pipetting error will result in an underestimation of the

variance and in an inaccurate CI. For CNV duplex, fractional

abundance of a mutation or DNA integrity, most of the addi-

tional errors cancel out. The effect of varying partition size

does not disappear even in duplex or multiplex set-ups,

because all methods make use of the Poisson assumption for

calculating bl. This assumption is violated if the partition volume

is not constant. The impact of misclassification does not cancel

out either. This indicates a clear need to use a good partition

classification method.

Theuseof traditionalmethodsmay thus lead tounderestimation

of the variance and hence to too narrow CIs.17 Furthermore, other

quantities of interest such as fractional abundances of mutations

and DNA integrity are relevant outcomes in dPCR, but their vari-

ance estimations are challenging. To address these challenges,

we have introduced two methods, BinomVar and NonPvar.

The BinomVar method gives more precise estimates, because

it relies on the Poisson assumption for the sampling distribution of

the number of molecules over the replicates (that is, binomial

assumption for the number of positives). The price that

BinomVar pays is that it becomes less robust when this distribu-

tional assumption is violated. NonPVar is a data-driven method

and does not rely on a distributional assumption for the number

of positive partitions; the variance is inferred from the data. The

method is more robust in the presence of additional sources

of error, such as pipetting errors. Since the method makes

use of replicates, the estimation accuracy depends on the num-

ber of replicates. This method, despite being unbiased for many

scenarios, requires a sufficient number of replicates to give

good variance estimates. Without an adequate number of sam-

ples, the variance estimates may be highly sensitive to small
changes in the data, leading to increased

uncertainty and potentially unreliable re-

sults. The sample size can be calculated

based on the required precision24 and po-

wer.25 Note that the CIs provided by both

methods are based on the assumption of

the asymptotic normality of the estimator
l. According to the central limit theorem (CLT), for a sufficiently

large sample size, the distribution of the sample mean ap-

proaches a normal distribution, regardless of the original distribu-

tion of the data.22 However, this normal approximation may not

fully capture the true uncertainty when the sample sizes are small,

where deviations from normality can be more pronounced.

The results also show that at low concentration scenarios, other

sources of errors, such aspipetting error, do not have a big impact

andBinomVar is the better choice.When the deltamethod is avail-

able (that is, when the mathematical derivation and the resulting

formula for the variance are already established), it gives similar

results as BinomVar. In this case, we would recommend the delta

method because it is faster than the computationally intensive

bootstrap. In summary, we would suggest choosing estimation

methods by the type of experiments, concentration levels, and

number of replicates; see Table 1.

When multiple methods are available for a given scenario,

users can choose based on ease of use and computational re-

quirements. BinomVar is the easiest to use, followed by the

GLMM, and then the delta method. However, in terms of compu-

tational demand, BinomVar is the most intensive, followed by

GLMM, with the delta method being the least computationally

demanding.

It is important to note that the delta method remains a valid

approach for absolute quantification and CNV. However, for

other quantities of interest, deriving mathematical formulas for

variance estimation using the delta method can be challenging.

When the function is very nonlinear, the relationship between

the input variables and the output of the function cannot be

well depicted by a line, such as in the case of ratios. In such

cases, the delta method will work less well and BinomVar may

be a better choice.

It is recommended that users apply all the available

methods—NonPVar, GLMM, BinomVar, and the delta

method—to estimate variance. A significant difference in the re-

sults between these methods may indicate the presence of un-

expected or unknown additional sources of error in the

measurements.

Limitations of the study
Our study introduces two methods for variance estimation across

various quantities of interest. We provide recommendations for
iScience 28, 111772, March 21, 2025 5



Figure 5. Illustration of the Shiny app with an example of fractional abundance estimation
This figure shows the various steps involved in using the web app, including selecting the quantity of interest, loading the data, starting the analysis, and

downloading the results. The right panel presents the analysis results, including a table of confidence intervals and a plot of fractional abundance estimates with

confidence intervals.
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method selection based on the typeof experiment and concentra-

tion levels; however, the choice of method also depends on sam-

ple size. In this study, we do not define specific sample size

criteria. NonPVar performs comparably to other methods as the
Table 1. Recommended variance estimation methods

concentration

type of

experiment recommended method(s)

low singleplex BinomVar, GLMM

or Delta method

duplex/

multiplex

BinomVar, GLMM

or Delta method

high singleplex NonPVar

duplex/

multiplex

Depends on the classification.

