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Highlights

What are the main findings?

• This research introduced a new analytical bikeability index framework integrating
micro-level indicators based on five internationally recognized bicycle infrastructure
design principles: safety, comfort, attractiveness, directness, and coherence.

• The proposed framework was applied in Hasselt, Belgium, successfully identifying
low and high-bikeable areas.

What are the implications of the main findings?

• The BI framework provides urban planners with a practical tool to identify low
bikeability areas and suggests improvements in cycling infrastructure.

• This tool’s scalable and adaptable nature makes it relevant for cities committed to
enhancing cycling environments and promoting a sustainable mode of transport by
making cycling-friendly cities.

Abstract: Modern and smart cities prioritize providing sufficient facilities for inclusive
and bicycle-friendly streets. Several methods have been developed to assess city bicy-
cle environments at street, neighborhood, and city levels. However, the importance of
micro-level indicators and bicyclists’ perceptions cannot be neglected when developing
a bikeability index (BI). Therefore, this paper proposes a new BI method for evaluating
and providing suggestions for improving city streets, focusing on bicycle infrastructure
facilities. The proposed BI is an analytical system aggregating multiple bikeability in-
dicators into a structured index using weighed coefficients and scores. In addition, the
study introduces bicycle infrastructure indicators using five bicycle design principles
acknowledged in the literature, experts, and city authorities worldwide. A questionnaire
was used to collect data from cyclists to find the weights and scores of the indicators. The
survey of 383 participants showed a balanced gender distribution and a predominantly
younger population, with most respondents holding bachelor’s or master’s degrees and
57.4% being students. Most participants travel 2–5 km per day and cycle 3 to 5 days per
week. Among the criteria, respondents graded safety as the most important, followed
by comfort on bicycle paths. Confirmatory factor analysis (CFA) is used to estimate
weights of the bikeability indicators, with the values of the resultant factor loadings used
as their weights. The highest-weight indicator was the presence of bicycle infrastruc-
ture (0.753), while the lowest-weight indicator was slope (0.302). The proposed BI was
applied to various bike lanes and streets in Hasselt, Belgium. The developed BI is a
useful tool for urban planners to identify existing problems in bicycle streets and provide
potential improvements.
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1. Introduction
Bicycles play a vital role in smart mobility systems by offering environmental advan-

tages and affordability and encouraging healthier lifestyles. Using bicycles offers long-term
environmental impacts with zero emissions and a reduction in noise pollution [1]. Traffic
congestion, traffic accidents, noise pollution, and environmental pollution are common
issues in cities these days [2,3]. These problems are strongly linked with motorized vehicles,
which makes bicycling a more attractive mode of transport [4]. Using the bicycle offers
other advantages as it is inexpensive, while in traffic congestion, it can be faster than other
modes of transportation [5].

Previously, transportation planners focused on safe motorized vehicle movement while
giving less consideration to sustainable modes such as bicycling in cities [6,7]. However,
the policymaker’s paradigm has been shifted, diverting trips from private cars [7,8]. They
see cycling as an alternative travel mode due to increasing concerns over greenhouse gas
emissions polluting the environment, traffic congestion, increased travel time, and other
related urban traffic issues [9,10]. In addition, using bicycles as a mode of transport comes
with various benefits to individuals and the community. Hence, governments worldwide
promote programs and policies to encourage bicycle use in cities. Consequently, robust
bicycle infrastructure is essential for smart cities to promote sustainable transportation and
minimize dependency on motorized vehicles.

Past studies show that supportive cycling infrastructure is crucial for attracting new
bicycle users. The provision of new cycle lanes, routes, streets, and paths has significantly
increased the daily bicycle use for different activities [11]. For example, Copenhagen,
Denmark, is among the most bicycle-friendly cities globally due to its extensive bicycle
infrastructure planning [12]. One study shows that the bicycling mode share for trav-
eling increased and reached 45% of all trips to educational institutes or workplaces in
Copenhagen [13]. Other researchers have also emphasized the importance of cycle infras-
tructures in a study conducted for 43 large cities in the U.S. [14]. Further, research in Patras,
Greece, found that developing bicycling infrastructure facilities will likely increase citizens’
sense of having a transport means that offers flexibility for their mobility needs [15].

Bicycle facility planning, construction, and management are time-consuming and
costly processes. Hence, it is crucial to ensure that cyclists use the provided facilities.
Many variables impact the experience and uptake of bicycling, such as connectivity to
destinations, vehicular traffic, road conditions, gradient, and weather [16]. Objective and
subjective evaluations may assist in determining which factors can make a bicycle pathway,
an area, a zone, or a location more or less bicycle-friendly. The idea of bikeability has
emerged from research on walkable cities and walkability [6,17]. Some researchers have
stated that bikeability is the degree to which the actual and perceived environment favors
bicycling [18,19]. Bikeability is influenced by various infrastructure factors, which can be
quantified using indicators. These indicators contribute to an overall bikeability index,
which helps assess cycling conditions systematically. Promoting cycling use must be ac-
companied by providing appropriate infrastructure facilities which can serve as indicators.
Bicycle infrastructure should be designed to make cycling comfortable, safe, convenient,
and attractive for everyone [20]. Also, research has found a significant relationship between
bicycle mode choice and infrastructure accessibility. It shows that a 10% increase in the
accessibility index resulted in a 3.7 percent increase in bicycle use [21].
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Several methods to assess the bicycle environment have been developed over the years.
The evaluation tools can assess bike infrastructure and identify areas for improvement.
Level of service (LOS) was established based on users’ perceptions of evaluating bicycle
paths [22]. Some of the most popular methods in the literature are bicycle level of service
(BLOS), bicycle safety index rating (BSIR), bicycle suitability rating, bicycle compatibility
index (BCI), and BI [10,16,23,24]. The BI measures the bicycle network’s ability, comfort,
and convenience for a cyclist to reach the destinations [6,16,25]. Some of the well-known BI
methods are the Active Commuting Route Environment Scale (ACRES), BikeDNA, Area-
Wide Bikeability Assessment Model (ABAM), Bike Score®, and Bikeability and Walkability
Table (BiWET).

