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ABSTRACT
Background  Accurate prediction of pathologic complete 
response (pCR) following neoadjuvant immunotherapy 
combined with chemotherapy (nICT) is crucial for tailoring 
patient care in esophageal squamous cell carcinoma (ESCC). 
This study aimed to develop and validate a deep learning 
model using a novel voxel-level radiomics approach to predict 
pCR based on preoperative CT images.
Methods  In this multicenter, retrospective study, 741 
patients with ESCC who underwent nICT followed by radical 
esophagectomy were enrolled from three institutions. Patients 
from one center were divided into a training set (469 patients) 
and an internal validation set (118 patients) while the data 
from the other two centers was used as external validation 
sets (120 and 34 patients, respectively). The deep learning 
model, Vision-Mamba, integrated voxel-level radiomics feature 
maps and CT images for pCR prediction. Additionally, other 
commonly used deep learning models, including 3D-ResNet 
and Vision Transformer, as well as traditional radiomics 
methods, were developed for comparison. Model performance 
was evaluated using accuracy, area under the curve (AUC), 
sensitivity, specificity, and prognostic stratification capabilities. 
The SHapley Additive exPlanations analysis was employed to 
interpret the model’s predictions.
Results  The Vision-Mamba model demonstrated robust 
predictive performance in the training set (accuracy: 0.89, AUC: 
0.91, sensitivity: 0.82, specificity: 0.92) and validation sets 
(accuracy: 0.83–0.91, AUC: 0.83–0.92, sensitivity: 0.73–0.94, 
specificity: 0.84–1.0). The model outperformed other deep 
learning models and traditional radiomics methods. The 
model’s ability to stratify patients into high and low-risk groups 
was validated, showing superior prognostic stratification 
compared with traditional methods. SHAP provided quantitative 
and visual model interpretation.
Conclusions  We present a voxel-level radiomics-based deep 
learning model to predict pCR to neoadjuvant immunotherapy 
combined with chemotherapy based on pretreatment 
diagnostic CT images with high accuracy and robustness. 
This model could provide a promising tool for individualized 
management of patients with ESCC.

WHAT IS ALREADY KNOWN ON THIS TOPIC
	⇒ Neoadjuvant immunotherapy combined with che-
motherapy (nICT) is a promising treatment for 
esophageal squamous cell carcinoma (ESCC), but 
accurate prediction of pathologic complete response 
(pCR) remains challenging. Traditional biomarkers 
for predicting pCR have limited value, and the role 
of radiomics in predicting treatment outcomes has 
been studied primarily in neoadjuvant chemoradio-
therapy. Deep learning models have shown potential 
in medical imaging, but their application in nICT re-
mains limited.

WHAT THIS STUDY ADDS
	⇒ This study presents a novel deep learning model, 
Vision-Mamba, which integrates voxel-level radio-
mics and CT images to predict pCR in patients with 
ESCC following nICT. The model outperforms oth-
er deep learning models and traditional radiomics 
methods, demonstrating high accuracy, sensitivity, 
and specificity across multiple validation cohorts. 
By combining voxel-level radiomics, the model pro-
vides a more detailed and robust prediction of tumor 
response, offering a promising tool for personalized 
treatment strategies.

HOW THIS STUDY MIGHT AFFECT RESEARCH, 
PRACTICE OR POLICY

	⇒ This study highlights the potential of voxel-level ra-
diomics combined with deep learning for improving 
clinical decision-making in ESCC treatment. The 
model’s ability to predict pCR could guide clinicians 
in selecting candidates for organ-preserving strat-
egies like the watch-and-wait approach, reducing 
unnecessary surgeries and improving patient quality 
of life. Future research may focus on validating this 
model in larger, prospective trials and exploring its 
integration with other predictive biomarkers, poten-
tially influencing clinical practice guidelines for the 
treatment of ESCC.
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INTRODUCTION
Esophageal squamous cell carcinomas (ESCC) are 
neoplasms arising from the squamous epithelium and are 
responsible for over 90% of all esophageal cancers in Asia.1 
Neoadjuvant immunotherapy combined with chemo-
therapy (nICT) has been established as a promising treat-
ment for locally advanced ESCC, supported by several 
clinical trials that have demonstrated its acceptable safety 
and efficacy.2–5 Compared with the current standard of 
care—neoadjuvant chemoradiotherapy (nCRT)—nICT 
studies achieved comparable R0 resection rates (80.5–
98%)3 6 and pathologic complete response (pCR) rates 
(39.2–50%).3 6 nICT not only seems to offer the potential 
for a better long-term prognosis than nCRT,7 but it is also 
a highly recommended option for patients at high risk of 
radiotherapy complications or those reluctant to undergo 
radiotherapy.8 9 Additionally, 40–50% of patients experi-
ence postoperative complications, with major complica-
tions occurring in about 10% of patients,6 8 10 however 
the short- and long-term outcomes are similar between 
planned and salvage esophagectomies.11 Therefore, 
for patients who will most likely attain pCR, an organ-
preserving and function-preserving strategy, known 
as watch-and-wait, may be considered, where active 
surveillance and surgery are performed as needed. This 
underscores the necessity for precise methods to assess 
responses to nICT, enabling the personalization of treat-
ment plans.