If the clusters are well-separated, then

BinomVar, GLMM or Delta method.

Otherwise, misclassification error will

be high and NonPVar is a better choice.

The choice of method also depends on the sample size. If the precision

requirement is met, NonPVar will be as good as other methods in

duplex/multiplex scenarios. Note there is no exact threshold to define

low or high concentration levels. In our simulation studies, l< 0:1 was

considered as low concentration level. However, it also depends on the

quality of the data. If there is low pipetting error and targets are accurately

quantified, then the threshold should be higher.

6 iScience 28, 111772, March 21, 2025
number of replicates increases, which influences method selec-

tion. Future work should further explore the interplay between

sample size, concentration levels, and experimental types. Addi-

tionally, for CNV data, multiple reference genes are often avail-

able. Both BinomVar and NonPVar can estimate CNV using

each reference gene, but an approach to integrate estimates

from different references could yield a more stable and accurate

CNV estimate, as done in the study by Vynck et al.26
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Variance estimation R shiny app This paper https://digpcr.shinyapps.io/variance_estimate/
EXPERIMENTAL MODEL AND STUDY PARTICIPANT DETAILS

The datasets used in this study were obtained from previously published papers and are publicly available. Due to ethical and privacy

restrictions, detailed information about most samples, such as age and gender, is not provided. However, we do not expect these

factors to have any impact on the results.

For the CNV data, DNA was extracted from blood samples of two individuals with chromosomal abnormalities using the QIAamp

DNA Blood Mini Kit (Qiagen) following the manufacturer’s protocol. 14 genes of interest were analyzed, comprising 13 target loci

located on chromosomes 13, 18, 21, X, and Y, along with a single reference locus (RPP30) on chromosome arm 10q used for

normalization.

For the mutation data, the patient samples were obtained from a female donor around 30 years old with a high mutational load at

the m.11778 locus. Following ovarian stimulation, multiple cumulus oocyte complexes were retrieved, including metaphase II (MII)

oocytes, one metaphase I (MI) oocyte, and one germinal vesicle (GV) oocyte. Additional samples included a non-patient enucleated

MII oocyte (sample 14), two patient zygotes (samples 8 and 9), and two non-patient in vitro-matured (IVM) oocytes (samples 15

and 16).

METHOD DETAILS

Poisson statistics
A typical dPCR data analysis starts from the end-point fluorescence after a fixed number of amplification cycles. The raw continuous

fluorescence levels are transformed to binary (digital) observations after applying a threshold. In particular, when the end-point fluo-

rescence exceeds the threshold, the partition is labelled positive, otherwise negative. Let n denote the number of partitions. The rela-

tion between the binary outcome Yj of partition j and the unobserved count of the target molecule Y�
j in that partition can be formu-

lated as j = 1;.;n

Yj = min
�
Y�
j ; 1
�

=

(
0 if Y�

j = 0

1 otherwise
; (Equation 1)

i.e. Yj is 0 if there are no copies and it is 1 if there is at least one copy.

As the total number of molecules (m) in the sample is fixed and the entry of a molecule into a partition is random, the counts Y�
j

follow a binomial distribution with distribution function

P
�
Y�
j = y

���m;n
�

=

�
m
y

��
1

n

�y�
1 � 1

n

�m� y

: (Equation 2)

When n is large enough, this binomial distribution can be approximated by a Poisson distribution with parameter l = m=n which can

be interpreted as the average number of target molecules per partition. The distribution function of this Poisson distribution is given

by

P
�
Y�
j = y

���l� =
lye� l

y!
: (Equation 3)
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The l parameter can be directly estimated from the digital outcomes, because Y�
j = 0 if and only if Yj = 0 (i.e. a partition containing

no molecules is a negative partition). Upon using this relationship the Poisson distribution gives

P
n
Y�
j = 0

���lo =
l0

0!
expð� lÞ = expð� lÞ: (Equation 4)

