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Abstract: Clinostomum is a genus of parasitic trematodes found worldwide, infecting a
wide range of hosts, including freshwater fishes, snails, birds and occasionally humans.
In this study, clinostomid metacercariae were collected from Nile tilapia raised in fish
farms in the Upper Tana River region, Kenya. The prevalence of infection was 17.2%,
with metacercariae infecting the skin, gills and buccal cavity of the fish. Using light
microscopy, scanning electron microscopy (SEM) and molecular methods targeting both
nuclear ribosomal (ITS1, 5.8S, ITS2) and mitochondrial (COI) regions, the metacercariae
were identified as C. cutaneum, C. phalacrocoracis, C. tilapiae and Euclinostomum heterostomum.
The three species of Clinostomum have previously been reported to infect fish or piscivorous
birds in Kenya, while this is the first report of E. heterostomum in this country. SEM
analysis revealed new ultrastructural features of C. cutaneum, including an excretory pore
surrounded by minute spiny papillae, an everted cirrus and dome-shaped papillae on
the tegumental area around the genital pore. The cirrus lacked basal papillae, showing
morphological variation between the adult and metacercarial stages. Our study, therefore,
provides new insights into the phenotypic identification of flukes that may be pathogenic
to fishes and humans and, therefore, of scientific and practical importance.

Keywords: tilapia; Upper Tana River region; metacercariae; yellow grub; trematodes

1. Introduction
The global production of the Nile tilapia Oreochromis niloticus (Linnaeus, 1758) has

increased over the last thirty years due to the increasing demand for animal protein [1,2].
In Kenya, this species accounts for 80% of total aquaculture production and has gained
popularity in fish farming, including in regions like Central Kenya, where fish consumption
is not traditionally common [3–5]. Due to the increase in inland aquaculture practices, fish
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disease outbreaks, increased mortality, and higher parasite burdens are highly likely to
occur [6], prompting attention from researchers and fishery stakeholders. In Kenya, research
into fish parasitology is steadily growing; approximately 119 species of fish parasites have
been reported, with only 83 identified at the species level [7].

Clinostomidae Lühe, 1901, comprises digenetic trematodes with a heteroxenous life
cycle that involves multiple hosts. The adult stages are commonly found in fish-eating birds’
buccal cavities and oesophagus as definitive hosts [8,9]. Their life cycle begins when birds
release eggs into aquatic environments, which subsequently hatch into free-swimming
miracidia. Miracidia infect freshwater snails as the first intermediate hosts and various fish
species as the second intermediate hosts, harbouring the metacercarial stages [10]. Although
rarely infected, humans and mammals have occasionally been reported as accidental hosts
of representatives of Clinostomidae [11,12]. Due to the increased number of reports of
members of Clinostomum Leidy, 1856, in aquaculture conditions, it has recently been the
subject of many studies. Advances in genetic research have expanded the Clinostomum
species catalogue, addressing the challenges posed by relying solely on morphological
characteristics, which often show high similarity and minimal variation between species.
These genetic tools, therefore, allow for the identification of previously unrecognized
species and enable linking larval stages to their corresponding adult forms [9,13–17].

Despite more than 50 species being suggested worldwide as members of Clinostomum,
only 15 species are considered valid to date [9,13,18,19]. The diversity of Clinostomum species
in the Afrotropical region, on the other hand, is insufficiently explored, with only four species
currently recognized: C. cutaneum Paperna, 1964, C. phalacrocoracis Dubois, 1931, C. tilapiae
Ukoli, 1966 and C. ukolii Caffara, Locke, Echi, Halajian, Luus-Powell, Benini, Tedesco & Fiora-
vanti, 2020 [15]. Similarly, the limited understanding of the effects of these parasites on Nile
tilapia and the conditions facilitating their emergence make it difficult for aquaculture stake-
holders to access valuable information for informed decision-making to support aquaculture
sustainability [20]. It is interesting to look at the parasitic fauna infecting fish in the central
region of Kenya, as most inland aquaculture production occurs there [18]. For this reason, we
conducted a survey in the Upper Tana River region with the purpose of assessing the diversity
of parasites infecting Nile tilapia reared in fish farms. Regarding clinostomid infections, three
species of Clinostomum—C. cutaneum, C. phalacrocoracis and C. tilapiae—have been reported
previously in Nile tilapia in Kenya [13,21]. The present study identified the metacercariae
using light microscopy, scanning electron microscopy (SEM) and molecular methods. For
scanning electron microscopy, surface observations have revealed new ultrastructural features
important for the taxonomy and systematics of a wide range of organisms [22]. The findings
in this study contribute to resolving taxonomic ambiguities within Clinostomum. In particular,
we present additional features in C. cutaneum that were not seen in earlier studies, further
enhancing the accuracy of species differentiation within this genus.

