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ABSTRACT
Online portals have facilitated collecting extensive biodiversity data by naturalists, offering unprecedented coverage and reso-
lution in space and time. Despite being the most widely available class of biodiversity data, opportunistically collected records 
have remained largely inaccessible to community ecologists since the imperfect and highly heterogeneous detection process can 
severely bias inference. We present a novel statistical approach that leverages these datasets by embedding a spatiotemporal joint 
species distribution model within a flexible site- occupancy framework. Our model addresses variable detection probabilities 
across visits and species by modelling phenological patterns and by extending the use of latent variables to characterise observer- 
specific detection and reporting behaviour. We apply our model to an opportunistically collected dataset on lentic odonates, 
encompassing over 100,000 waterbody visits in Flanders (N- Belgium), to show that the model provides insights into biological 
communities at high resolution, including phenology, interannual trends, environmental associations and spatiotemporal co- 
distributional patterns in community composition.

1   |   Introduction

Understanding how species assemble into communities across 
space and time and how environmental conditions, biotic in-
teractions, dispersal and anthropogenic pressure shape this 
process constitutes one of the grand aims of ecology. This 

gave rise to the field of metacommunity ecology (Leibold 
and Chase  2017), while simultaneously providing crucial 
insights for other disciplines such as conservation biol-
ogy. In addition to theoretical modelling (Lerch et  al.  2023; 
Vanoverbeke et al. 2016) and experimental approaches (Logue 
et al. 2011), metacommunity ecology predominantly relies on 
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multivariate analyses of field- based survey data to generate 
insights (Leibold et al. 2022; Logue et al. 2011). Over the past 
decades, developments in statistical ecology have strongly in-
fluenced the way high- dimensional community datasets are 
being analysed, starting with the application of distance- based 
ordination methods (Legendre and Legendre 1998; Peres- Neto 
et al. 2006), followed by the more recent development of joint 
species distribution modelling tools (JSDMs) (Ovaskainen 
and Abrego 2020; Pollock et al. 2014; Ries et al. 2016; Warton 
et al. 2015), the latter also revealing potential signatures of in-
terspecific interaction patterns and providing species- specific 
inferences. Both distance- based ordination and JSDM- based 
approaches allow linking quantitative signatures in data-
sets to existing theoretical paradigms of species assembly 
(Cottenie 2005; Leibold et al. 2022; Ovaskainen et al. 2019).

With some exceptions (e.g., Mungi et  al.  2023), most species 
community datasets are heavily constrained in their geographi-
cal, temporal and taxonomic scope and resolution, as rigorously 
collecting highly standardised data following a predetermined 
sampling design is expensive and time- consuming. The vast ma-
jority of studies treat communities as static by analysing single 
time points, ignoring interannual and seasonal variation, even 
though theoretical and conceptual work increasingly high-
lights the importance of time to understand metacommunity 
dynamics (Guzman et al. 2022; Wolkovich et al. 2014; Yin and 
Rudolf 2024).

Over the past decade, the number of citizen science initiatives 
has been growing rapidly, resulting in large opportunistically 
collected biodiversity datasets that provide a rich source of data 
with broad spatiotemporal extent and often high spatiotempo-
ral resolution. For instance, naturalists all over the world are 
using biodiversity data platforms such as iNaturalist, eBird 
and Obser vation. org, generating millions of species records on 
a weekly basis (Dickinson et al. 2010). While the advantages 
of these datasets are evident, they feature major drawbacks 
that hamper straightforward rigorous statistical analyses for 
metacommunity ecology and conservation research. First, 
opportunistic data collection typically suffers from spatio-
temporal and taxonomic sampling biases due to the absence 
of predefined sampling guidelines (Bowler et al. 2022; Neyens 
et  al.  2019; Pocock et  al.  2023; Shirey et  al.  2021). Second, 
imperfect detection, that is, the near- ubiquitous phenome-
non that species tend to go unnoticed even though they are 
present during biological surveys (MacKenzie et al. 2002), is 
particularly exacerbated in large- scale opportunistic datasets 
as the probability of detecting and reporting species strongly 
varies among naturalists and throughout the season, and as 
species vary in conspicuousness or attractiveness (Dickinson 
et al. 2010). Failing to account for imperfect and heterogeneous 
detection can lead to severe bias in ecological inference and 
species distribution estimates (Guillera- Arroita et  al.  2014; 
Lahoz- Monfort et al. 2014; Rota et al. 2011).