Compared to existing bikeability indices, which often focus on a limited number of fac-
tors such as safety, comfort, or connectivity, this research introduces a more comprehensive
framework. By integrating micro-level infrastructure indicators with cyclists’ perceptions
and employing a mathematical weighing and scoring model, the proposed BI provides
a more practical and adaptable tool for urban planners. This addresses gaps in previous
methodologies, which either lack user-centric perspectives or fail to incorporate essential
bicycle infrastructure design principles holistically. The developed BI framework will have
specific advantages, such as being easy to follow, easy to compute, adaptable to the specific
components of various streets in the city, and user-centric. Moreover, the index helps detect
low-bikeability areas on street and road networks, which helps suggest improvements in
such areas.

2. Literature Review
Previously, different methodologies have been developed to assess the bicycle infras-

tructure. Hence, reviewing the research on urban bikeability methods available to evaluate
bicycle lanes or streets is important. Besides, reviewing previous studies provides a strong
base for the present research work. There are various methods for evaluating bicycle
infrastructure. BSIR uses traffic volume, pavement condition, speed limit, number of lanes,
the width of the outermost lane, and also location as the main indicators considered for the
assessment [26]. This model rates the bicycle paths on a scale of excellent to poor. However,
in this method, several bicycle infrastructure facilities and variables that affect bicyclist
safety and comfort (e.g., road marking, bike box at the intersection, and gradient) are not
factored into the equation [4]. Also, the classification of the streets is achieved based on
the author’s decision, which reduces the method’s reliability. Afterward, this method was
modified, and a new modified roadway condition index (RCI) model was proposed [27]. In
RCI, some indicators, such as pavement factors and location, were modified. At the same
time, the lane width was multiplied by the speed limit, considering narrow roads with high
speeds to place higher weightage. The modified method was compared to bicycle accident
rates, and it was discovered that the revised RCI rating only illustrates 18% of the variation
in bicycle crash rates [27]. This suggests a weak relationship between the modified RCI
rating and actual bicycle safety on bicycle streets and lanes. Similarly, BSIR was revised to
make another model called the Bicycle Suitability Rating (BSR) model [28]. It was achieved
by removing the intersection evaluation index from the rating criteria, leaving only the
roadway segment index as a component of a BSR.

Another assessment model, the interaction hazard score (IHS), was developed to
evaluate bicycle suitability in cities [29]. IHS recognized the significance of roadside de-
velopment patterns and curb cut (or on-street parking) frequencies. Another approach
improved this model by proposing BCI and including bicycle lanes’ effects [30]. Further-
more, Landis et al. [22] later validated the IHS model to create a BLOS model.
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Multiple methodologies have been implemented for BLOS, and the literature has
increased in the last three decades [31]. The BLOS approach was one of the famous metrics
for rating bicycle infrastructure [32]. Additionally, it can be used to determine and estimate
LOS experienced by bicyclists on the cycleway [33]. Other prominent methods in the
literature include the Highway Capacity Manual LOS approach for bicycles (HCM, 2010),
BLOS [4,22,34,35], non-motorized level of service [36], and level of traffic stress [37].

In recent years, research on bikeability has grown significantly [6,38]. The concept of
bikeability has emerged from research on walkable cities and societies [17] and concepts
like 15-min cities, which promote communities that are more walkable, bike-friendly, and
transit-oriented [39]. Though there are some similarities between bikeability and walk-
ability, significant differences exist in how the two are measured [16]. For example, the
availability of infrastructure is more important than land use for bicycling [17]. In 2002,
the U.S. Department of Transport gave some criteria that may describe bikeability: the
availability of high-quality bicycle road infrastructure, the condition of the road infrastruc-
ture’s pavement, the ease of crossing an intersection, and the ease of riding a bike [40].
The ACRES was developed to assess the perceptions of pedestrians and cyclists regarding
various aspects of their riding and commuting route environment [41]. Physical, traffic, and
social environment factors were considered. However, the model does not consider bicycle
infrastructure attractiveness and coherence factors such as signage, continuity, cycling route
directness, etc. Moreover, this tool requires medium expertise, cost, and time [16].

Similarly, the BiWET method was developed in 2007 at the University of Graz,
Austria [42]. The BiWET tool comprises 15 characteristics that are organized by the physical
environment attributes of land use, traffic safety, attractiveness, and walking/cycling
infrastructure. It is an efficient data collection method because evaluators audit while
riding their bikes. However, this method is subjective, which increases biases in the data
collection method since it solely depends on the researcher’s perception. In addition,
BiWET calculation is based on 10-m street segments, which can be time-consuming if BI for
the whole city is needed.