Hence the relationship (Throughout the article, log means natural logarithm.)

l = � logP
n
Y�
j = 0

���lo = � logP
�
Yj = 0

��l�: (Equation 5)

Since the digital outcomes Yj are observed, the probability of a negative partition, PfYj = 0
��m;ng, can be estimated by 1 � K= n,

where K =
Pn

j = 1IðYj = 1Þ is the number of positive partitions. The estimate of l thus becomes

bl = � log

�
1 � K

n

�
: (Equation 6)

This parameter estimate is crucial in most of the dPCR applications. For example, in absolute quantification the concentration of

the target is estimated as bl=Vp, with Vp the (average) volume of a partition. Another example: CNV is based on the ratio of two bl’s; e.g.
one for the target and one for the reference.

The imprecision of the estimate bl can be expressed as its standard error seðbljm;nÞ or its variance Varfbljm;ng = se2ðbljm;nÞ. The
focus of this paper is on the estimation of this variance. Imprecision can also be expressed as a confidence interval (CI) of l. If the

sampling distribution of bl is approximately normal, then an approximate 95%CI can be calculated as bl ± 1:963cse, withcse the esti-

mated standard error. Later we will also propose another method for CI calculations. Since bl is a function of the number of positives

K, the variance of bl depends on the distribution of K.

Existing methods
The conventional method for estimating the variance of the Poisson parameter (bl) employs the delta method.27,28 In this approach,

first, the variance of the count of positive partitions (k) is estimated based on the binomial/multinomial distribution. Subsequently, the

variance of bl, which is a function of k, is approximated with the deltamethod. The delta method has also been used for calculating the

variance of CNVs.27,28 However, the conventional approach relies on the binomial/multinomial assumption for the count of positive

partitions, which may be violated in practice.

Alternative methods for estimating variances and CIs for CNVs have been proposed. A numerical approach is introduced in27. The

method builds on independent sampling distributions of the estimators for the reference and target. The distribution of CNVs is then

approximated by all combinations of reference and targets, and accordingly, the 95%CI is established. Alternatively,26 used a gener-

alized linear mixed model (GLMM) to derive CIs. This method allows for additional sources of variability, e.g., between-replicate vari-

ability, but it cannot be used for all types of quantities of interest. Only absolute quantification and CNV determination are included in

this framework.

Indeed, to our best knowledge, the above methods have primarily been applied to absolute quantification and CNV estimation.

However, there are other quantities of interest such as fractional abundances of mutations and DNA integrity (see further).

Quantities of interest
In this section a few examples of quantities of interest are given.

For absolute quantification, the Poisson parameter li (the average number of target molecules per partition in replicate i) is esti-

mated as

bl i = � log

�
1 � ki

ni

�
: (Equation 7)

with ki the number of positive partitions, and ni the total number of partitions (Figure S1A). It is a non-linear function of ki, but it can be

well approximated by a linear function, which explains why the delta method works well here.

The estimate of CNV, on the other hand, is a ratio of Poisson parameters:

dCNVij =

log

�
1 � kAi

ni

�
log

�
1 � kBj

nj

� =
bl ibl j; (Equation 8)

with kAi (kBj) and ni (nj) referring to the number of positive partitions and total number of partitions for target molecule A (B) in replicate i

(j) (in two separate singleplex reactions) and bl i = � logð1 � kAi =niÞ (Figure S1B). This is also an example of a nonlinear function of the

counts (kAi and kBj). The linearization can be effective if the function does not strongly deviate from linearity within an interval where

the observed counts are expected. However, in the case of ratios (particularly when the denominator is close to zero or highly var-

iable), the range over which a linear approximation is valid can be quite limited. This difficulty in linearizing ratios makes it challenging
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to accurately model or analyze the relationship between the counts.

The fractional abundance of a mutation quantifies the proportion of the mutant alleles to the total amount of wild andmutant alleles

(Figure S1B). The estimator for replicate i is given by,

bF i =
blAiblAi+blBi: (Equation 9)

with blAi and blBi the estimates of the Poisson parameter of mutant (A) and wild type (B) DNA, respectively in replicate i (typically in a

duplex reaction).