Often, unstructured opportunistically collected data (e.g., 
through portals such as iNaturalist or Obser vation. org) contains 
more than presence- only information, as records of non- focal 
species reveal the activity of observers, enabling reconstructing 
pseudo- visits and checklists (van Strien et al. 2013). In large op-
portunistically collected datasets, a subset of sites is typically 

visited repeatedly within a single biological season, produc-
ing detection/non- detection histories (Mackenzie et  al.  2018). 
Provided that occupancy remains constant throughout the sea-
son (i.e., the closure assumption), the site- occupancy modelling 
framework (MacKenzie et  al.  2002) offers a means to address 
imperfect and highly heterogeneous detection that is inherent to 
opportunistically collected data. This has led to several success-
ful applications to opportunistically collected data on single spe-
cies, often to quantify interannual trends and to address applied 
conservation research questions (Hochachka et al. 2012; Isaac 
et al. 2014; van Strien et al. 2010, 2011, 2013; Termaat et al. 2019).

Multispecies site- occupancy models have subsequently been 
developed to model community data sampled under imperfect 
detection (Beissinger et al. 2016; Dorazio et al. 2006; Sutherland 
et al. 2016). Recently, these efforts have been further extended 
to accommodate large spatial structures (Doser et  al.  2023), 
to integrate multiple population-  and community- level data 
sources and types (Zipkin et  al.  2023), to allow for spatially 
varying coefficients (Doser et al. 2024), to harness the flexibil-
ity of neural networks (Joseph 2020) or to facilitate the uptake 
by ecologists (Doser et al. 2022). While offering much flexibility 
in many respects, these recently developed methods miss key 
features of state- of- the- art JSDMs that assume perfect detec-
tion (e.g., modelling trait- based and phylogenetic influences; 
Ovaskainen and Abrego 2020) and they predominantly leave the 
(spatio)temporal dimension unexplored, in contrast to recently 
developed cutting- edge machine learning approaches for op-
portunistically collected data (Cole et al. 2023; Davis et al. 2023; 
Fink et al. 2023; Smith and Edwards 2021; Teng et al. n.d.). The 
latter approaches, on the other hand, tend either to ignore im-
perfect detection or to adjust for search effort using covariates 
without explicitly disentangling the detection and occupancy 
process. Furthermore, although the importance of interobserver 
heterogeneities has long been recognised (Sauer et  al.  1994), 
it has received remarkably limited attention to date (Johnston 
et al. 2018; Kelling et al. 2015).

In this paper, we develop a Bayesian model to analyse large oppor-
tunistically collected datasets in the context of metacommunity 
ecology by combining a flexible site- occupancy approach with 
a state- of- the- art JSDM, the Hierarchical Modeling of Species 
Communities framework (Ovaskainen and Abrego  2020). We 
present a novel way to parsimoniously map observer- specific 
detection and reporting behaviour across species by extending 
the use of the popular latent variable approach in JSDMs from 
site- species to observer- species relationships. As such, our ap-
proach facilitates the use of widely available opportunistically 
collected biodiversity data to fuel large- scale spatiotemporal 
metacommunity analyses, while explicitly acknowledging the 
shortcomings of such data.

2   |   Material and Methods

2.1   |   Model Structure and Rationale

In the following, we provide a high- level outline of our modelling 
approach. A full overview, including all model equations, tech-
nical details and key assumptions, is provided in the Supporting 
Information in Section S1.
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Typically, JSDMs model whether species have been detected 
across sites as principal outcome (Guillera- Arroita et al. 2015). 
Such an approach, however, confounds the actual occupancy 
process with the detection process (Guillera- Arroita  2017), 
which can be problematic when analysing opportunistically col-
lected data, especially in the face of sampling biases across sites, 
years, seasons and species, and with a large number of observers. 
Therefore, we instead model the detection outcome during indi-
vidual visits to subsequently infer the latent occupancy process, 
following the site- occupancy principle (MacKenzie et al. 2002). 
Specifically, the detection outcome yv,i, pertains to whether spe-
cies i has been reported (0: no; 1: yes) during visit v, which took 
place on day d(v) by observer o(v). We define a (pseudo- )visit v 
as an instance where an observer reports at least one sighting 
of any species on a specific day at a specific site (a grid cell, a 
transect, a pond …). Deriving discrete visits is facilitated by the 
multispecies nature of biodiversity portals such as iNaturalist 
and Obser vation. org, since records of non- focal species within 
a consistent taxonomic scope enable inferring observer activity.