The Bike Score is another bikeability method inspired by the concept of the walk
score [43]. Neighborhood bikeability can be rated on a scale of 0 to 100 using this
method [44]. Many studies have later used the developed tool to examine cycling be-
havior in two countries (the U.S. and Canada) [45,46]. However, this method does not
incorporate the users’ perception in computing the Bike Score, which many researchers
argue is essential for such studies [6,10]. In addition, Bike Score may be more problematic
for research purposes due to the lack of transparency in calculating the score [16]. More-
over, Bike Score only uses four attributes to calculate BI: the bike lane score, hill score,
destinations and connectivity score, and bike commuting mode share, which may not show
the whole picture of bicycle facilities.

The methods mentioned above are primary mathematical models that rate the streets
and environment for cycling. However, the developed BIs mostly considered comfort and
safety while developing the method. Some researchers [42,43] only rely on subjective eval-
uation, which can create biased results. In addition, most studies have ignored the users’
perception in computing the bikeability for the area, limiting the use of such techniques.
Researchers argued that users’ perception is critical in the walkability or bikeability meth-
ods [6,16,47]. In addition, while methods such as BLOS, Bike Score, and BiWET provide
meaningful evaluations of urban bikeability, they often lack integration of key infrastruc-
ture principles or rely solely on objective factors without incorporating user perception. The
proposed framework bridges this gap by incorporating a comprehensive set of indicators
derived from bicycle infrastructure design principles and cyclist preferences, ensuring a
more comprehensive and actionable assessment. As a result, the first goal of this research is
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to identify the key bikeability indicators under each infrastructure design principle and the
possible measurement levels that influence the BI at the micro-level. This study does not
include macro-level indicators, such as network connectivity, overall network density, etc.
The second goal is to combine these into a mathematical model that can be used to assess
and classify various streets in cities. Thus, an effort is being made to include all important
bicycle infrastructure facility indicators in BI, and using the developed method will help
suggest improvements to the existing bicycle streets.

3. Materials and Methods
This study employed a quantitative approach to developing indicators for measuring

bikeability in urban areas. Figure 1 comprehensively describes the methodology adopted
for developing urban BI. The methodology was developed in four steps to create a new BI.
The first step includes selecting the relevant bikeability indicators. Since all the indicators
do not equally affect the bikeability of a street, the weights represent the importance of each
indicator in the BI calculation. The next step involved estimating the weights of the selected
indicators. The third step involves estimating the scores for each indicator. Indicators can
be assigned a score based on their comfort, safety, or attractiveness to cyclists. The safer
or more comfortable cyclists perceive an indicator to be, the higher the score it receives.
The following step combines each criterion’s weight, indicator’s weights, and scores to
determine the selected street classifications. The classification of streets helps interpret the
results by understanding the bikeability levels. In addition, it helps identify areas that need
improvement. Finally, field visits were conducted to apply the developed method to assign
scores based on observed indicators. The new BI is inspired by methodologies previously
used for research, such as the BLOS, urban walkability index, comfort walkability index,
and bicycle safety index [10,48–50].

3.1. Selection of Bikeability Indicators

Firstly, a literature review of research articles and bicycle infrastructure design guide-
lines was conducted using Scopus, Web of Science, and Google Scholar to shortlist the
indicators. The review focused on identifying indicators related to bicycle facilities. Im-
portant bicycle facility indicators used in multiple research articles were selected to be
measured at the micro level, ensuring a detailed evaluation of infrastructure characteristics.
This research employs the five bicyclists’ needs, in other words, bicycle infrastructure
design principles. These design principles are the bicycle network’s coherence, directness,
attractiveness, safety, and comfort. The criteria and indicators selected in this research
are classified in the framework of these five design principles. Such criteria are accepted
internationally as valid criteria for evaluating bicycle infrastructure [12,21,51]. After a
comprehensive review, 15 bikeability indicators grouped into five design principles were
selected. The classification of indicators under each design principle was based on how
they have been most commonly used in previous studies assessing bikeability. While some
indicators, such as bicycle parking and road signage, could fit into multiple categories,
they were assigned to the category where they have been predominantly applied in the
literature. Two principles, directness and coherence, were combined as they both contribute
to creating an efficient and seamless cycling network by minimizing detours, interrup-
tions, and ensuring connectivity. The overlapping effects of these principles lie in their
shared goal of optimizing route efficiency and network continuity. Specifically, directness
focuses on minimizing travel distance and time, while coherence ensures logical route
connections without unnecessary deviations. Table 1 shows the selected indicators for
constructing the BI.
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Table 1. Indicators in bikeability studies.

Category Indicators Notation Source

Comfort

Presence of bicycle infrastructure CMF01 [24,52–56]
Pavement condition CMF02 [10,23,55]
Bike lane width CMF03 [10,23,55,57]
Sidewalks width CMF04 [42,55,58]
Grade CMF05 [10,53,55,59]

Safety

Presence of bicycle infrastructure SFT01 [6,10]
Motorized traffic speed SFT02 [10,23,60,61]
Traffic control devices SFT03 [51,55,56]
Street lightening SFT04 [54,55,62]
Car parking along the cycle path SFT05 [52,62]

Attractiveness
Trees/green area and landscaping ATR01 [51,54,57,59,61,63,64]
Bicycle parking ATR02 [6,56,62,65]

Directness and Coherence
Presence of cycle facilities at a traffic signal DC01 [54]
Road signage DC02 [24,55,62]
Interruptions DC03 [51]
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3.2. Estimation of Weights of Selected Indicators