2. Materials and Methods
2.1. Study Area and Sample Collection

The Upper Tana River region covers around 15,000 km2 and is characterized by the
highest precipitation rates in Kenya, with a humid or semi-humid climate year-round [23].
Between mid-January and mid-February 2024, we collected 157 Nile tilapia specimens from
fish farms in this area after obtaining a research permit from the National Commission
for Science, Technology and Innovation (NACOSTI), permit: NACOSTI/P/23/31261. The
fish hosts were then sacrificed by cervical dislocation, and a fin clip of each specimen
preserved in absolute ethanol was deposited at the Royal Belgian Institute of Natural
Sciences, Belgium (AB49103238-285, AB42579285-332, AB42579752-764, AB42610341-388).
The map showing the sampling localities (Figure 1) was created using QGIS v3.38.3 (QGIS
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Development Team 2022, QGIS Information System, Open Source Geospatial Foundation
Project. http://qgis.osgeo.org, accessed on 10 June 2024).
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Figure 1. Map showing sampling localities of Nile tilapia examined for the presence of clinosto-
mid metacercariae.

2.2. Parasitological Examination

The external surfaces and internal body organs of fish were carefully inspected using
the naked eye and a stereomicroscope to detect encysted metacercariae. The encysted
metacercariae were carefully excised using a fine needle, relaxed with boiling water, and
preserved in 70% ethanol for further morphological processing. Additional specimens were
preserved in absolute ethanol for subsequent molecular analysis. The infection parameters,
i.e., prevalence (P) and mean intensity (M.I), were calculated according to Bush et al. [24].

2.3. Morphological Identification

For morphological identification, we only used a subset of the individuals isolated
as some were too small to excise and use or too big to mount on slides. For this, ten
specimens were stained with Borax carmine, dehydrated in a graded ethanol series for
30 min—30%, 50%, 70% (three times), 80%, 95%, and 100% (three times)—cleared with
Amman’s lactophenol and mounted on permanent slides using Euparal. The metacercariae
were viewed using a Leica DM2500 optical microscope (Leica Microsystems GmbH, Wetzlar,
Germany) fitted with a Leica DMC4500 camera. The voucher specimens were deposited
in the collection of the Research Group Zoology: Biodiversity and Toxicology at Hasselt
University (HU) (Diepenbeek, Belgium) (HU XXIII.2.02-2.22).

2.4. Scanning Electron Microscopy

Ten specimens were prepared for scanning electron microscopy. The specimens were
post-fixed in 4% osmium tetroxide (OsO4), thoroughly washed in distilled water to remove
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excess osmium and dehydrated in a graded ethanol series for 30 min each: 30%, 50%, 70%
(three times), 80%, 95% and 100% (three times). They were then dried using hexamethyl-
disilazane under a fume hood overnight. Afterwards, they were mounted on aluminum
SEM stubs with double adhesive tape and gold coated at 30 mA using a JEOL JFC-1300
(JEOL Ltd., Tokyo, Japan) sputter coater. Imaging was carried out with a Phenom XL G2
Desktop Scanning Electron Microscope (ThermoFisher Scientific Waltham, MA, USA) at an
accelerating voltage of 5 kV.

2.5. DNA Extraction, Amplification and Sequencing

Sequences of the nuclear gene portions from internal transcribed spacer 1 (ITS1),
5.8S, ITS2, 28S rDNA and mitochondrial cytochrome c oxidase subunit 1 (COI mtDNA)
were obtained using polymerase chain reaction (PCR). These nuclear ribosomal markers
evolve at different rates, which makes them suitable for assessing genetic divergence at the
interspecific level [25,26]. The COI mtDNA, on the other hand, is a promising resource for
assessing intraspecific genetic differentiation because it is a fast-evolving marker compared
to nuclear rDNA [27].