Relying on the site- occupancy framework (MacKenzie 
et al. 2002), we assume yv,i follows a Bernoulli distribution:

where pv,i is the probability of detecting species i during visit v 
(if it would be present), and zs,t,i, is the latent occupancy status 
(0: absent; 1: present) for species i in the visited site s and year t  . 
We assume the latent occupancy status zs,t,i follows a Bernoulli 
distribution as well:

where � s,t,i is the probability that site s is occupied by species 
i in year t . Both pv,i and � s,t,i can be modelled through a lo-
gistic regression approach. Rather than treating pv,i and � s,t,i 
constant across all visits, sites and years, we model both param-
eters by tailoring their linear predictors to accommodate the 
inherent complexity of opportunistic data and by harnessing 
the shared information across space, time and species of the 
metacommunity.

We model the latent occupancies zs,t,i across sites, years and 
species on a logit scale through a spatiotemporally modified 
implementation of HMSC. Following the standard implemen-
tation of HMSC, the influence of environmental predictors on 
the occupancy is modelled efficiently across species through 
partial pooling, shrinking estimates towards the community 
mean, and by accounting for traits and phylogeny (Tikhonov 
et  al.  2020). Since opportunistically collected data provides 
opportunities to model temporal patterns in more detail than 
conventional applications of HMSC, we model interannual 
trends parsimoniously using exact, species- specific Gaussian 
processes, a powerful way of accounting for temporal auto-
correlation (Rasmussen and Williams 2006), and we capture 
yearly deviations from the smooth interannual trends through 
species- specific, normally distributed (i.i.d.) random effects 
(Outhwaite et  al.  2018). Residual site- species associations 
are captured by a latent factor approach (Bhattacharya and 
Dunson 2011; Norberg et al. 2019; Ovaskainen et al. 2016, 2017; 

Tikhonov et al. 2020), which constitutes a model- based ordina-
tion to condense information across sites and species into a fi-
nite number of dimensions (Hui et al. 2015). We model the site 
loadings as a combination of spatially structured and spatially 
unstructured random effects to capture spatially autocor-
related patterns and noisily distributed patterns, respectively. 
We model the former using B- splines projected Gaussian pro-
cesses as an efficient alternative to exact Gaussian processes to 
cover a large number of locations (Monod et al. 2022), and we 
use normally distributed (i.i.d.) random effects to model the 
latter. Finally, residual patterns across sites, years and species 
not captured by the above- mentioned separable components, 
are compressed into site- year loadings, modelled using B- 
splines projected Gaussian processes and a second set of spe-
cies loadings, capturing regional changes in co- distributional 
patterns over time. We refer to the Supporting Information in 
Section S1.2 for all technical details regarding the modelling 
of the occupancy probabilities.

By integrating the outlined JSDM in a site- occupancy model, 
non- detections during repeated visits are used to further in-
form the estimation of occupancy probabilities whenever a 
species might be present despite not being detected. To en-
sure the informativeness of individual visits, it is important 
to model the detection probabilities comprehensively across 
visits, observers, seasons and species, which we achieve by 
capitalising on the same statistical techniques used in HMSC. 
In a similar manner to how environmental associations are 
modelled in the occupancy part of our model, we use partial 
pooling, trait data and phylogenetic relatedness (Ovaskainen 
et al. 2017) to model the influence of detection covariates on 
detection probabilities across species efficiently. We also in-
troduce a latent factor approach to parsimoniously model 
interobserver heterogeneity in the propensity to detect and 
report each species, ordinating observers and species along a 
limited number of dimensions, akin to how residual patterns 
among sites and species are modelled in HMSC (Bhattacharya 
and Dunson  2011). Finally, phenological patterns influenc-
ing species detectability are captured by hierarchical cyclic 
splines, with one common phenological pattern across the 
metacommunity, from which each species can deviate with a 
species- specific spline (hierarchical GAM, type GS; Pedersen 
et al. 2019). For simplicity, we assume individual observer be-
haviour and phenology to be constant across the study period, 
though this assumption could easily be relaxed. We refer to 
the Supporting Information in Section  S1.3 for all technical 
details on the modelling of detection probabilities. We also 
provide an overview of the considered prior specifications and 
key modelling assumptions in the Supporting Information in 
Sections S1.4 and S1.5.