The relative importance or weight of an indicator represents its impact on BI. The
importance of bikeability indicators was collected using a questionnaire. Each indicator’s
importance, representing the weight, was estimated using a five-point Likert scale question-
naire. The five-point is a widely accepted method for capturing subjective perceptions and
measuring the relative importance of indicators in transportation studies [49,66]. Moreover,
the Likert scale is often preferred for assessing subjective opinions due to its simplicity,
ability to capture a range of responses, including a neutral midpoint, and ease of use
compared to other scales [67]. The participants could rate the bikeability indicators from
1 to 5 based on their importance for using bicycles as a mode of transport in cities. A
scale of 5 shows that the indicator is very important, while a scale of 1 represents the least
important indicator. The questionnaire was distributed in major locations in the city. The
survey is divided into three sections: (i) demographic information, (ii) bicycle use patterns,
and (iii) Likert scale questions in which cyclists ranked indicators and sub-indicators.

The survey was administered using a mixed-mode approach, combining online and
physical distribution methods to enhance reach and diverse participation. Specifically,
the questionnaire was distributed through online links on various social media platforms,
targeting active cyclists who are likely to engage in digital spaces. Additionally, the
pamphlets with QR codes were distributed at major locations in Hasselt, Belgium, including
public squares, educational institutes, libraries, bus stops, train stations, city centers, and
cycling routes. This dual approach was aimed at maximizing participation.

The sampling strategy combined convenience and voluntary response sampling, capi-
talizing on the accessibility of online platforms and public distribution points. While this
approach facilitated a broad reach, it may have introduced self-selection bias, as partici-
pants with a stronger interest in cycling or digital accessibility were more likely to respond.
Despite this limitation, the sample size (n = 383) was sufficient for statistical analysis,
providing meaningful insights into the relative importance of bikeability indicators. The
sample size of 383 respondents was determined based on a 5% margin of error and a 95%
confidence interval. The survey was conducted between August 2023 and February 2024.
Six hundred eighty-four participants opened the survey link, and 383 completed it.

Several statistical tests were conducted to ensure the collected data’s reliability and
validity. The reliability of the questionnaire was assessed using Cronbach’s alpha, which
evaluates internal consistency. Principal Component Analysis (PCA) with Varimax rota-
tion is used to analyze the collected data, a widely used method for Exploratory Factor
Analysis (EFA). It was employed to identify patterns and group indicators into meaningful
dimensions. The Kaiser–Meyer–Olkin (KMO) test was used to assess sample adequacy,
with a minimum threshold of 0.70. In the second step, the CFA was performed in AMOS
(Analysis of Moment Structures version 28) to further validate the structure. The detailed
results of these assessments, including statistical values and interpretations, are provided
in the Results section.

3.3. Measuring Scores of Indicators

Similar to estimating weights of selected bikeability indicators, the scores were as-
signed to each measurement variable (sub-indicator) for the selected indicators. Each
indicator can have multiple possible sub-indicators; for example, the presence of bicycle
infrastructure can be measured and scored based on the presence of a solitary bike path,
physically separated (by height or space) bicycle lane, bicycle lane, bicycle prioritized
streets, suggested bicycle paths, bicycle paths shared with motorized traffic.

To determine the score for each measurement variable, we conducted a survey in which
respondents evaluated their importance using a Likert scale (e.g., “very important” to “not
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important”). The responses gathered from this survey were essential in establishing scores
for each measurement variable. Each measurement variable’s mean score was computed
based on the survey response. These Likert-scale responses were then normalized using
Min–Max normalization, which ensures that all scores fall within the 0 to 1 range. The
normalization was performed using the following formula:

x′ =
X − Xmin

Xmax − Xmin
(1)

where the following applies:
x′ is the normalized score ranging from 0 to 1.
X represents the mean Likert score for a specific sub-indicator.
Xmax is the highest mean score recorded among all sub-indicators in the respective

category.
Xmin is the lowest mean score recorded among all sub-indicators in the respective

category.
This approach ensures that the lowest-rated measurement variable in each category

receives a score of 0, the highest-rated variable receives a score of 1, and all other variables
are scaled proportionally between these values. For example, if a physically separated bike
lane had the highest mean Likert score, it would be assigned a normalized score of 1.0,
while a shared bike lane with motorized traffic, with a much lower mean Likert score,
would receive a normalized score of 0. A dual-method approach was used to assess the
actual infrastructure conditions: on-site field visits and Google Street View analysis. This
method enabled us to evaluate each street directly and assign a score based on its current
conditions, thus categorizing its BI. This approach ensures a comprehensive and realistic
assessment of bikeability indicators grounded in on-site conditions. The final scores derived
from this process were used in Equation (2) to compute the overall BI for urban streets.

3.4. BI Mathematical Definition

The current research measures bike path bikeability by considering the bicycle design
principle. For this purpose, a new assessment tool (BI) has been developed. Because each
of the fifteen indicators affects bikeability differently, it is represented by its coefficients for
developing the BI assessment tool shown in Equation (2) below. The equation represents
a weighed additive function and also incorporates bicycle user perception. The additive
function is chosen because each indicator contributes independently to bikeability, and
their combined effect determines the overall assessment. This approach ensures that all
relevant indicators are appropriately weighed and scored in the function. This assessment
tool formulation considers different particularities such as bicycle facilities, bicycle user
preferences, and perception.