At present, clinically predictive biomarkers for nICT 
pathological responses are lacking. The most thoroughly 
investigated biomarkers—microsatellite instability, 
programmed cell death ligand-1 (PD-L1) expression, 
and tumor mutational burden6 12 13—are expensive to 
measure, but offer limited predictive value.14 15 Radio-
mics, on the other hand, which involves the quantitative 
extraction of features of whole tumors in situ from non-
invasive clinical imaging, has demonstrated potential for 
predicting responses in nCRT.16 Nonetheless, its applica-
bility in nICT prediction is still in its infancy and requires 
extensive research.

Previous studies inform us about the known advantages 
and shortcomings of radiomics. One benefit is the ability 
to encode tumor phenotype using predefined mathe-
matical formulas that can be later analyzed by machine 
learning or statistical methods to pinpoint features that 
predict clinical outcomes.17 This allows for the efficient 
distillation of useful quantitative features from a limited 
sample size18 and leads to reasonably explainable models. 
One significant limitation is that each feature is repre-
sented by a single value per patient, potentially missing 
intricate details. End-to-end deep learning approaches 
facilitate holistic processing from input to output, 
enabling the model to directly learn relevant features 
from the input data, and are especially useful when used 
in conjunction with large and diverse data sets. None-
theless, if dealing with small sample sizes, deep learning 
models are at high risk of overfitting to training data, 
thus lacking generalizability. In practice, one tries to 

overcome such limitation by applying data augmentation 
such as translation, rotation, and scaling19 of the already-
existing images. Introducing external prior knowledge as 
supplementary training data may also help alleviate these 
issues, thereby improving the model’s performance with 
small sample size.20–23 Radiomics feature maps spatially 
represent tumor characteristics across the entire tumor 
volume, preserving spatial heterogeneity and distribu-
tion of features that might be lost when reducing them 
to single summary values. This approach, which we term 
“voxel-level radiomics”, provides a more nuanced view of 
the tumor’s internal structure and enhances the utility 
of clinical CT images by addressing the limitations of 
traditional radiomics, which often oversimplify complex 
tumor characteristics.

In this study, we proposed a novel “voxel-level radio-
mics” approach and hypothesized that combining voxel-
level radiomics feature maps and CT images with a “3D 
Vision-based Mamba architecture” could effectively 
predict primary tumor response after nICT (figure 1A). 
Due to the effectiveness of the bidirectional state space 
model in managing long sequences and strong spatial 
correlations present in medical images, we chose the 
Vision-Mamba architecture for our current work.24 This 
study also compared conventional region-based radio-
mics methods, voxel-level radiomics alone, and CT images 
alone in constructing deep learning models, as well as 
evaluating the performance of well-known deep learning 
models. Furthermore, the SHapley Additive exPlanations 
(SHAP) analysis was used to enhance the interpretability 
of the models.

METHODS
Patient enrollment
Due to the retrospective nature of the study, the require-
ment for informed consent was waived by the Institu-
tional Review Board. The study comprised three cohorts 
of patients who underwent immunochemotherapy prior 
to radical esophagectomy at three different hospitals: (1) 
Zhejiang Cancer Hospital, with data from July 2019 to 
July 2023, which was randomly divided into a training set 
(80% of patients) and a holdout test set (test-set-1, 20% of 
patients); (2) Tianjin Medical University Cancer Institute, 
with patients treated between June 2020 and February 
2022 as an independent test set (test-set-2); (3) Renmin 
Hospital of Wuhan University, with patients treated from 
July 2020 to September 2023 as a second independent test 
set (test-set-3). All patients were pathologically confirmed 
as primary ESCC and had obtained contrast-enhanced 
chest CT scans within 14 days prior to their neoadjuvant 
therapy, followed by radical esophagectomy and complete 
postoperative pathological assessment. Detailed inclusion 
and exclusion criteria are provided in online supple-
mental method A.