The posterior end of the metacercariae was cut, and DNA extraction was performed
using the protocol adapted by Kmentová et al. [28]. Samples stored in 99% ethanol were
spun down, ethanol was removed and they were left to dry for 30 min. Then, 195 µL of
TNES buffer (400 mM NaCl, 20 mM EDTA, 50 mM Tris pH 8, 0.5% SDS) and 5 µL of Thermo
ScientificTM proteinase K (20 mg/mL) were added to the samples. After incubation at 55 ◦C
overnight, 2 µL of InvitrogenTM yeast tRNA (10 mg/mL) was added as a carrier and briefly
spun down before adding 65 µL of 5 M NaCl and 290 µL of 96% ethanol. The samples were
cooled for 60 min at −20 ◦C and then spun down for 15 min at 18,000 rcf to a small white
pellet. The supernatant was removed and replaced with 1 mL of chilled 70% ethanol. The
samples were centrifuged for 8 min at 18,000 rcf (this ethanol-rinsing step, removing the
supernatant, adding ethanol, and centrifuging were repeated once). The supernatant was
removed, and the DNA was eluted in 30 µL of 0.1 × TE buffer (0.02% Thermo ScientificTM

Tween-20 washing buffer). The DNA extract was placed overnight at 4 ◦C for resuspension
and stored at −20 ◦C.

Partial ITS1, 5.8S, ITS2 and 28S regions were amplified using the forward primer NC5
(5′-GTA GGT GAA CCT GCG GAA GGA TCA TT-3′) [26] and the reverse primer NC2
(5′-TTA GTT TCT TTT CCT CCG CT-3′) [29]. The PCR reaction was performed using
MangoMix™. For each 2 µL of DNA extract, 12.50 µL of MangoMix™, 0.50 µL of MgCl2
(1 mM), 1.25 µL of the forward and reverse primers (0.5 µM), respectively, and 7.50 µL
of ddH2O was added, adding up to a total of 25 µL per reaction. The PCR amplification
occurred under the following conditions: initial denaturation for 2 min at 94 ◦C, 39 cycles
for 1 min at 94 ◦C, 1 min at 52 ◦C, and 1:30 min at 72 ◦C, final elongation for 7 min at 72 ◦C
and cooling to 4 ◦C.

Part of the mitochondrial COI gene was amplified using forward ASmit1 (5′-TTT TTT
GGG CAT CCT GAG GTT TAT-3′) and reverse ASmit2 (5′-TAA AGA AAG AAC ATA ATG
AAA ATG-3′) primers, both widely used for digeneans and other flatworms [30]. For each
2 µL of DNA extract, 12.50 µL of MangoMix™, 0.50 µL of MgCl2 (1 mM), 1.25 µL of the
forward and reverse primers (0.5 µM), respectively, and 7.50 µL of ddH2O were added,
adding up to a total of 25 µL per reaction. The PCR conditions were set as follows: 2 min
initial denaturation at 94 ◦C, 37 cycles of 30 s at 94 ◦C, 40 s at 48 ◦C, and 50 s at 72 ◦C,
final elongation for 5 min at 72 ◦C and cooling to 4 ◦C. Gel electrophoresis was used to
check for successful amplification. The PCR products were excised and purified using a
GeneJet Purification Kit (Thermo Fisher Scientific, Waltham, MA, USA) according to the
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manufacturer’s guidelines. The corresponding primer pairs used for amplification were
used for subsequent Sanger sequencing in Macrogen (Amsterdam, The Netherlands).

2.6. Sequence Analysis

We verified our morphological identification of the sequences generated in this study
by BLASTing [31] the obtained sequences on the NCBI website, which allowed us to identify
the closest congeners. Multiple sequence alignments were constructed using MUSCLE
v5 [32] under default parameters, and maximum-likelihood-based model selection was
performed in Molecular Evolutionary Genetics Analysis (MEGA) v11.0.13 [33]. After
choosing a model in MEGA based on the Bayesian Information Criterion, we selected the
highest-ranked model available in this software to calculate pairwise distances. As a result,
we used the Kimura 2-parameter model [34] for the ITS sequences and the Tamura-Nei
model [35] for the COI sequences. A haplotype genealogy graph was constructed using
Fitchi [36], using all available sequences of the closest congeneric species. All sequences
were submitted to GenBank (PV123689-PV123701).