BIw = jc
(
∑n

i=1 CciSci

)
+ js

(
∑m

j=1 CsjSsj

)
+ ja

(
∑p

k=1 CakSak

)
+ jdc

(
∑q

l=1 CdclSdcl

)
(2)

where the following applies:
BIw = bikeability weighted index
jc = coefficient/weight of comfort criteria
js = coefficient/weight of safety criteria
ja = coefficient/weight of attractiveness criteria
jdc = coefficient/weight of directness and coherence criteria
Cci = coefficient/weight of comfort indicators
Sci = score of comfort indicators
Csj = coefficient/weight of safety indicators



Smart Cities 2025, 8, 46 9 of 22

Ssj = score of safety indicators
Cak = coefficient/weight attractiveness indicators
Sak = score attractiveness indicators
Cdcl = coefficient/weight of directness and coherence indicators
Sdcl = score of directness and coherence indicators
n,m,p,q = total number of indicators in each category (comfort, safety, attractiveness,

directness and coherence)
The BIw illustrates the bikeability score, while C shows the coefficient of the indicators,

which is different for each indicator. The coefficient of indicator (C) represents the impor-
tance of the indicators for a cyclist and its priority in the BI calculation. This coefficient was
calculated from the data collected via a questionnaire from bicycle users. Similarly to [4,68],
data was collected for each indicator’s score to calculate BI. Each measurement variable
(sub-indicator) describes the bicycle path and surrounding characteristics that affect BI. For
all fifteen indicators, sub-indicators (measurement variable) that contribute to quantifying
the score of each indicator are defined. The indicator’s highest score value is 1, showing
that it is approaching the perfect condition, while the lowest value is 0, suggesting that it is
very far from perfect.

After calculating BIW, the next step is to find the maximum weighted score (BIMS)
for each indicator. Each indicator’s BIMS is calculated by multiplying one (maximum
possible score of the indicator) by each criterion’s weight. Similarly, the maximum possible
bikeability index (BIMP) is calculated, which is achieved by adding the BIMS of all the
indicators in each criterion. The maximum BIMP is shown in Equation (3).

BIMP = ∑R
r=1 BIMSr (3)

R = n + m + p + q, where n, m, p, and q are the number of indicators for each criterion
(comfort, safety, attractiveness, and directness and coherence).

3.5. Bikeability Classification in Categories

After calculating the BIW and BIMP based on Equations (2) and (3), the BI% can be
defined for the bicycle paths. Equation (4) is used to calculate the BI%, which can be used
to classify the results and interpret the results obtained for the bicycle paths.

BI% =
BIW

BIMP
× 100 (4)

Based on the Equation (4), the resultant score ranges from 0–100. Most BI studies
classify the streets based on the resultant values [10,43,69]. The resulting scores for the ex-
amined segments are classified into five BI classes utilizing a basic concept often employed
in traffic research [16,22,50]. The categorization of the results makes the resultant values
more understandable [50]. BI% can be used to compare the bikeability indicators with the
perfect condition and can be used to suggest improvements based on the assigned rating.
Table 2 shows the interpretation of the results after calculating BI%.

Table 2. BI rating, score, and description.

BI % Rating Score Description Improvements Needed

A 81–100 Extremely Bikeable Very few improvements are needed
B 61–80 Bikeable Few improvements are needed
C 41–60 Fairly Bikeable Some improvements are needed
D 21–40 less Bikeable Major improvements are needed
E 0–20 Not Bikeable Extensive improvements are needed
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4. Results
4.1. Summary Statistics

Figure 2 shows the sociodemographic characteristics and bicycle use of the 383 partic-
ipants. The distribution of genders among participants was balanced, comprising 50.4%
males and 48.3% females, with five individuals opting not to reveal their gender. Most
participants (35.8%) fell within the 18–24 age bracket, with those aged 25–34 the next largest
group (32.1%). There were only two participants over 65 years, and the 55–64 age group
was similarly small, with just five participants. Most common were having bachelor’s
(28.5%) or master’s (36.3%) degrees. The survey showed a significant presence of students
(57.4%), reflecting a younger population responding to the survey, followed by those in
employment (35.5%). Entrepreneurs comprised a smaller portion of the respondents (2.9%),
and there was only one disabled respondent, with seven reporting as unemployed. Based
on the survey, cycling emerged as a favored means of transportation for both men and
women, with over half of the participants preferring to use a bicycle in urban areas. Daily
cycling distances varied from under 1 km to more than 10 km, with the 2–5 km distance be-
ing the most frequently reported. The regularity of cycling per week also showed variation,
with the majority cycling for 3 to 5 days.
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4.2. Coefficient and Scores of Bikeability Indicators

The survey results for the importance of the bikeability indicators are shown in Figure 3.
The respondents’ perceptions were measured on a five-point Likert scale across bikeability
domains: attractiveness, comfort, directness and coherence, and safety. Figure 3 shows
mean values of bicyclists’ responses towards the importance of the bikeability indicators.
Five of the 15 indicators assessed were rated above 4.0, signifying strong importance
from participants. These include ‘CMF01’ (4.26) under the comfort domain, ‘SFT01’ (4.14),
and ‘SFT04’ (4.12) in Safety, alongside ‘ATR02’ (4.01) in Attractiveness. Two indicators,
‘CMF04’ and ‘CM05’, have mean values lower than 3. ‘CMF05’ (3.10) was rated as the least
important indicator.
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The data were used to find the coefficient of each indicator, which will later be used
in Equation (2) to calculate the bikeability of streets in urban areas. In step 1, the PCA
analysis with a Varimax rotation, a widely used method for EFA, is used to identify patterns
among the items in the questionnaire. The Kaiser–Meyer–Olkin (KMO) test is used to
assess the adequacy of the sample, with a minimum acceptable value of 0.70 [70]. The
KMO Measure of Sampling Adequacy for the questionnaire was 0.814. The Cronbach’s
Alpha coefficient test included all items and was 0.815. A Cronbach’s alpha coefficient of
over 0.8 indicates good consistency in the questionnaire responses, suggesting that the
questionnaire responses are reliable and consistent [71].