Treatment protocol and pathological evaluation
Patients were scheduled to receive at least one cycle of 
neoadjuvant immunotherapy, starting concurrently with 
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Figure 1  Study pipeline. (A) The process involved extracting radiomics feature maps from preoperative CT scans and 
combining them with CT images to predict pathologic complete response (pCR vs non-pCR) using the Vision-Mamba model. 
Additionally, the model’s ability to stratify prognosis was explored. (B) Data from three different hospitals were included in 
the study. The images underwent processing, segmentation, feature extraction, feature selection, and model building. The 
performance of the model was then validated using independent validation sets. (C) The Vision-Mamba model architecture 
includes separate convolutional layers for CT images and shared convolutional layers for all radiomics feature maps. After initial 
processing with these convolutional layers and activation functions, the data is passed through state space model layers. The 
outputs are then concatenated and fed into fully connected layers to predict pCR or non-pCR. AUC, area under the curve.
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chemotherapy. The immunotherapy involved standard 
doses (200 mg every 3 weeks per cycle) of programmed 
cell death protein 1 or PD-L1 monoclonal antibodies 
(sintilimab, camrelizumab, tislelizumab, envafolimab, 
durvalumab, pembrolizumab, or nivolumab). Chemo-
therapy regimens were platinum-based and comprised 
two drugs with the following specifications: (1) TC 
(Taxane and Carboplatin) regimen (every 3 weeks): one 
to four cycles of nab-paclitaxel 260 mg/m2 (day 1) or pacl-
itaxel 135–175 mg/m2 (day 1) + carboplatin area under 
the curve (AUC) 5 mg/mL/min (day 1) with a 21-day 
interval; (2) TP (Taxane and Cisplatin) regimen (every 
3 weeks): one to four cycles of nab-paclitaxel 260 mg/
m2 (day 1) or paclitaxel 175 mg/m2 (day 1) + cisplatin 
75 mg/m2 (day 1); (3) other regimens: one to four cycles 
of nab-paclitaxel 260 mg/m2 (day 1) or paclitaxel 175 mg/
m2 (day 1) + oxaliplatin 130 mg/m2 (day 1) with a 21-day 
interval; one to four cycles of fluorouracil 800–1,000 mg/
m2 (day 1) or tegafur 40–60 mg/m2 (two times per day 
days 1–14) + cisplatin 75 mg/m2 (day 1) or oxaliplatin 
130 mg/m2 (day 1) with a 21-day interval.

Radical esophagectomy was performed 4–8 weeks 
after completing the neoadjuvant therapy. The choice 
of esophagectomy technique—minimally invasive, open 
surgery, or video-assisted thoracic surgery—was based on 
the tumor’s location and the thoracic surgeon’s decision. 
The surgical approach also included either a two-field or 
three-field lymphadenectomy.

Pathology specimens obtained from the surgical resec-
tions were evaluated by an experienced pathologist and 
reviewed by a senior pathologist specializing in esopha-
geal cancer. According to the College of American Pathol-
ogists Cancer Protocol for Esophageal Carcinoma,25 
tumor regression grade (TRG) was classified into four 
categories: TRG 0 indicated no histologically identifiable 
cancer cells; TRG 1 represented single cells or rare small 
groups of cancer cells; TRG 2 represented residual cancer 
with evident tumor regression but more than single cells 
or rare small groups of cancer cells; TRG 3 represented 
extensive residual cancer with no evident tumor regres-
sion. pCR was defined as having no viable tumor residual 
(TRG 0) at the primary tumor site, with TRG 1–3 being 
classified as non-pCR. This binary endpoint was used to 
build the prediction model.

Image and radiomics feature processing
The workflow for this section is illustrated in figure 1B. 
Contrast-enhanced chest CT scans were performed using 
a range of GE, Siemens, and Philips CT scanners, following 
standardized scanning protocols and each vendors’ 
default image convolution kernels. Detailed scanning 
parameters are provided in online supplemental table 
1A–C. To standardize spatial resolution across different 
centers, we resampled the original CT images from all 
data sets to an isotropic voxel size of 1×1×5 mm (slice 
thickness 5 mm).

The primary esophageal tumors prior to neoadjuvant 
therapy were defined as the regions of interest (ROIs) and 

manually segmented by two physicians with over 3 years 
of experience (HS, MY). Tumor boundaries were delin-
eated based on multiple diagnostic modalities, including 
PET-CT (Positron Emission Tomography - Computed 
Tomography), esophagograms, and esophagoscopy. 
These ROIs were further reviewed and manually refined 
by a senior physician with over 25 years of experience 
(YJ). Any discrepancies were resolved through collective 
discussion. The segmentation was performed using 3D 
Slicer software.26

Subsequently, the CT image intensity was normalized 
to a range from −110 to 190, a practice derived from clin-
ical experience and standard for deep learning models. 
The ROI was then cropped from the CT images to isolate 
the tumor area for analysis, with a padding of 1 voxel 
added around the edge of the ROI to ensure comprehen-
sive coverage. We employed the “PyRadiomics” Python 
package25 to extract 90 radiomics feature maps from 
each ROI. These radiomics feature maps were created by 
calculating specific radiomic feature values for each voxel 
within the ROI, thus generating a comprehensive distri-
bution of features. These hand-crafted features, which 
generally conformed to the Image Biomarker Standard-
ization Initiative (IBSI) guidelines, included 17 intensity 
features and 73 texture features. Unique exceptions to 
IBSI have been documented by the software developers, 
over whom we had no influence.