We implemented the model in the probabilistic programming 
language Stan (Betancourt  2017; Carpenter et  al.  2017), rely-
ing on the multipath Pathfinder algorithm, a recently devel-
oped quasi- Newton variational inference method that has been 
shown to quickly reach the high probability region of complex 
target distributions, to initialise dynamic Hamiltonian Monte 
Carlo (HMC) chains (Zhang et  al.  2022). HMC is a gradient- 
based Markov chain Monte Carlo (MCMC) algorithm that is 
well suited to estimate high- dimensional models (Monnahan 

yv,i ∣ zs(v),t(v),i ∼ Bernoulli
(

pv,i zs(v),t(v),i
)

,

zs,t,i ∼ Bernoulli
(

� s,t,i

)

,

 14610248, 2025, 3, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1111/ele.70094 by U

niversiteit H
asselt D

ienst Financiën, W
iley O

nline L
ibrary on [31/03/2025]. See the T

erm
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline L

ibrary for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons L
icense

http://observation.org


4 of 13 Ecology Letters, 2025

et al. 2017), which further helps in efficiently (often < 100 iter-
ations) reaching the high probability region during the adap-
tation phase (Hoffman and Ma 2020; Zhang et al. 2022). This 
combined approach enables sampling using many short chains 
until the desired level of precision for the intended application is 
achieved, without wasting computational resources (Margossian 
and Gelman 2023).

Fully documented Stan code and a complete R- pipeline for data 
preparation, model running, results extraction and visualisation 
are available on GitHub: https:// github. com/ mfajg enblat/ oppor 
tunis ticJSDM.

2.2   |   Simulation- Based Model Evaluation

Several methods have been proposed to assess site- occupancy 
model performance. However, most focus on detection rather 
than occupancy outcomes (e.g., the MacKenzie- Bailey test 
or Bayesian posterior predictive checks; MacKenzie and 
Bailey 2004), or use site- occupancy models as a benchmark for 
simpler models (Rota et al. 2011). Empirical performance eval-
uation to infer the occupancy process is challenging because a 
species' true absence can rarely be confirmed (Miller et al. 2015), 
precluding computing explanatory power or predictive perfor-
mance. Therefore, we adopt simulation- based calibration, a 
stringent and increasingly used method to evaluate the accu-
racy and reliability of complex Bayesian models and computa-
tional algorithms (Cook et al. 2006; Gelman et al. 2020; Modrák 
et al. 2023; Talts et al. 2018). It is particularly valuable for site- 
occupancy models, as it can test the model's ability to accurately 
separate detection probabilities from occupancy probabilities, 
ensuring that model assumptions and computational meth-
ods are correctly specified. Our simulation setting emulates a 
metacommunity of 100 sites visited by observers over a 10- year 
period. In addition to calibration, we compare occupancy pre-
dictions, environmental associations and interannual trends 
inferred from our proposed model with those from a simplified 
version that ignores detection and only models whether each 
species was ever reported. A detailed description of the model 
evaluation procedure is provided in the Supporting Information 
in Section S1.7.

2.3   |   Case Study

We illustrate our model and its output through an application 
to opportunistically collected data of adult lentic dragonflies 
and damselflies (Odonata) in Flanders (northern Belgium), 
from the biodiversity data platform Waarnemingen.be – 
Observations.be, the Belgian subsite of Obser vation. org. 
Sightings were collected from 2009 to 2023 by members of 
the Flemish Dragonfly Society and other naturalists. For 
their larval development, lentic odonates are bound to bod-
ies of standing water, which are ideal study systems in meta-
community ecology as they represent well- defined patches 
of suitable habitat surrounded by a terrestrial matrix. The 
ecology of many species is well studied (Corbet  1999), their 
taxonomy is stable and odonates are often used as model or-
ganisms for ecological and evolutionary research in natural 
populations (Córdoba- Aguilar et al. 2022) and as sentinels for 

freshwater conservation and to evaluate restoration processes 
(Samways 2024).

Each individual waterbody constitutes a site, and the model in-
fers the occupancy state of each waterbody across species and 
years using environmental information and spatial and (spa-
tio)temporal autocorrelation patterns. As a first step, we linked 
geotagged sightings of adult odonates to the closest waterbody 
(max. distance 100 m) using a comprehensive inventory of 
93,135 bodies of standing water across the study area (Scheers 
et al. 2022) and we defined an individual visit as an event where 
at least one odonate species was sighted near a waterbody by a 
specific observer on a specific day. We followed the approach 
of van Strien et al.  (2013) to construct detection/non- detection 
checklists of odonate species from presence- only reports of indi-
vidual species, inferring non- detections for unreported species. 
To minimise potential misidentification errors, we only retained 
visits conducted by experienced odonate ‘enthusiasts’—con-
tributors who account for the vast majority of records in the 
database (see Supporting Information in Section  S1.8, for all 
methodological details). To consider the resulting species check-
lists under a repeated visit structure, we also made the closure 
assumption that community occupancy was stationary through-
out the year (Doser and Stoudt  2024), and that detection only 
varies seasonally but not interannually (Supporting Information 
in Section S1.5).