Sequence linkage assays can be used to quantify DNA integrity, transgene quality control, linkage disequilibrium assessment or

sequence inversions.29,30 These methods investigate a proportion and measure how many DNA fragments contain physically linked

target sequences (Figure S1C).7,31 provided a method for estimating sequence linkage for the purpose of DNA integrity estimation,

defining the integrity measurement as a ratio that reflects the proportion of intact DNA fragments. For replicate i,

dIntegrity i = 1 � ðblAi+blBiÞ=2
ððblAi+blBiÞ=2Þ+blABi: (Equation 10)

where Ai and Bi represent the estimated concentrations of broken (unlinked, single-positive) partitions for target sequences A and B,

respectively andABi represents the concentration of intact (double positive) partitions. This integrity measure is a ratio, where a value

closer to 1 indicates a higher proportion of intact DNA fragments.

Proposed methods: general ideas
In a dPCR reaction, molecules undergo random partitioning, which introduces variation. This variation is the inherent variability of the

partitioning process when there is no replicate and the number of molecules is fixed (see Section probabilistic framework in Section

proposed methods: detailed description below for the distribution of the number of positives). When r replicates are available, we

need to account for yet another level of variability: the numbers of molecules loaded in r replicated dPCR reactions show sampling

variability, which is caused by sampling from a specimen (a larger volume). Even though the number of target molecules in a given

specimen is fixed, the number of target molecules loaded onto the dPCR device will vary from replicate to replicate. Hence the

number of loaded target molecules is considered a random variable, which is denoted by M (with Mi is the number of molecules

in the i� th replicate). The variance of bl is thus composed of two levels of variability: (1) the random sampling of M, and (2), given

M, the random partitioning process. The details of the de-convolution into the sampling and random partitioning process can be

found in Section probabilistic framework.

BinomVar: Binomial bootstrap for variances

Upon assuming that the numbers of molecules M are distributed over the replicates as a Poisson distribution, the distribution of

the number of positives k is approximated by a binomial distribution (see Section probabilistic framework for a proof). In replicate

i = 1;.;r, this binomial distribution has parameters ni (the total number of partitions) and pi = 1 � e�m=ni the probability that a parti-

tion is positive. The parameter m is the average number of molecules (averaged over replicates).

To circumvent the complex derivation of a mathematical formula for the variance, we propose a parametric bootstrap method by

resampling numbers of positive partitions from this binomial distribution with the unknown parameter m replaced with its estimate
1
r

Pr
i = 1
bl i. This bootstrap method will be referred to as BinomVar. Details of the algorithm are in Section binomial bootstrap process.

It is important to note that the results of the delta method and BinomVar can be very similar, as both methods assume a binomial

distribution for the number of positives. The key difference is that the delta method relies on mathematical derivations, whereas

BinomVar circumvents this by using a bootstrap procedure. Unlike the delta method, BinomVar does not rely on a linearization of

the QOI, which will work less well when the function is very nonlinear.

Based on the estimated variance, normal CIs for l can be computed,26–28 which are expected to work well in terms of the coverage

when the estimator bl is approximately normally distributed.

NonPVar: a simple nonparametric estimator of the variance

Instead of imposing a distributional assumption onM, a simple nonparametric method can be considered (NonPVar). NonPVar relies

only on the assumption of random partitioning. In particular, NonPVar estimates the variance of bl as the empirical variance

S2
l =

1

r � 1

Xr
i = 1

ðbl i � lÞ2 (Equation 11)

with l the average of the estimates bl i. A variance estimator of bm is then given by S2
m = 1

rS
2
l . Note that the sample standard deviation is

an underestimation of the standard deviation32, so that variance is benchmarked.

CIs can be constructed based on the asymptotic normality of the estimator bm, but as an improvement for a small sample size (i.e.,

small number of replicates r, often r < 5), we suggest using quantiles of a t� distributionwith r � 1 degrees of freedom. In particular, a

1 � a CI of m is obtained as 	bm � Smtr� 1;a=2; bm + Smtr� 1;a=2



: (Equation 12)
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The significance level a is set at 5% in this paper.