We performed feature selection by evaluating the 
predictive power of each individual radiomics feature. 
Specifically, each of the 90 radiomics feature maps was 
used as a separate input for training individual Vision-
Mamba models, where each model incorporated only one 
radiomics feature to assess its predictive performance. 
Features with an area under the receiver operating char-
acteristic greater than 0.6 after model convergence, that 
is, those demonstrating potential discriminative power, 
were retained.

Adapting Vision-Mamba architecture for three-dimensional 
medical image analysis
We modified an existing Vision-Mamba architecture, 
initially designed for RGB image processing, to accom-
modate a multi-input three-dimensional (3D) model as 
depicted in figure 1C. The Mamba model is known for 
its efficient, hardware-aware designs optimized for long 
sequence modeling and is particularly adept at visual 
representation learning.27 It uses bidirectional state space 
models (SSMs) to effectively model data-dependent 
global visual contexts and includes positional embeddings 
for enhanced location-aware recognition. This configura-
tion allows Mamba to process high-resolution images with 
improved performance and efficiency, circumventing the 
need for self-attention mechanisms.24

In our adaptation, the input comprises a four-
dimensional array (X+1, 32, 64, 64), where X represents 
the selected voxel-based radiomics feature maps alongside 
the cropped CT image of the ROI. This array is divided 
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into X+1 individual 3D arrays, which are then separately 
input into the model.

Each 3D input is subjected to a sequence of transfor-
mations including 3D convolutions, batch normalization, 
and ReLU activation, resulting in consolidated feature 
maps of shape (128, 8, 16, 16). These maps are then flat-
tened, tokenized, and projected into tensors of shape 
(256, 2048). Subsequently, these tensors are split into 
three components: dt (delta time), B (input coupling 
matrix), and C (output coupling matrix), which are inte-
gral to the SSM. The output from the SSM is processed 
through global attention and average pooling, resulting 
in feature vectors of dimension (128). These vectors from 
each input are concatenated to form a comprehensive 
feature vector of dimension (128 × X+1).

Finally, this combined feature vector is passed through 
a fully connected layer. The model employs BCEWith-
LogitsLoss as its loss function, which combines sigmoid 
activation with binary cross-entropy loss, and includes a 
pos_weight parameter to manage class imbalance.

Vision-Mamba model construction and training
The configuration of our model includes several key 
parameters tailored for optimizing performance: the 
input feature dimensionality (dim) is X+1, which 
includes one original CT image and X selected voxel-
based radiomics feature maps, long-range dependency 
capture (d_state) is set at 16 to balance complexity and 
efficiency, the depthwise convolution dimensionality (d_
conv) is set at 4, and the internal feature dimensionality 
increase (expand) is set at 2. The model processes input 
hidden states through linear projection followed by 
depthwise convolution. These features are subsequently 
divided into dt, B, and C components, sized according 
to dt_rank and d_state. A selective scan function uses 
these components for efficient state updates, and an out-
projection layer ensures output dimensions match the 
original inputs.

We trained the model using the Adam optimizer 
with a batch size of 32. The training data was parti-
tioned into five subsets for fivefold cross-validation, 
which was used to fine-tune hyperparameters and 
assess model performance as shown in figure 1B. The 
initial learning rate was 1e–4, reduced periodically by 
a factor of 0.1. To address class imbalance, we imple-
mented BCEWithLogitsLoss with a positive weight of 
4.0. Extensive data augmentation techniques were 
applied, including random horizontal flipping, rota-
tions within ±60 degrees, scaling between 0.8 and 1.2, 
and optional elastic deformation to introduce slight 
distortions. The models were trained and assessed using 
a single NVIDIA GeForce RTX 4090 GPU, supported 
by PyTorch V.2.0.0+cu118, CUDA V.11.8, and oper-
ated on an Intel Core i7 CPU with 32 GB of RAM. A 
random seed of 218 ensured consistency across runs. 
The code is publicly accessible at: https://github.com/
Tianchen-​Luo/3D_multi_input_Mamba_NEO.

Comparison with 3D-ResNet, vision transformer and classical 
radiomics models
In addition to the Vision Mamba 3D model, we used two 
prominent deep learning models in the medical field 
for comparison: a multi-input 3D-ResNet28 and a multi-
input Vision Transformer (ViT)29 model, which used the 
same radiomics feature maps and initial CT images as 
our proposed model. The 3D-ResNet model incorporates 
Basic Block 3D layers, each with 3D convolutions and 
batch normalization for feature extraction. The ResNet 
3D structure consists of an initial 3D convolution layer, 
followed by four stages of Basic Block 3D layers with 
spatial downsampling and adaptive average pooling. Each 
3D input is independently passed through the shared 
ResNet-18-based architecture. The features extracted 
from all inputs are concatenated along the feature dimen-
sion and processed through fully connected layers: first a 
layer with 128 units, followed by a final classification layer.