In our case study, we considered 12 land cover classes (De Saeger 
et al. 2020; fractions within a 200 m buffer around each water-
body) and the (logarithmically transformed) waterbody area 
as environmental variables. We considered six trait variables: 
body size, good dispersal, affinity for temporal ponds, nutrient 
level preference, an antipredation index (derived from number 
and size of larval antipredatory spines) and a temperature op-
timum proxy (i.e., the species temperature index; STI) (Harabiš 
and Hronková 2020; De Knijf et al. 2006; Termaat et al. 2019). 
In an alternative model specification, we did not include any 
occupancy predictors or traits for unconstrained ordination 
purposes.

We used categorised list length (i.e., the number of species de-
tected during a visit) as a proxy for search effort, with categories 
of singleton (one species), short (two–three species) and longer 
(> three species) lists, by including it as a dummy- coded predic-
tor for detection probabilities, as previous studies have shown 
this method to account for variation in sampling intensity 
among visits (Isaac et al. 2014; Szabo et al. 2010).

The model was run on a high- performance computing cluster 
utilising 36 cores during a period of 7 days. Further method-
ological details are provided in the Supporting Information in 
Section S1.8.

3   |   Results

3.1   |   Simulation- Based Model Evaluation

The histograms of the rank statistics obtained as part of the 
simulation- based calibration procedure do not indicate im-
portant deviations from a uniform distribution (Figure  S1), 
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indicating that our model is capable of properly inferring 
both detection and occupancy parameters in a well- calibrated 
fashion. Furthermore, simulations indicate that the model 
outperforms a naive implementation that ignores imperfect de-
tection with respect to predicting occupancy probabilities (92% 
of simulations), the signs of environmental associations (100% 
of simulations) as well as retrieving interannual trends (88% of 
simulations) (Figure  S2). Model performance is substantially 
higher over the full range of detection and occupancy rates, in 
particular for predicting occupancies, and only becomes compa-
rable when detection is near- perfect (Figures S3 and S4).

3.2   |   Metacommunity Insights From 
Opportunistic Data: Case Study on Lentic Odonates

In our case study, 467,126 of the 756,427 odonate sightings 
registered in the region between 2009 and 2023 pertain to 50 
obligatory or facultative lentic species and could be linked 
to a waterbody (< 100 m distance). From these sightings, we 
derived 112,814 discrete waterbody visits, omitting visits by 
less- experienced observers (defined as having performed < 75 
visits throughout the study period) to ensure data quality and 
waterbodies that have been visited infrequently (< three times 
throughout the study period). As a result, a total of 6672 water-
bodies is considered in the analysis (7.2% of all known waterbod-
ies in the study area), with an average of 16.9 visits performed 
per waterbody throughout the study period, by a total of 445 se-
lected observers (Figure S5). Due to the large number of individ-
ual findings, we restrict ourselves to a non- exhaustive bird's- eye 

perspective, with the principal aim of showcasing what types of 
inference our model is capable of.

Overall, we found the probability of detecting and reporting 
a species (given its presence) during an average visit to be 
low across all species during their week of peak phenologi-
cal activity, with posterior medians ranging from 0.0003 for 
Leucorrhinia caudalis to 0.0417 for Libellula quadrimaculata 
for visits with long lists, and even lower probabilities for visits 
with singleton and short lists (Figure S6). With the exception 
of Sympecma fusca (the only species that overwinters as adult 
in the study area and, hence, can be detected year- round), all 
species show a clear seasonal pattern (Figure  1a), strongly 
influencing detectability. In addition to the time of the year, 
we also found observer identity to strongly modulate the de-
tection probability, with substantial variation across species 
(Figure  1b). The model- based ordination of observers and 
species revealed that the most important axis of variation in 
observer behaviour pertains to the ease of detection and iden-
tification (Figure 1b). At one end of the spectrum, we find ob-
servers that mainly report species that are common and easily 
approachable (facilitating identification), such as several spe-
cies of damselflies (Zygoptera spp.) and darters (Sympetrum 
spp.). These observers feature strongly lowered propensities 
to report species that necessitate in- flight identification skills 
such as many dragonfly species (Anisoptera spp.), which re-
quire a well- developed search image (e.g., Coenagrion lunula-
tum) or that are widespread but easily overlooked because of 
their resemblance to more abundant species (e.g., Ischnura 
pumilio). At the other end of the spectrum, we find observers 