The PCA extracted four main components after Varimax rotation with Kaiser normal-
ization, which collectively captured the essence of bikeability in the urban setting. The EFA
suggests clustering into four dimensions (facilities, comfort, infrastructure, and traffic), as
shown in Table 3.

The categorization was based on the loading patterns of the indicators on each compo-
nent. Specifically:

Facilities: Indicators influencing the ease of navigation and connectivity, such as
Directness and Coherence (DC01, DC02) and Attractiveness (ATR01, ATR02).

Comfort: Indicators related to the perceived ease and convenience of cycling, including
CMF04, CMF05, CMF03, and CMF02.
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Table 3. Rotated factor matrix using PCA.

Rotated Component Matrix

Component

Facilities Comfort Infrastructure Traffic

DC01 0.669
ATR02 0.634
SFT04 0.628
SFT03 0.622
DC02 0.619
ATR01 0.490
CMF04 0.742
CMF05 0.648
CMF03 0.609
CMF02 0.603
CMF01 0.787
SFT01 0.705
SFT05 0.753
DC03 0.687
SFT02 0.534

Infrastructure: Indicators assessing the physical environment’s suitability, such as
CMF01 and SFT01.

Traffic: Indicators measuring safety and interaction with motor vehicles, including
SFT05, DC03, and SFT02.

This categorization ensures consistency with the original principles of bikeability
while enhancing interpretability. However, some ambiguity arose due to overlapping
effects between directness, coherence, and attractiveness, which were grouped under
facilities. This decision was made because both sets of indicators create an efficient and
seamless cycling network by minimizing detours and interruptions while making the ride
more pleasant for cyclists. Therefore, they were combined to reduce redundancy and
improve model coherence. The results from Table 3 are critical in developing the BI, as they
determine the weight of each indicator in the model.

Table 4 shows the summary statistics of the CFA model fit performed in AMOS (See
Appendix B for the structure of the CFA Model). In our CFA, we examined the fit of our
proposed model with the observed data. The model demonstrated a good fit, as indicated
by a chi-square statistic-to-degrees of freedom ratio (CMIN/DF) of 1.977, suggesting a
good fit. The p-value associated with the test was highly significant (p < 0.001).

Table 4. Model fit summary of CFA.

CMIN DF p CMIN/DF RMR GFI AGFI NFI TLI CFI RMSEA

CFA model 194.259 79 0.000 1.977 0.047 0.95 0.923 0.864 0.902 0.926 0.051
CMIN = Chi-square, DF = degree of freedom, p = p-value for chi-square test, CMIN/DF = Normed chi-square,
AGFI = Adjusted Goodness-of-Fit Index.

Similarly, other indices indicate a good model fit, including the Root Mean Square
Residual (RMR) of 0.047 and Root Mean Square Error of Approximation (RMSE) of 0.051,
significantly below the minimum level of 0.08 [72]. The Goodness-of-Fit Index (GFI) of
0.950, Comparative Fit Index (CFI) of 0.926, and Tucker–Lewis Index (TLI) of 0.902 are well
above the acceptable level. Research suggests that the value of these indices should be over
0.90 for an acceptable model fit [73,74]. These results suggest that our model provides a
reasonably good fit for the data [75].
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The weights of the indicators that Table 5 shows are obtained from CFA and are used
in Equation (2) as coefficients of indicators. The values of the resultant factor loadings
are used as the weights of indicators. Similar to indicators, the criteria also affect the
proposed BI. Therefore, each criterion can have a specific coefficient (weight) based on
its association with inclusive bicycle streets or bicycle paths for biking. Table 5 shows
the criteria coefficient (weight) for all four criteria calculated using the mean values. We
followed a similar approach to finding criteria weights or importance [76,77]. The mean
value for safety criteria was 4.66, the highest, followed by comfort, having a mean of 4.01.

Table 5. Criteria weights and indicators weights and scores.

Criteria Criteria Weights Indicators Weights of Indicators

Comfort 0.86

CMF01 0.595
CMF02 0.646
CMF03 0.653
CMF04 0.598
CMF05 0.302

Safety 1

SFT01 0.753
SFT02 0.640
SFT03 0.561
SFT04 0.471
SFT05 0.423

Attractiveness 0.70
ATR01 0.477
ATR02 0.486

Directness and Coherence 0.76
DC01 0.658
DC02 0.555
DC03 0.334

In contrast, attractiveness had the lowest mean value of 3.30. The coefficient of safety
was considered 1.00 as it is the most crucial criterion for cyclists among the four. The rest of
the coefficients are calculated based on the highest mean value, 4.66 (safety). For instance,
comfort with a mean of 4.01 is obtained by dividing it by the highest mean value, 4.66,
resulting in a coefficient of 0.86 (4.01/4.66 = 0.86). The process is followed for attractiveness,
directness and coherence, resulting in a coefficient of 0.70 and 0.76, respectively.