For the multi-input ViT model, this model processes 
multiple 3D input volumes by reducing their dimension-
ality and applying a ViT to each input independently. 
The multi-input ViT model includes an initial 3D convo-
lutional preprocessing stage to reduce input channels. 
This stage consists of 3D convolutions, ReLU activations, 
max pooling, and a 1×1 convolution to reduce channels 
to 3, matching the ViT input requirements. Each prepro-
cessed input is then fed into a pretrained ViT model. 
The 3D inputs are reduced to two-dimensional slices via 
adaptive average pooling, resized to 224×224 dimensions, 
and normalized. The ViT processes these inputs through 
its transformer layers. Outputs from the ViT are concat-
enated along the feature dimension and passed through 
fully connected layers, reducing dimensionality with 
ReLU activation and dropout, culminating in a final clas-
sification layer to make prediction.

Additionally, the performance of the constructed 
model was also compared with the Mamba model trained 
solely on radiomics feature maps (Mamba-Radiomics) or 
CT images (Mamba-CT). Furthermore, a classical radio-
mics model, based on a logistic regression model, was 
constructed for comparative analysis (LR-Radiomics). 
Detailed information on the construction of these models 
is provided in online supplemental method B.

Model interpretation using SHAP values
After completing the model training, we used SHAP 
values to enhance the interpretability of our model.30 
SHAP values assign an importance value to each voxel, 
quantifying their contribution to the model’s predictions. 
The Shapley value for a voxel i is defined as follows:

	﻿‍

ϕi =
∑

S⊆N \
{

i
}

��S��! (��N��− ��S��− 1
)
!��N��!
[

f
(
S ∪

{
i
})

− f
(
S
)]

‍�

where: N is all the voxels in the input images, and ‍S ‍ 
is a subset of voxels excluding ‍voxeli ‍ itself. ‍f

(
S
)
‍ is the 

model prediction using only the subset ‍S ‍ of voxels and 
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‍f
(
S ∪

{
i
})

‍ is the model’s output using the voxels in the 
subset ‍S ‍ plus the ‍voxeli ‍.

We computed SHAP values for each voxel in the selected 
voxel-based radiomics feature maps and CT images to 
generate their corresponding SHAP value maps. Higher 
SHAP values indicated regions that positively contributed 
to the predictions, while lower values indicated less influ-
ential regions. Model interpretability is achieved through 
two primary methods. First, we sum the absolute SHAP 
values across each voxel in the SHAP value map to rank 
the importance of radiomics features in predicting pCR. 
Second, we overlay the SHAP value maps on the original 
CT images to visually identify the regions most valuable 
for the model’s predictions.

Statistical analysis
Patient characteristics were evaluated using SPSS V.27. 
Continuous variables were assessed via the Kruskal-Wallis 
test, while categorical variables were examined using Pear-
son’s χ2 test or Fisher’s exact test. To assess the predictive 
value of clinical parameters, univariable logistic regres-
sion analyses were conducted. Statistical significance was 
set at a p value of <0.05 for two-tailed tests. The perfor-
mance of the models was evaluated based on accuracy, 
AUC, sensitivity, and specificity across all data sets. Survival 
times were estimated using the Kaplan-Meier method, 
comparing patients predicted to achieve pCR versus non-
pCR, as well as those who actually achieved pCR versus 
those who did not. Differences in survival outcomes were 
analyzed using the log-rank test. HRs and 95% CIs were 
estimated using the Cox proportional hazards model.

Survival analysis was conducted using R software V.4.4.1 
with the “survival” package V.3.6.4, and results were visual-
ized using the “survminer” package V.0.4.9. Deep learning 
models were constructed using Python V.3.10.12.

RESULTS
Patient characteristics
This study included a total of 741 patients from three 
institutions, as detailed in the patient selection process 
shown in online supplemental figure 1. The cohort was 
divided into 469 patients in the training set, 118 in test-set 
test-set-1 (internal independent validation set), 120 in 
test-set-2, and 34 in test-set-3. Test-set-2 and 3 served as 
external validation sets. The distribution of patient char-
acteristics is summarized in table 1. The overall rates of 
tumor pCR and R0 resection were consistent across the 
data sets, with a pCR rate of approximately 22% and an 
R0 resection rate of about 94%. Despite this consistency, 
variations were observed in age, gender, Eastern Coop-
erative Oncology Group performance status, tumor 
location, clinical tumor stage, and immunotherapy regi-
mens across the groups (p<0.05). The use of univariate 
logistic regression in the training set did not identify any 
clinical parameters that would be valuable in predicting 
pCR (online supplemental table 2). However, as shown in 
online supplemental table 3, female patients and those 

who received more than two cycles of nICT treatment 
were associated with pCR. There were no statistically 
significant differences in other baseline characteristics 
between pCR and non-pCR patients.