In summary, when there are replicates, BinomVar and NonPVar are generic methods and can be applied to absolute quantification,

CNV in singleplex and duplex, fractional abundance and DNA integrity measurement, among other quantities of interest (see Section

absolute quantification, Section CNV in singleplex and Section CNV in duplex for the variance estimation of different quantities of

interest). NonPVar is expected to be more robust than BinomVar and the delta method when the Poisson assumption is violated

(e.g., when additional sources of error or variability are present). However, BinomVar provides more precise variance estimates

as it relies on specific distributional assumptions.

Proposed methods: Detailed description
Probabilistic framework

Suppose the number of molecules in the sample (M) is fixed, as well as the total number of partitions in the dPCR run (n). Then the

probability of k partitions being positive is given by

PðK = kjm; nÞ

=
n!S2ðm; kÞ
ðn � kÞ!nm

=

n!

(
m

k

)
ðn � kÞ!nm

=
n!

ðn � kÞ!nm

1

k!

Xk
i = 0

ð�1Þi
 
k

i

!
ðk � iÞm

(Equation 13)

where S2ðm; kÞ refers to the Stirling number of the second kind, which is the number of ways to partition m objects into k non-empty

subsets.33 This equation is also mentioned in.20 For the sake of computation, S2ðm; kÞ is approximated as,�
m
k

�
�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
v � 1

vð1 � GÞ

s �
v � 1

v � G

�m� k
km

mk
ekð1�GÞ

�
m
k

�
(Equation 14)

whereG = � W0ð� ve� vÞ;v = m=k, andW0ðzÞ is themain branch of the LambertW function.34 Equation 13 is also log-transformed

to deal with factorial and power function. The log-transformed probability l of k partitions being positive can be expressed as,

l =
Xn
i = 1

logðiÞ �
Xn� k

i = 1

logðiÞ � m logðnÞ+ 1

2
log

�
v � 1

vð1 � GÞ
�
+ ðm � kÞlog

�
v � 1

v � G

�

+m logðkÞ � k logðmÞ+ kð1 � GÞ+
Xm
i = 1

logðiÞ �
Xm� k

i = 1

logðiÞ �
Xk
i = 1

logðiÞ
(Equation 15)

this equation requires integer n,m and k. Sincem and n are considered fixed, this distribution reflects the variability in the number of

molecules per partition as a consequence of the random partitioning. Although with this distribution function and with basic proba-

bility calculus it is possible to find the variance of bl, these calculations are hard.

Now consider taking a sample from a larger volume (e.g. a specimen). With c the concentration of target molecules in the volume,

and with Vd the volume to be loaded in the dPCR device, set m = Vdc, i.e. m is the average number of target molecules loaded in the

dPCRdevice. The random sampling (i.e. pipetting) of a volume Vd from the large volumewill bring a number of targetmolecules along;

this number of molecules is denoted by Mi, i = 1;.; r, and it is thus considered as a random number.

Taking into account both the random partitioning and sampling, the distribution of Ki can be formulated as,

PðKi = kjniÞ =
XN
m = 0

PðKi = kjM = m;niÞPðM = mjniÞ: (Equation 16)

This would be the appropriate distribution for deriving the standard error of bl, but it can only be used if the distribution of M is

known.

Under ideal conditions it would be reasonable to assume a Poisson distribution, i.e.

Mi � PoissonðmÞ:
e4 iScience 28, 111772, March 21, 2025
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See also Figure 1 in the main text. In this setting, the interest is in the estimation of m (absolute quantification) or a function of m (e.g.

CNV = mA=mB, with mA and mB the numbers of molecules of type A and B; see further down). Based on a single replicate i, the

parameter m can be estimated as Vd

Vp

bl i with bl i as in Equation 6. With r replicates, the estimator of m can be defined as

bm =
Vd

Vpr

Xr
i = 1

bl i: (Equation 17)

where Vp is the partition volume. The appropriate variance is now Varfbmjn1;.;nrg, which is no longer conditional on the number(s) of

molecules, as it must also express the variability over the replicates (replicates involve random sampling from the volume).Wewill use

the shorter notation Varfbmjng.
For absolute quantification we find

Varfbmjng =

�
Vd

Vpr

�2Xr
i = 1

Varfbl ijnig:

and thus the problem is reduced to finding the variance Varfbl ijnig. As before, since bl is a function ofK, we need VarfKijnig and hence

the conditional distribution of Kijni.
The conditional distribution of Kijni can be approximated for large numbers of partitions ni. We find from Equation 16,

PðKi = kjniÞ =
XN
m = 0

ni!