3. Results
3.1. Infection Parameters and Isolated Metacercariae

Among the 157 examined hosts, 27 individuals were found to be infected with metacer-
cariae (Figure 2D); using a subset of the isolated individuals, we identified them to belong
to a total of four species: three species of Clinostomum (C. cutaneum, C. phalacrocoracis and
C. tilapiae) and one species of Euclinostomum (E. heterostomum) (Figure S1). Due to practical
constraints, we could not provide prevalence estimates for all the species. Some metacercariae
were too small to examine or too large to be mounted on slides for detailed analysis. The
prevalence of infection was 17.2% (95% CI: 11.3–23.1%), while the mean intensity was 7.3. The
minimum number of metacercariae collected from each host was 1, while the highest was 38.
Mixed infections involving C. cutaneum and C. phalacrocoracis, C. phalacrocoracis and C. tilapiae,
and C. cutaneum and E. heterostomum were observed. Most of the clinostomid metacercariae
were recovered from the skin (infection frequency = 0.54) of the infected hosts (Figure 2C),
followed by the buccal cavity (infection frequency = 0.45) (Figure 2A) and occasionally the
gills (infection frequency = 0.01) (Figure 2B), as shown in Figure 2.
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3.2. Morphological Observations in C. cutaneum

The morphological features of eight of our specimens are consistent with the charac-
terization of C. cutaneum previously reported by Gustinelli et al. [9]. The key observations
include a distinct Y-shaped uterus, intestinal caeca extending laterally from the anterior to
the posterior body ends and a smaller anterior testis than the posterior testis (Figure 3).
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U: uterus; AT: anterior testis; PT: posterior testis; EP: excretory pore; IC: intestinal caeca.

3.3. Scanning Electron Microscopy Results

Scanning electron microscopy of C. cutaneum in this study revealed several novel features.
The excretory pore (Figure 4E,F), previously undetected in the work of Gustinelli et al. [9]
due to a possible cuticular fold, was clearly visible and surrounded by minute, spiny papillae
(white arrow in Figure 4E). Additionally, an everted cirrus (Figure 4C) was observed. In
the adult stages of C. cutaneum, Gustinelli et al. [9] observed basal papillae in the cirrus.
However, the cirrus observed in our study lacked basal papillae (encircled in red), highlighting
morphological differences between the adult and metacercarial stages. The tegumental area
around the genital pore (Figure 4D) was also surrounded by dome-shaped papillae (white
asterisks) never reported before, further enriching the morphological characterization of
this species.
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Figure 4. Scanning electron micrographs of Clinostomum cutaneum. (A,B) Anterior end showing the
oral sucker (OS) and ventral sucker (VS). (C) Everted cirrus (circled in red). (D) Genital pore (GP)
surrounded by dome-shaped papillae (white asterisks). (E,F) Excretory pore (EP) on the posterior
end (white arrow in (E)).

3.4. Molecular Analyses

Thirteen partial ITS1-5.8S-ITS2 sequences were obtained in this study, ranging in
length from 1043 to 1102 bp. These sequences included 554–570 bp corresponding to ITS1,
157 bp corresponding to 5.8S and 290–328 bp corresponding to ITS2. Eight newly generated
sequences (GenBank accession numbers PV123689-91, PV123693-95, PV123697, PV123699)
showed an average similarity of 99.80% (range: 99.88–100%) to four published sequences
of C. cutaneum (Table 1) published in [9,14]. Three sequences (GenBank accession numbers
PV123696, PV123698, PV123700) averaged 99.9% similarity (range: 99.94–100%) to six
sequences of C. phalacrocoracis published in [9,14,37] (KP110567, KP110567, FJ609422-23,
KJ786975-76). One sequence (GenBank accession number PV123701) averaged 99.7% simi-
larity (range: 99.59–99.7%) to eight sequences of C. tilapiae published in [15] (KY649349-55),
while one sequence (GenBank accession number PV123692) averaged 99.9% similarity
(range: 99.16–100%) to eleven sequences of E. heterostomum published in [38] (KP721422-25,
KP721427, KP721430-31, KP721435, KP721437-39).

Table 1. List of published sequences included in genetic analysis.