Evaluation and predictive performance of models
A total of six radiomics features, each with an AUC 
greater than 0.6, were selected for inclusion in the 
model, along with the initial CT images (online 
supplemental table 4). The performance of the 
Mamba model is detailed in table  2, demonstrating 
robust predictive capabilities across all data sets, with 
accuracy ranging from 0.83 to 0.91, AUC from 0.83 to 
0.92, sensitivity between 0.73 and 0.94, and specificity 
between 0.84 and 1.0. Notably, the model maintained 
favorable predictive accuracy in the external valida-
tion sets (test-set-2 and 3), which included different 
populations and image acquisition parameters.

To further investigate the influence of input modal-
ities and model construction methods, five different 
models were developed. The predictive performance 
of these models is provided in online supplemental 
table 5. In general, the proposed Mamba model exhib-
ited superior performance across all models. The 
3D-ResNet and ViT models performed similarly to our 
proposed model, but they required longer training 
times. With a batch size of 8 and 469 training samples, 
the Mamba model completed an epoch 53.18% faster 
than the ResNet model and 16.49% faster than the 
ViT model, focusing specifically on the training 
process. Both the Mamba-Radiomics and Mamba-CT 
models, as well as the classical LR-Radiomics model, 
underperformed compared with the proposed model. 
Specifically, the LR-Radiomics model showed signifi-
cantly lower AUC values, ranging from 0.52 to 0.63 
across the external validation sets, alongside reduced 
sensitivity and specificity.

Prognostic value of the Vision-Mamba model
The Vision-Mamba model demonstrated significant 
prognostic stratification capabilities. Kaplan-Meier 
curves based on whether patients actually achieved 
pCR (figure  2A) showed clear stratification in the 
training set, with patients who achieved pCR exhib-
iting better overall survival (OS). However, this 
stratification did not reach statistical significance in 
validation sets. When patients were stratified by the 
model’s predicted pCR status (figure 2B), the differ-
ences in prognosis became even more pronounced, 
although statistical significance was still not achieved 
in validation sets.

Additionally, patients exhibited the most 
pronounced prognostic differences when stratified 
using the median risk score output by the model 
from the training set (−1.2) as a fixed cut-off value 
(figure  2C). In test-set-1 and test-set-3, patients with 
a risk score equal to or greater than −1.2 had signifi-
cantly better OS compared with those with a risk 
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Table 1  Patients clinical characteristics across all data sets

Characteristics
Overall
(N=741)

Training-set
(N=469)

Test-set-1
(N=118)

Test-set-2
(N=120)

Test-set-3
(N=34) P value

Sex 0.034*

 � Female 59 (8.0) 30 (6.4) 8 (6.8) 17 (14.2) 4 (11.8)

 � Male 682 (92.0) 439 (93.6) 110 (93.2) 103 (85.8) 30 (88.2)

Age (median (IQR)) 65.0 (59.0–69.0) 65.0 (59.0–69.0) 66.5 (61.0–70.0) 62.0 (58.0–66.0) 67.5 (59.0–70.0) <0.001*

Smoking status  �   �   �   �   �  0.836

 � Never smoked 241 (32.5) 149 (31.8) 42 (35.6) 38 (31.7) 12 (35.3)

 � Current or former smoker 500 (67.5) 320 (68.2) 76 (64.4) 82 (68.3) 22 (64.7)

Drinking status  �   �   �   �   �  0.011*

 � Never drank 222 (30.0) 126 (26.9) 33 (28.0) 50 (41.7) 13 (38.2)

 � Current or former drinker 519 (70.0) 343 (73.1) 85 (72.0) 70 (58.3) 21 (61.8)