ðni � kÞ!nm
i

(
m

k

)
ðniliÞm
m!

e� nili

=
ni!

ðni � kÞ!e
� nili

XN
m = 0

(
m

k

)
lmi
m!

=
ni!

ðni � kÞ!e
� nili

1

k!

�
eli � 1

�k
=

ni!

ðni � kÞ!k!
�
e� li

�ni � k�
1 � e� li

�k
:

(Equation 18)

We have used the exponential generating function,

lim
u/N

Xu
m = 0

�
m
k

�
lm

m!
=

1

k!

�
el � 1

�k
:

We have the final expression,

PðKi = kjniÞ ~� ni!

ðni � kÞ!k!
�
e�m=ni

�ni � k�
1 � e�m=ni

�k
(Equation 19)

which is the distribution function of the binomial distribution Binomðni;piÞ with pi = 1 � e�m=ni the probability that a partition is

positive.

Binomial bootstrap process

The parametric bootstrap algorithm works as follows. With B the bootstrap iteration, typically a large number (e.g. B = 1000):

1. estimate bm as Vd

Vpr

Pr
i = 1
bl i, with bl i the traditional estimate of li based on the Poisson approximation. This equation simplifies to

the ordinary mean in most cases.

2. set i = 1

3. randomly sample B observations from Binomðni;piÞ with pi = 1 � e� m̂=ni . These are denoted as kb, b = 1;.;B. For each

bootstrap sample b, computer blbi .
4. based on the B estimates blbi , calculate its sample variance bs2

i

5. if i < r, then i)i + 1 and return to step 3; otherwise stop the procedure.

6. average bs2
i over the r replicates

With S2
l the result of the averaging in step 6, the variance of bm is estimated as S2

m =
V2
d

V2
p r
S2
l .

Delta method for variance estimation

The delta method is a well-established method in statistics for approximating the variance of estimators that are nonlinear functions

of the sample observations. It is based on a first order Taylor expansion of this nonlinear function, which essentially ‘‘linearises" the

function around a point of interest.
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This method has been applied to the estimator bl of Equation 6, resulting in

Varfbljn; lgz p

nð1 � pÞ (Equation 20)

with p = 1 � expð� lÞ the probability of a positive partition. With bp = 1 � expð� blÞ = K=n an estimator of p, the conditional variance

of bl can be computed by substituting p with bp in Equation 20, resulting in the variance estimator K=½nðn � KÞ�.
Based on the delta method,28 gives an approximation of the variance of CNV estimators based on two independent singleplex ex-

periments. The numbers of positive partitions of both the target and reference are considered to follow the binomial distribution

(Equation 18). The delta method is applied to the log transformed CNV estimate, resulting in the approximation

Var

�
log
bltblr
����n; lt; lr�z

ð1 � expð� ltÞÞ�
n3 l2t expð� ltÞ

�+ ð1 � expð� lrÞÞ�
n3 l2r expð� lrÞ

� ; (Equation 21)

where lt and lr refer to the target and reference, respectively. An estimator of this variance is obtained by replacing the l parameters

by their estimators (Equation 6). A disadvantage of this approach is that it only gives a variance estimate of the log � CNV ; it cannot

be accurately backtransformed to the original CNV scale. If the estimate is used for the calculation of a CI of the log � CNV , then the

boundaries of this interval can be correctly backtransformed to the boundaries of a CI of the CNV by exponentiating these bounds.

The variance Varfbl ijnig can now be approximated by using (1) the delta method and (2) the variance VarfKijnig from the binomial

distribution (Equation 19). The unknown parameter m must be replaced by its estimator (Equation 17).

General approach for multiplexing

In the next few paragraphs, a more generic description is given, which also applies to multiplex experiments. The description is given

for experiments with replicates, but at the end it will be indicated how the procedure simplifies when no replicate is available.