4.3. Bikeability Indicators Score

Table 6 presents the scores for each sub-indicator, calculated based on survey partic-
ipant ratings, as shown in Appendix A. The Min–Max method was employed to define
scores for each sub-indicator, allowing for a standardized comparison across criteria. Scores
assigned to sub-indicators range from 0–1 under each criterion. The standardized scoring
method ensures a consistent and objective evaluation of bikeability indicators, allowing
for direct comparisons between urban cycling conditions. Each indicator can be assigned
a score based on the specific type of infrastructure facility available. For example, if the
bicycle lane of a path is paved with asphalt, a score of 1 should be assigned, while 0 should
be if the bicycle path is cobblestone paved. Similarly, if the bicycle lane is double-direction
wide, a score of 1 should be assigned; unidirectional narrow is assigned a score of 0.40, and
0 is assigned to double-direction narrow.

The variation in scores reflects differences in how survey participants rated various
cycling conditions and infrastructure types. Participants provided assessments based
on their experiences and perceptions of safety, comfort, attractiveness, directness, and
coherence. For example, a fully separated bike path was rated higher than a shared road
(with motorists) because it offers more protection.
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Table 6. Scores of bikeability sub-indicators.

Criteria Indicators Sub-Indicators Scores

Comfort

CMF01

Solitary bike path 1.00
Physically separated (by height or space) bicycle lane 0.66
Bicycle lane 0.41
Bicycle prioritized streets 0.63
Suggested bicycle paths 0.14
Bicycle paths shared with motorized traffic 0.00

CMF02

Asphalt paved 1.00
Concrete paved 0.79
Paving slabs 0.42
Cobblestones paved 0.00

CMF03

Unidirectional wide (≥ 2 meters) 1.00
Unidirectional narrow (< 2 meters) 0.40
Double direction wide (≥ 3 meters) 0.93
Double direction narrow (< 3 meters) 0.00
Shared 0.30

CMF04
Buffered from sidewalk 1.00
Adjacent to sidewalk 0.48
Shared with pedestrians 0.00

CMF05
Low (1–3%) 1.00
Medium (3–6%) 0.57
High (>6%) 0.00

Safety

SFT01

Solitary bike Path 1.00
Physically separated (by height or space) bicycle lane 0.80
Bicycle lane 0.44
Bicycle prioritized streets 0.60
Suggested bicycle paths 0.21
Bicycle paths shared with motorized traffic 0.00

SFT02

Shared with motorized traffic 0.91
Adjacent cycle paths next to a road with a speed limit of 30 km/h 1.00
Adjacent cycle paths next to a road with a speed limit of 50 km/h 0.67
Adjacent cycle paths next to a road with a speed limit of 70 km/h 0.00

SFT03
Availability of traffic signals at intersections 1.00
Non-availability of traffic signals 0.00

SFT04
Good street Lighting (not exceeding 60 m apart from one another) 1.00
Limited street lighting (the distances between the light poles are longer) 0.38
No street lighting 0.00

SFT05
No car parking 1.00
Car parking with a buffer area 0.65
Car parking without a buffer area 0.00

Attractiveness
ATR01

Bicycle route/lane along trees and landscaping or water area 1.00
Bicycle route/lane without trees and landscaping or water area 0.00

ATR02
Parking facilities at key destinations (e.g., shops, stations, etc.) 1.00
No parking facilities at key destinations (e.g., shops, stations, etc.) 0.00

Directness and Coherence

DC01
Presence of bicycle facilities at intersections 1.00
Partial presence of bicycle facilities at intersections 0.88
Non-presence of bicycle facilities at intersections 0.00

DC02
Well signposted 1.00
Partial signposted/signage missing at key location 0.47
No signage available 0.00

DC03
1 or no interruption 1.00
2 or more interruptions 0.00
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4.4. Bikeability of Streets and Lanes in Hasselt

The developed BI framework was tested based on the criteria weightage and in-
dicators scores and weightage. Using the developed method, we estimated BIs for the
bicycle lanes and streets in Hasselt, the capital and largest city of the Limburg province
in the Flemish Region of Belgium. Hasselt has excellent bicycle infrastructure facilities,
including separated bicycle lanes, routes, bicycle-prioritized streets, bicycle signals at
intersections, and shared bicycle lanes with pedestrians. In addition, the city also offers
varied contexts, including different types of paved streets, diverse bicycle prioritization
at traffic signals, and a range of bicycle facilities, making it a suitable case study for
applying the methodology. Table 7 shows the calculation of BI for the inner inner-ring
Hasselt bicycle path.

Table 7. Example of the BI calculation.

Criteria
Criteria
Weight

(1)

Indicators
(2)

Indicators
Weight

(3)

Score of
Indicators

(4)

Indicators
Weighed
Score (5)

= (3) × (4)

BIMS (6)
= (3) × 1

BIW (7)
= ∑(5)

BIMP (8)
= ∑(6)

BI% =
∑(7)/∑(8)
× 100

Comfort 0.86

CMF01 0.595 1.00 0.595 0.595

1.849 2.403

86.26

CMF02 0.646 1.00 0.646 0.646
CMF03 0.653 0.93 0.607 0.653
CMF04 0.598 0.00 0.000 0.598
CMF05 0.302 1.00 0.302 0.302

Safety 1

SFT01 0.753 1.00 0.753 0.753

2.848 2.848
SFT02 0.640 1.00 0.640 0.640
SFT03 0.561 1.00 0.561 0.561
SFT04 0.471 1.00 0.471 0.471
SFT05 0.423 1.00 0.423 0.423