FIGURE 1    |    Estimated influences of phenology and observer identity on the detection probabilities of species. (a) Heatmap showing the posterior 
median phenological activity of each species for every week, with faint yellow colours indicating a very low probability of detecting the species and 
purple colours indicating a high probability of detecting the species. An inverse logit transformation was applied to the estimated spline values to 
achieve a range between 0 and 1. Species are ordered by the mode of their phenological curve. (b) Heatmap showing the posterior median effects of 
observer identity on detecting and reporting the different species (on the logit scale), with red colours indicating a below- average propensity to detect 
and report a species, and blue- green colours indicating an above- average propensity to detect and report a species. Observers and species are ordered 
to highlight the most important axis of variation.
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displaying opposite behaviour, primarily focusing on the rare 
and challenging species while being less likely to report easily 
detected and identified species (Figure 1b).

We identified strong statistical support for associations between 
the considered environmental predictor variables (pond area and 
land cover variables) and the occupancy of species (Figure 2a). 
Some of these associations are related to the considered species 
traits (Figure 2b), and we found that environmental associations 
show a relatively weak phylogenetic structure, as reflected by 
a posterior median phylogenetic signal of 11.3% (95% credible 

interval [2.8, 34.2]). Among the land cover variables, we found 
the fraction of heathland to be the most important occupancy 
predictor for the metacommunity, with 22 species featuring high 
statistical support (> 95% posterior probability) for a positive as-
sociation, including Leucorrhinia rubicunda and Coenagrion 
hastulatum (Figure  2a). When considering patterns of species 
richness along gradients of the environmental predictor vari-
ables (Ovaskainen and Abrego  2020), the posterior predicted 
species richness increases most along the fraction of heathland 
surrounding water bodies, while the opposite holds for agricul-
tural land (Figure S7).

Residual co- distributional associations among species across 
waterbodies that are not explained by the considered environ-
mental factors are captured by the latent factor component of 
the model, constituting a constrained, model- based ordination. 
The model can accommodate both structured (i.e., spatially au-
tocorrelated) and unstructured (i.e., noisy) patterns across space 
and weights their importance through a spatial signal parameter 
for each latent dimension. Spatially structured patterns seem to 
be the most important, with an average posterior median spatial 
signal of 75.3% across latent dimensions. The species loadings 
can be used to derive an interspecific association matrix, re-
flecting which pairs of species tend to co- occur more often than 
expected by chance alone. Upon comparison to an interspecific 
association matrix derived from an alternative model without 
any environmental predictors (i.e., unconstrained ordination), 
we can evaluate the extent to which the environmental predic-
tors are able to explain apparent (co- )distributional patterns. In 
our case study, a considerable amount of co- distributional vari-
ation remains present (Figure 3). At least some of the patterns 
seem to be driven by a shared preference for early successional, 
shallow waterbodies, as indicated by the high correlations 
among the species Lestes barbarus, Sympetrum fonscolombii, 
Lestes dryas and Ischnura pumilio (among others).

For each species, pure interannual variation in occupancy pat-
terns is captured by temporal random effects. In analogy with 
the spatial co- distributional associations, we can derive spatio-
temporal co- distributional associations, as the model also ac-
counts for regional differences in interannual trends within the 
species communities. These results suggest that communities 

FIGURE 2    |    Associations between environmental variables and the 
occupancy of species, and the influence of traits thereon. (a) Heatmap 
showing the posterior median regression coefficients for the influence 
of the considered environmental predictors on the occupancy probabil-
ity (on the logit scale), for each species. For clarity, colour scales have 
been truncated to the [−5,5] interval, with more extreme values being 
represented by the ends of the colour spectrum. Associations with high 
statistical support (> 95% posterior probability) are indicated by a star 
in the centre of the heatmap cell. Species are ordered taxonomically, 
with a taxonomic tree displayed at the left of the heatmap, shaded by 
family (yellow: Aeshnidae; green: Gomphidae; pink: Corduliidae; pur-
ple: Libellulidae; orange: Coenagrionidae; blue- green: Lestidae). (b) 
Heatmap showing the posterior median regression coefficients for the 
influence of the considered species traits on the environmental associa-
tions. Associations with high statistical support (> 95% posterior proba-
bility) are indicated by a star (*) in the centre of the heatmap cell.
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dominated by generalist and thermophilic species (e.g., Ischnura 
elegans, Anax imperator and Coenagrion scitulum) display re-
gionally opposite interannual trends compared to species asso-
ciated with oligotrophic and cooler conditions (e.g., L. rubicunda 
and Leucorrhinia dubia), hinting at alternative stable communi-
ties that displace each other (Figure S8).