For multiplex experiments, for replicate i = 1;.;r, let MAi;MBi;. denote the randomly sampled numbers of target molecules of

type A, B,. that are partitioned over the ni partitions. LetM
t
i = ðMAi;MBi;.Þ,Mt = ðMt

1;.;Mt
rÞ and nt = ðn1;.;nrÞ. The numbers of

positive partitions for types of targets A, B,. in replicate i are denoted by KAi;KBi;. LetKt
i = ðKAi;KBi;.Þ andKt = ðKt

1;.;Kt
rÞ. For

all types of target molecules, let mA;mB;. denote the average numbers of molecules in a fixed volume Vd loaded in the dPCR device.

The parameters lAi; lBi;. refer to the average numbers of molecules of type A, B, .per partition in replicate i.

Suppose that the goal of the experiment is to estimate a parameter q which can be expressed as a function of the m (or l) param-

eters. An estimator of q can be obtained by replacing all m (or l) parameters by their estimators, which in turn depend onK and n. It will

be convenient to also explicitly consider the estimator bq as a function ofM, because the distribution ofK depends on it. We therefore

write the estimator of q as bq = bqðM;K;nÞ. We are now interested in the estimation of its variance, VarMXfbqjng, which is estimated as

the empirical variance over the replicates and covers both sampling and random partitioning variability.

In the special case of no replicates (i.e. r = 1), we cannot make a distinction between the concentration of target molecules in the

vessel and the concentration of the target loaded on the dPCR device. Hence, l takes over the role of m, and the number of target

molecules is considered fixed, i.e. we use m instead of M. This number is no longer considered random and so we only need the

conditional variance VarKjMfbqjM = m;ng. The estimation of this conditional variance is based on K which has the distribution func-

tion in Equation 13.

Absolute quantification

For absolute quantification, the target parameter is the average number of copies per partition l. Here, only one type of target mol-

ecules needs to be quantified (see Figure 2A). We also allow for technical replicates.

For all replicates i = 1;.; r, we can calculate bl i from Ki as in Equation 6 in SI. Since we have replicates, the final estimator of l

becomes bl = 1
r

Pr
i = 1
bl i with variance

VarKMfblg =
1

r2

Xr
i = 1

VarKMfbl ijnig: (Equation22)

For the estimation of VarKMfbl ig we use the BinomVar procedure as in Section BinomVar: binomial bootstrap for variances or non-

parametrically estimate the between-replicate variability of bl with the NonPVar method as described in Section NonPVar: a simple

nonparametric estimator of the variance.

CNV in singleplex

BinomVar andNonPVar can also be applied to CNV estimation. CNV is defined as large-scale losses and gains of DNA fragments and

is one of the major classes of genetic variation.35 It quantifies how the number of copies of a target gene varies from a reference. In a

CNV singleplex set-up, the target (A) and reference (B) molecules are quantified in separate experiments (Figure 2B).

We now consider the estimators

dCNV ij = dCNV ðKAi;MAi;KBj;MBjÞ =
bmAibmBj

=
blAiblBj

Vdi

�
Vpi

Vdj

�
Vpj

(Equation 23)
e6 iScience 28, 111772, March 21, 2025



iScience
Article

ll
OPEN ACCESS
based on replicate i ðjÞ for molecule A (B). Very often it is reasonable to have Vdi equal to Vdj and Vpi equal to Vpj. It will turn out to be

convenient if we estimate the log � CNV instead,

bq ij = bqðXAi;MAi;XBj;MBjÞ = ln
blAiblBj = ln blAi � ln blBj: (Equation 24)

The final estimator of the log � CNV is given by (assuming equal numbers of replicates)

bq =
1

r2

Xr
i = 1

Xr
j = 1

bq ij =
1

r

Xr
i = 1

ðln blAi � ln blBiÞ: (Equation 25)

Upon relying on the independence between the singleplex experiments, the variance of bq is given by

VarKMfbqg =
1

r2

Xr
i = 1

VarKMfln blAijnig+ 1

r2

Xr
i = 1

VarKMfln blBijnig: (Equation 26)

For both terms we apply the same procedures as in Section absolute quantification.