Parasite Species Host Species Locality Accession Number Reference

C. cutaneum Oreochromis niloticus Sagana, Kenya PV123689-91, PV123693-95,
PV123697, PV123699 Present study

C. phalacrocoracis Oreochromis niloticus Sagana, Kenya PV123696, PV123698,
PV123700 Present study

C. tilapiae Oreochromis niloticus Sagana, Kenya PV123701 Present study
E. heterostomum Oreochromis niloticus Sagana. Kenya PV123692 Present study
C. cutaneum Oreochromis niloticus Sagana, Kenya KP110564-65 [14]
C. cutaneum Oreochromis niloticus Sagana, Kenya FJ609421 [9]
C. cutaneum Ardea cinerea Sagana, Kenya GQ339114 [9]
C. phalacrocoracis Ardea cinerea Sagana, Kenya FJ609423 [9]
C. phalacrocoracis Oreochromis niloticus Sagana, Kenya FJ609422 [9]
C. phalacrocoracis Oreochromis niloticus Sagana, Kenya KP110567-69 [14]
C. phalacrocoracis Cichlids Lake Kinneret, Israel KJ786975-982 [37]
C. tilapiae Synodontis batensoda Anambra basin, Nigeria KY649349-356 [15]
E. heterostomum Cichlids Lake Kinneret, Israel KP721422-439 [38]

A total of 43 sequences of congeners, all identified to the species level, were obtained
from GenBank (Table 1) for further sequence analyses.

We provide the intraspecific and interspecific differences in ITS sequences in Table 2.
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Table 2. Number of nucleotide differences and model-corrected pairwise distances between the
newly generated sequences of ITS rDNA and previously published sequences. The values above
the diagonal (in grey) for interspecific differences indicate the range of nucleotide differences, while
those below the diagonal indicate the range of distances.

Interspecific Intraspecific

C. tilapiae C. cutaneum C. phalacrocoracis E. heterostomum # Differences Distance
C. tilapiae 7–11 6–10 120–126 0–3 0.000–0.006
C. cutaneum 0.008–0.015 7–9 121–125 0–1 0.000–0.002
C. phalacrocoracis 0.006–0.012 0.004–0.014 122–126 0–1 * 0.000
E. heterostomum 0.169–0.215 0.203–0.220 0.199–0.220 0–3 0.000–0.014

* This difference is masked completely in the haplotype network analysis due to unambiguous bases.

The percentage identity of the eight COI mtDNA sequences (579 bp) obtained in
this study was not comparable to other sequences in GenBank using the online BLAST
tool available at the NCBI website (http://blast.ncbi.nlm.nih.gov/Blast.cgi, accessed on
1 February 2025). This is because the primers used in this study [30] amplified a region
different from the published sequences for clinostomids (positions 1–688 bp in the COI
mtDNA gene). The sequences obtained in this study overlapped the region between 699 and
1287 bp in the COI mtDNA gene from the mitogenome of C. complanatum (OP681143) [39].
The pairwise distances of COI mtDNA generated in this study are shown in Table 3.

Table 3. Model-corrected pairwise distances of eight COI mtDNA sequences generated in this study.

Interspecific Intraspecific

C. cutaneum C. tilapiae # Differences Distance

C. cutaneum 0–1 0.000–0.009
C. tilapiae 0.114–0.131 - -

C. phalacrocoracis 0.124–0.143 0.081–0.127 0 0.000

Based on the values provided in Table 3, the isolates from the same species showed
very low genetic distances (≤0.009), indicating high intraspecific similarity within the
species. The intraspecific variation in C. cutaneum for COI (0.000–0.009) is slightly larger
than ITS rDNA (0.000–0.002), suggesting that COI might show greater variability within
this species. For C. phalacrocoracis, both markers show minimal intraspecific variation. The
COI gene shows complete uniformity (0 differences, pairwise distance: 0.000), whereas its
ITS rDNA shows minor variation.