Attractiveness 0.7
ATR01 0.477 1.00 0.477 0.477

0.674 0.674ATR02 0.486 1.00 0.486 0.486

Directness and
Coherence

0.76
DC01 0.658 1.00 0.658 0.658

0.754 1.176DC02 0.555 0.00 0.000 0.555
DC03 0.334 1.00 0.334 0.334

Figure 4 shows the bikeability map of Hasselt City. It was evident from applying the
developed method that it can be utilized in different contexts. Hasselt has various streets,
including bicycle lanes, bicycle prioritized streets, bicycle paths, and shared bicycle streets.
Different bikeability scores and categories resulted from bicycle street or lane characteristics.
It was observed that most of the inner-city streets—with most of the streets prioritizing
bicycles—were rated as B. The inner ring of the newly constructed bicycle path was rated
as A (Extremely bikeable), as almost all the indicators were present along the path. The
Kempische Steenweg bicycle lane, graded as C, could see an improved bikeability score by
prohibiting car parking where allowed without a buffer from the cycle lane and adding a
buffer between the bicycle lane and the sidewalk.
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5. Discussion and Conclusions
Although several studies have found that adequate and well-designed cycling fa-

cilities effectively ensure safe and comfortable cycling [4,12,14,78], integrating bicycle
infrastructure design principles (safety, comfort, attractiveness, directness, and coherence)
in cities can encourage more people to cycle [6,79]. However, studies rarely incorporate all
five bicycle infrastructure principles into developing metrics for assessing the bikeability of
lanes and streets in urban areas. Therefore, this study explores the micro level of necessary
bicycle facilities and introduces a framework to evaluate urban bikeability. The bicycle
facilities and infrastructure are taken as indicators in this study, which are needed to ensure
an enjoyable environment for cyclists. Safety is a critical component, with the presence of
bicycle paths and the absence of intersections enhancing cyclists’ safety perception [80].
Comfort is influenced by various factors, including infrastructure elements such as road
width and traffic volume [81]. Attractiveness is linked to environmental features; greenery
and recreational areas are associated with a more attractive cycling experience [82]. Cohe-
siveness refers to the continuous and connected nature of cycling infrastructure, which is
important for perceived safety and the overall quality of the cycling experience [10]. The
overall cycling experience can be improved by incorporating them in designing bicycle
paths or streets.

Studies have proposed evaluating a bikeable environment in urban areas for cyclists on
street segments, zones, and intersections [57,58,63]. However, some shortcomings prevent
them from accurately evaluating bicycle streets and suggesting improvements. Some of
these models are complex, and some methods require technical skills. For example, the
need for technical skills in GIS-based clustering, mapping, fuzzification [66], OSM data han-
dling [69], and advanced statistical modeling [57] makes some BI methods more complex
and challenging to implement. Moreover, some methods do not cover the bicycle infrastruc-
ture design principles for selecting a wide range of cycling facility indicators at a micro level
(with details), and linking them to the design process is complicated. These methods often
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focus on aggregated or macro-level assessments, lacking the details needed to evaluate
diverse infrastructure elements such as pavement quality, lane width, or bicycle facility
at intersections, which are crucial for effective micro-level planning. For instance, the BI
model was developed at the city level at a 100 × 100 m scale and majorly considered safety
indicators [52]. Other BI methods have considered very few bikeability indicators, limiting
their practical use, for example, methods developed by Ros-McDonnell et al. (2020) [62],
Winters et al. (2016) [43], and Hardinghaus et al. (2021) [54].

Thus, we present a new practical tool of BI that complements previous research by
providing a practical and score-based tool that is easily understandable and replicable.
Indicators are extracted from a five-bicycle infrastructure design principle acknowledged in
the literature and city authorities for suggesting improvement or planning new facilities for
cyclists. Our method emphasizes the importance of bicycle infrastructure design principles
and micro-level bicycle facility design indicators, ensuring a more detailed and practical
evaluation. More importantly, our approach integrates cyclist opinions by weighing and
scoring these indicators based on their perspective. This aspect was not fully addressed in
past methods.

A limitation of this study is the skew towards a younger population, with a significant
proportion of students (57.4%) among the respondents. This demographic bias may affect
the generalizability of the findings to older age groups or non-student populations. Ad-
ditionally, while the criteria for comfort, safety, attractiveness, directness, and coherence
provide a comprehensive framework, they may be influenced by additional indicators not
covered in this study. Future research could explore a wider range of indicators to enhance
the robustness and inclusivity of the bikeability assessment.

Because this study attempts to assess the bikeable environment in the cities for cyclists,
urban and transportation planners can plan biking routes that are safe, comfortable, and
more enjoyable and improve the existing routes. The proposed BI results are easily inter-
preted and helpful in providing practical suggestions for improvements in urban street
conditions. Although this study was conducted in Hasselt, the proposed methodology is
adaptable to other cities. However, for applicability to other regions, some adjustments
might need to be made to capture the different socioeconomic, cultural, and infrastructural
characteristics. For example, the weighing of indicators is based on cyclist opinions in this
study, which may reflect a certain degree of homogeneity in perception. Future studies
could refine the model further by incorporating varied cyclist demographics, cultural fac-
tors, and urban infrastructure characteristics. The preference might differ in other regions
and localities. Cultural, environmental, and sociodemographic characteristics can influence
users’ preferences and priorities regarding indicators.
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