CNV in duplex

In the CNV duplex set-up, the target and reference are typically quantified in the same dPCR run and thus the number of partitions is

the same and other sources of errors are shared. There is matching between the replicates for A and B (see Figure 2B). We consider

the estimator

dCNV i = dCNV ðKAi;MAi;KBi;MBiÞ =
blAiblBi (Equation 27)

based on replicate i for molecules A and B. With the r replicates, the final estimator becomes dCNV = 1
r

Pr
i = 1

dCNV i with variance

VarKMf dCNVg =
1

r2

Xr
i = 1

VarKMf dCNV ijnig: (Equation 28)

the same procedures as in Section absolute quantification can also be applied here.

Simulation study and empirical data analysis
BinomVar and NonPVar were evaluated and compared to competitor methods in a simulation study and a case study. Simulations of

the number of positive partitions under a variety of circumstances allow method benchmarking. The case study includes empirical

data with replicates of CNV where all methods are compared, as well as fractional abundance data where only BinomVar and

NonPVar can be applied.

In the simulation study, we used the simulation pipeline of.17 In a first scenario, the number of molecules M is randomly sampled

from a Poisson distribution, and, next, givenM, the number of positive partitions is generated by randompartitioning of themolecules

over n partitions. Subsequent scenarios add additional sources of variation and bias to the data generating process as in.17 More

specifically, we simulate the process for several orders of magnitude of concentration reflecting empirical dilution levels. Therefore

we vary the expected number of target molecules per partition l from 0.005 to 1.5. The pipetting error we added is normally distrib-

uted with a coefficient of variation of 3%. The number of partitions is initially set at 20 000. Partitions are assumed to be lost

completely at random. To simulate this process, we randomly retain partitions between replicates with an expected value 16000

and standard deviation 2000. Then the partition size is modeled to follow a log� normal distribution with mean 0 and standard de-

viation 0.1, which is approximately equal to a normal distribution with a coefficient of variation of 10%. In the final stage, partitions are

classified as positive or negative after thresholding. To assess the effect of misclassification, we set 5% false negative rate and

0.01% false positive rate. Those simulation studies are implemented in parallel (separately) and sequentially.

For each scenario, the methods were evaluated using 1000 simulation runs, and within each run, 3 replicates were generated. The

bootstrap method (in BinomVar) was applied with 1000 bootstrap samples for each replicate. The performance of the variance es-

timators is evaluated in terms of the bias (relative bias w.r.t. the true variance EðbqÞ� q

q
or absolute bias EðbqÞ � q), and the empirical

coverage of the 95% CIs (i.e., the relative frequency, over the 1000 simulation runs, that the true quantities of interest falls within

the CI) is assessed.

Method performance was evaluated for absolute quantification and CNV, both in singleplex and duplex, and fractional abundance

of a mutation and DNA integrity, all in duplex. As competitor methods we included the delta method and the GLMM26 methods for

absolute quantification and CNV in singleplex and duplex. To our knowledge no competing methods exist for fractional abundance

andDNA integrity estimation, unless one would use the deltamethod for developing expressions for these quantities, which is analyt-

ically difficult.

In the case study, we investigated two types of empirical data: CNV in singleplex and mutations in duplex. The mutation data

comes from.8 Three types of samples were included: (i) patient samples with a very high mutation load (samples 1–13); (ii) homoplas-

mic wild-type samples from a healthy volunteer (samples 14–16); and (iii) samples undergoing nuclear transfer, thus carrying a low
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mutation load due tomtDNA carry-over (samples 17–23). The CNV dataset is from26 which consists of 10 samples with chromosomal

abnormalities and 4 controls. For each sample and gene of interest, there are 2 or 3 technical replicates.

QUANTIFICATION AND STATISTICAL ANALYSIS

The data analysis was conducted using R (version 4.2.0).36 For fractional abundance data, 6 samples, each with three technical rep-

licates, were analyzed. The detailed results and CIs are presented in Figure 4. For CNV data, 2 samples, each with 2-3 replicates,

were analyzed. The corresponding data details and CIs are shown in Figures 3 and S63.
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