For the haplotype networks of the 807 bp region covering the ITS1, 5.8S and ITS2
regions, we used the minimum spanning tree model [40] to visualize the genetic structure
in the different populations and species (Figure 5). The haplotype of C. cutaneum (black,
present study) is shared with those previously described in Kenya (yellow). Similarly,
C. phalacrocoracis (blue) shared the same haplotype with Kenyan (black, present study) and
Israeli (light blue) populations, suggesting gene flow or dispersal between these regions.
The C. tilapiae haplotype (black, present study) is shared with the Nigerian haplotype (pink).
For E. heterostomum (green), one haplotype is shared with published sequences from Israeli
populations. However, three additional haplotypes are observed, suggesting intraspecific
genetic diversity within this species despite all isolates being collected from the same region
in Israel.

http://blast.ncbi.nlm.nih.gov/Blast.cgi
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4. Discussion
To date, 15 species of Clinostomum have been identified using a combination of molec-

ular and morphological methods [18], which provide a reliable basis for diagnosis within
this genus [9,13,15,41]. As part of a comprehensive study aimed at surveying the diversity
of parasites infecting Nile tilapia in the Upper Tana River region in Kenya, we identified
the isolated metacercariae as C. cutaneum, C. phalacrocoracis, C. tilapiae and E. heterostomum.
The first three species have previously been reported to infect Nile tilapia or grey herons in
Kenya. The report of C. tilapiae in this region lacked supporting morphological or molecular
data. This study provides so far lacking molecular data for C. tilapiae and E. heterostomum
in Kenya, but since only one specimen was available for each species, no morphological
characterizations of these metacercariae were possible. For this reason, more work still
needs to be carried out to properly characterize the morphology of E. heterostomum and
C. tilapiae in O. niloticus (a cichlid host), with the latter parasite species having a previous
report with genetic data from the mochokid catfish Synodontis batensoda Rüppell, 1832
in Nigeria.

Regarding infection parameters, a high prevalence of Clinostomum spp. was observed
in cichlids in Lake Kinneret, Israel (23.4%) [37], in cultured O. niloticus in Sahary fish
hatchery, Egypt (25%), in wild Sarotherodon galilaeus (Linnaeus, 1758) in Lake Nasser, Egypt
(33%) [42], and our study (17.2%). Similarly, research by Mahdy et al. [43] found that farmed
fish had a higher infection rate (32%) than wild tilapia (24%), suggesting that Clinostomum
infections may be widespread in aquaculture systems. Higher parasite burdens in farmed
fish can lead to reduced market value and increased mortality, particularly in cases where
heavy infestations cause damage to fish tissues, gills and skin [16,42,44]. The ability of
metacercariae to impair host health through secondary infections from bacteria or fungi,
ultimately resulting in death, has been documented [42,45,46], reinforcing the need for
proactive parasite management strategies in tilapia farming.

While SEM helps visualize detailed structural characteristics of the tegument and
surface morphology that are otherwise missed with light microscopy, it has only been
applied to some species within Clinostomum. Compared to the surface ultrastructure of
C. ukolii and C. tilapiae, whose teguments are completely covered with minute spines, the
tegument of C. cutaneum lacks spines. Similarly, dome-like structures were observed only
on the genital pore of C. cutaneum, whereas in C. ukolii, such structures are present across
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the tegumental surface and sometimes between suckers [17]. In the present study, we
observed additional diagnostic features previously not mentioned by Gustinelli et al. [9].

5. Conclusion
This study provides new diagnostic features for the metacercariae of C. cutaneum,

refining its morphological characterization. It also provides the first molecular data for
C. tilapiae in Kenya, reports the first species occurrence for E. heterostomum in Kenya, and
confirms its presence on Nile tilapia in this country. Additionally, we offer a molecular
barcoding resource in the form of COI mtDNA sequences, with our selected primers
amplifying a previously unsequenced region of the mitochondrial genome. The high
prevalence of Clinostomum spp. shows their potential impact on both fish and human
health, emphasizing the need for continued monitoring. Finally, we demonstrate the value
of SEM as a complementary tool for more precise parasite species identification.

Supplementary Materials: The following supporting information can be downloaded at https://
www.mdpi.com/article/10.3390/pathogens14030249/s1, Figure S1: Phylogeny based on maximum
likelihood method using ITS1-5.8S-ITS2 rDNA generated using Geneious Prime 2025.0 (https://
www.geneious.com, accessed on 10 December 2024). Node support values include SH-aLRT and
UFBoot (1000 Ultrafast bootstraps). Black dots indicate strong support (SH-aLRT > 80, UBoost > 95)
across analyses. The scale bar represents the number of expected substitutions per site.
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