ECOG performance status  �   �   �   �   �  <0.001*†

 � 0 323 (45.7) 155 (33.0) 65 (55.1) 103 (85.8) NA

 � 1 375 (53.0) 306 (65.2) 52 (44.1) 17 (14.2) NA

 � 2 9 (1.3) 8 (1.7) 1 (0.8) 0 (0.0) NA

Tumor location  �   �   �   �   �  0.013*

 � Upper 93 (12.6) 66 (14.1) 12 (10.2) 9 (7.5) 6 (17.6)  �

 � Middle 400 (54.0) 263 (56.1) 64 (54.2) 63 (52.5) 10 (29.4)  �

 � Lower 248 (33.5) 140 (29.9) 42 (35.6) 48 (40.0) 18 (52.9)  �

cT  �   �   �   �   �  <0.001*

 � 1 1 (0.0) 0 (0.0) 0 (0.0) 1 (0.8) 0 (0.0)  �

 � 2 107 (14.4) 88 (18.7) 16 (13.6) 0 (0.0) 3 (8.8)  �

 � 3 586 (79.1) 369 (78.7) 95 (80.5) 97 (80.8) 25 (73.5)  �

 � 4 47 (6.3) 12 (2.6) 7 (5.9) 22 (18.3) 6 (17.6)  �

cN  �   �   �   �   �  0.034*

 � 0 103 (13.9) 57 (12.2) 24 (20.3) 14 (11.7) 8 (23.5)  �

 � 1 373 (50.3) 245 (52.2) 57 (48.3) 56 (46.7) 15 (44.1)  �

 � 2 246 (33.2) 157 (33.5) 33 (28.0) 48 (40.0) 8 (23.5)  �

 � 3 19 (2.6) 10 (2.1) 4 (3.4) 2 (1.7) 3 (8.8)  �

cM  �   �   �   �   �  0.044*

 � 0 726 (98.0) 460 (98.1) 112 (94.9) 120 (100.0) 34 (100.0)  �

 � 1 15 (2.0% 9 (1.9) 6 (5.1) 0 (0.0) 0 (0.0)  �

cTNM stage (AJCC 8th)  �   �   �   �   �  <0.001*

 � I 0 (0.0) 0 (0.0) 0 (0.0) 0 (0.0) 0 (0.0)  �

 � II 151 (20.4) 100 (21.3) 31 (26.3) 11 (9.2) 9 (26.5)  �

 � III 512 (69.1) 340 (72.5) 71 (60.2) 85 (70.8) 16 (47.1)  �

 � IV 78 (10.5) 29 (6.2) 16 (13.6) 24 (20.0) 9 (26.5)  �

Immunotherapy regimen  �   �   �   �   �  0.009*

 � PD-1 699 (94.3) 433 (92.3) 113 (95.8) 120 (100.0) 33 (97.1)  �

 � PD-L1 42 (5.7) 36 (7.7) 5 (4.2) 0 (0.0) 1 (2.9)  �

Chemotherapy regimen  �   �   �   �   �  <0.001*

 � T+P 716 (96.6) 466 (99.4) 117 (99.2) 101 (84.2) 32 (94.1)  �

 � Others 25 (3.4) 3 (0.6) 1 (0.8) 19 (15.8) 2 (5.9)  �

NICT cycle  �   �   �   �   �  <0.001*

 � ≤2 544 (73.4) 390 (83.2) 96 (81.4) 29 (24.2) 29 (85.3)  �

 � >2 197 (26.6) 79 (16.8) 22 (18.6) 91 (75.8) 5 (14.7)  �

R0 resection  �   �   �   �   �  0.468

Continued
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score less than −1.2 (p value<0.05). This stratification 
method outperformed the others, underscoring the 
effectiveness of using the risk score to predict patient 
prognosis.

Univariate Cox regression analysis confirmed that 
actual pCR status, predicted pCR status, and strati-
fication by a risk score of −1.2 were independent 

prognostic factors for OS in patients who underwent 
nICT (p value<0.001) (online supplemental figure 2).

Model interpretation
After analyzing the specific contributions of input 
images (figure  3A and online supplemental table 
4), we found that CT images contributed the most 

Characteristics
Overall
(N=741)

Training-set
(N=469)

Test-set-1
(N=118)

Test-set-2
(N=120)