By modelling the occupancies of species across space and time 
by means of environmental, interannual, spatial and spatio-
temporal components, as well as by accounting for imperfect 
detection during individual visits and by assuming a MAR miss-
ingness mechanism (Bowler et al. 2024), we can produce yearly 
estimates of the spatial distribution of each individual species 
across the study area (see Figure S9 for a single example species) 
and derive yearly trends in the fraction of occupied waterbod-
ies (Figure 4). Upon linearisation of the interannual trends by 
ordinary least squares, we find high statistical support (> 95% 
posterior probability) for 25 species declining and 14 species 

increasing in occupancy across years. An exploratory analysis 
of the relationship between the linearised trend slopes and the 
six considered traits suggests that species with a low thermal op-
timum (STI) show particularly stark declines (Figure S10).

By summing posterior occupancy probabilities across individ-
ual species, we can visualise how patterns in species richness 
develop across space and time (Figure 5a). In addition to visu-
alising the averaged species richness across the study area over 
the study period (Figure  5b), we can also visualise computed 
species richness slopes for all waterbodies within the study area 
(Figure  5c). The Campine region (northeastern Flanders) har-
bours the highest species richness but simultaneously faces the 
strongest absolute declines, with estimated (posterior median) 
losses of over three species in many waterbodies over the 15- 
year study period. Conversely, a considerable increase in species 
richness can be observed in the northern part of the province of 
East Flanders (northwest of Brussels) (Figure 5c).

FIGURE 3    |    Spatial interspecific association matrix. Each cell indicates whether a pair of species features a higher (blue- green) or lower (red) 
probability of co- occurring across sites. The (above- diagonal) upper triangle shows the posterior median associations obtained under the main mod-
el, that corresponds to a constrained ordination (i.e., conditioned on the environmental predictor variables). The (below- diagonal) lower triangle 
shows the posterior median associations obtained under an alternative model that does not include environmental predictor variables and, hence, 
constitutes an unconstrained ordination. Species are ordered to highlight the most important axis of variation.
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4   |   Discussion

Opportunistically collected biodiversity data are notoriously 
challenging to handle, leaving them underutilised in disci-
plines such as metacommunity ecology and conservation 
research. Our approach leverages the vast amount of data to 
explicitly and flexibly address the complexities underlying the 
detection process, extracting valuable biological and ecologi-
cal insights into the distribution of species in time and space. 
As long as detection/non- detection checklists can reliably 
be inferred and reasonable assumptions regarding closure 
among repeated visits can be made (Doser and Stoudt 2024; 

Hochachka et  al.  2023; van Strien et  al.  2013), it provides a 
complementary method to standardised survey data. Through 
our case study on lentic odonates, we demonstrate how to 
infer phenology, observer behaviour patterns, environmental 
associations, trait and phylogenetic influences, interannual 
trends and spatial and spatiotemporal co- distributional pat-
terns, collectively describing the metacommunity and how it 
is observed. Furthermore, our simulation results indicate that 
high- quality insights can also be derived from moderately 
sized datasets (100 sites visited over 10 years). The wealth of 
results can serve and benefit a wide range of applications, 
from fuelling metacommunity ecology research to informing 

FIGURE 4    |    Yearly trends in the estimated proportion of occupied waterbodies by each species in the study area. The full line indicates the poste-
rior median trend, while the shaded area indicates 95% credible intervals. Species are ordered alphabetically.
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conservation and policymaking, while simultaneously valo-
rising efforts of naturalists.

Our approach provides means for researchers in metacommunity 
ecology to exploit opportunistically collected data, now by far the 
most widely available biodiversity data on Earth. It enables anal-
yses at unprecedented taxonomic and spatial scales and offers 
opportunities to include the temporal dimension, meeting re-
cent calls for an increased emphasis on the role of time in meta-
community ecology (Guzman et al. 2022; Yin and Rudolf 2024). 
Despite a high degree of standardisation, typically used datasets 
in metacommunity ecology might be prone to phenological bi-
ases, as communities are rarely sampled simultaneously across 
all sites, let alone during the phenological peaks of each individ-
ual species. Our model, on the other hand, spans the entire yearly 
phenological cycle, fully acknowledging seasonally varying de-
tection probabilities. Our model can easily be extended to cap-
ture interannual phenological variation, further improving the 
estimation of detection probabilities and providing meaningful 
biological insights on phenological change in the process. Other 
model developments such as the inclusion of hidden Markov 
model components, distributed lag structures, spatially varying 
environmental associations or temporally varying interspecific 

associations might allow the detection of more complex (spa-
tio)temporal dynamics in metacommunity structure, such as 
regime shifts and historical legacy effects (Doser et  al.  2024; 
Fukami 2015; Gasparrini et al. 2010; McClintock et al. 2020).

While properly executed standardised surveys of species (abun-
dances) always constitute the gold standard approach for biodi-
versity monitoring (Reynolds et  al.  2011), our model aids these 
efforts by providing yearly trend estimates for the entire species 
community through the efforts of naturalists and citizen scien-
tists, without coercing them into following a restrictive protocol. 
More specifically, our approach can fill gaps for species, sites 
or time windows for which rigorously collected data is absent 
(Bowler et al. 2024). Ongoing efforts in the field of data fusion will 
facilitate the combined use of both types of monitoring paradigms 
(Pacifici et al. 2016; Theobald et al. 2015; Zipkin et al. 2023).

Our approach shares some inherent limitations of HMSC and 
similar joint species distribution models. For instance, its correla-
tive nature does not eliminate the possibility of confounding, and 
the omission of relevant environmental predictors can impede 
the interpretation of interspecific associations as biotic interac-
tions (Ovaskainen and Abrego 2020). These limitations may be 

FIGURE 5    |    Patterns of species richness in space and time. (a) Yearly maps of posterior median estimated species richness across all 93,135 known 
waterbodies in Flanders. For clarity, colour scales have been truncated to the [−5,5] interval, with faint yellow colours corresponding to a richness 
of 10 (or less) species and purple corresponding to a richness of 25 (or more) species. Maps are shown biennially (every 2 years) and presented in a 
slightly tilted, stacked perspective to conserve space, with the year printed next to each map. (b) Map of the posterior median estimated species rich-
ness across all 93,135 known waterbodies in Flanders, averaged over all years. An identical colour scale has been used as for panel (a). (c) Map of the 
posterior median slope of the species richness throughout the 15- year study period all 93,135 known waterbodies in Flanders. The slopes have been 
obtained by performing ordinary least squares on the (untransformed) yearly species richness estimates, for each posterior iteration and by subse-
quently computing the posterior median slope. By using the untransformed yearly species richness estimates, the values can be interpreted as the 
number of species lost or gained over the 15- year period. Red colours correspond to three (or more) species lost, while blue- green colours correspond 
to three (or more) species gained.
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further compounded in large- scale applications like ours, where 
the choice of environmental predictors is constrained by their 
availability (e.g., land cover data). In our case study, the inclusion 
of more detailed local environmental predictors (e.g., water phys-
icochemical variables) was rendered impossible due to the spatial 
resolution, but it could have further improved our understanding 
of the metacommunity. Further model extensions using Bayesian 
imputation techniques (Gelman et al. 2014) offer perspectives to 
utilise partially available physicochemical data on a fraction of 
waterbodies, thereby exploiting species as bioindicators, as well as 
statistical relationships between local physicochemical variables 
and land cover. Likewise, the availability of detection metadata is 
often limited in opportunistically collected biodiversity datasets. 
For instance, the use of list length in our application might be a 
suboptimal proxy for search effort as it is sensitive to species rich-
ness patterns through space and time. Biodiversity portals such as 
Obser vation. org now enable observers to record their GPS tracks 
during visits, which could offer substantial benefits for the anal-
ysis of opportunistically collected datasets. An additional limita-
tion arises from acknowledging imperfect detection, as the true 
absence of a species cannot be established with certainty, compli-
cating the straightforward assessment of predictive performance. 
A final limitation of our approach is that it is restricted to infer-
ring occupancy, whereas incorporating species abundances could 
further enhance the understanding of metacommunities.

Since imperfect and heterogeneous detection is a near- 
ubiquitous phenomenon in biology, our approach can cater ap-
plications beyond opportunistically sampled biodiversity data in 
the strict sense. For instance, Fountain- Jones et  al.  (2024) re-
cently outlined the exciting opportunities that both joint species 
distribution models and site- occupancy models could offer for 
the analysis of microbiomes, and Allaband et al. (2024) present 
compelling evidence that the time of sample collection is critical 
for the replicability of microbiome analyses, with the effects of 
time exceeding those of experimental interventions, leading to 
altered conclusions. Our approach offers a one- step solution, as 
diurnal patterns in detection can be accounted for in the same 
way as phenological patterns. Other potential applications in-
clude eDNA sampling and camera trapping.

We hope the present framework provides a venue for further 
methodological developments in joint species distribution mod-
elling while accounting for imperfect detection, and that its ap-
plication to the large amount of available biodiversity data will 
increasingly contribute to our understanding of the processes 
shaping the assembly of species across time and space.
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