Test-set-3
(N=34) P value

 � No 46 (6.2) 29 (6.2) 8 (6.8) 9 (7.5) 0 (0)  �

 � Yes 695 (93.8) 440 (93.8) 110 (93.2) 111 (92.5) 34 (100.0)  �

Tumor pCR  �   �   �   �   �  0.143

 � No 579 (78.1) 364 (77.6) 100 (84.7) 92 (76.7) 23 (67.6)  �

 � Yes 162 (21.9) 105 (22.4) 18 (15.3) 28 (23.3) 11 (32.4)  �

ypT stage  �   �   �   �   �  <0.001*

 � 0 168 (22.7) 105 (22.4) 18 (15.3) 33 (27.5) 12 (35.3)  �

 � 1 168 (22.7) 113 (24.1) 21 (17.8) 25 (20.8) 9 (26.5)  �

 � 2 139 (18.8) 88 (18.8) 21 (17.8) 24 (20.0) 6 (17.6)  �

 � 3 263 (35.5) 163 (34.8) 58 (49.2) 37 (30.8) 5 (14.7)  �

 � 4 3 (0.4) 0 (0.0) 0 (0.0) 1 (0.8) 2 (5.9)  �

ypN stage  �   �   �   �   �  0.292

 � 0 421 (56.8) 275 (58.6) 62 (52.5) 62 (51.7) 22 (64.7)  �

 � 1 218 (29.4) 128 (27.3) 41 (34.7) 41 (34.2) 8 (23.5)  �

 � 2 83 (11.2) 50 (10.7) 13 (11.0) 17 (14.2) 3 (8.8)  �

 � 3 19 (2.6) 16 (3.4) 2 (1.7) 0 (0.0) 1 (2.9)  �

ypTNM stage (AJCC 8th)  �   �   �   �   �  0.078

 � I 322 (43.5) 216 (46.1) 43 (36.4) 44 (36.7) 19 (55.9)  �

 � II 100 (13.5) 61 (13.0) 19 (16.1) 18 (15.0) 2 (5.9)  �

 � III 300 (40.5) 176 (37.5) 54 (45.8) 58 (48.3) 12 (35.3)  �

 � IV 19 (2.6) 16 (3.4) 2 (1.7) 0 (0.0) 1 (2.9)  �

s-LN number (median (IQR)) 24.0 (18.0–31.0) 22.0 (17.0–28.0) 25.0 (19.0–35.0) 31.5 (25.0–40.0) 23.0 (14.0–34.0) <0.001*

Survival time (median (IQR)) 672.0 (400.0–
983.0)

620.0 (371.0–
1007.0)

661.5 (608.0–
714.0)

907.5 (580.5–
1094.0)

476.5 (355.0–
766.0)

<0.001*

Data are n (%), unless otherwise stated.
*P value below 0.05 was considered statistically significant.
†P value was calculated comparing the training set, test-set-1 and test-set-2.
AJCC, American Joint Committee on Cancer; cM, clinical metastasis stage; cN, clinical node stage; cT, clinical tumor stage; cTNM, Clinical Tumor-
Node-Metastasis; ECOG, Eastern Cooperative Oncology Group; NICT, neoadjuvant immunochemotherapy; pCR, pathological complete response; 
PD-1 Inhibitor, programmed cell death protein 1 inhibitor; PD-L1 Inhibitor, programmed cell death ligand 1 inhibitor; s-LN number, surgical lymph 
node number, defined as the number of lymph nodes were removed from surgery; T+P, paclitaxel in combination with platinum-based chemotherapy; 
ypN, neoadjuvant pathologic node stage; ypT, neoadjuvant pathologic tumor stage; ypTNM, neoadjuvant pathologic Tumor-Node-Metastasis.

Table 1  Continued

Table 2  The performance of the Mamba model

Data set Accuracy (95% CI) AUC (95% CI) Sensitivity (95% CI) Specificity (95% CI)

Training set 0.91 (0.89 to 0.94) 0.92 (0.90 to 0.95) 0.94 (0.89 to 0.98) 0.91 (0.87 to 0.94)

Test-set-1 0.87 (0.81 to 0.93) 0.83 (0.72 to 0.92) 0.76 (0.68 to 0.94) 0.89 (0.83 to 0.95)

Test-set-2 0.83 (0.77 to 0.90) 0.83 (0.75 to 0.91) 0.82 (0.74 to 0.96) 0.84 (0.77 to 0.91)

Test-set-3 0.91 (0.79 to 1.00) 0.86 (0.73 to 1.00) 0.73 (0.63 to 1.00) 1.00 (1.00 to 1.00)

AUC, area under the curve.
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(46.13%), followed by two radiomics features: glszm_
SmallAreaLowGrayLevelEmphasis (34.97%) and 
gldm_LargeDependenceHighGrayLevelEmphasis 
(18.54%). The remaining four radiomics features 
contributed very little, collectively accounting for 
only 0.36%.

The SHAP value map provided insights into how 
the model made predictions for each patient. In 
figure  3B, CT images were overlaid with the SHAP 
value map, where darker red areas indicated regions 
that contributed more significantly to the model’s 
predictions. On examining the SHAP value maps for 
all patients, we observed that regions with high SHAP 
values included the tumor necrotic region, the tumor 
edge region, and some significantly enhanced regions 
(indicated by the arrows in figure 3B–D).

DISCUSSION
In this study, we developed a deep learning-based model 
for the early assessment of pCR in patients with ESCC 
who received neoadjuvant immunotherapy combined 
with chemotherapy. By integrating voxel-level radio-
mics feature maps and CT images, our model accurately 
predicted pCR, achieving favorable AUC, high accuracy, 
sensitivity, and specificity in one internal independent 
validation cohort and two external independent valida-
tion cohorts. We used a state-of-the-art deep learning 
method, which demonstrated superior performance 
compared with other widely-used deep learning methods 
and conventional radiomics approaches. The integration 
of voxel-level radiomics and initial CT images into a joint 
model yielded the best predictive performance. Further-
more, our model effectively stratified patients into high 

Figure 2  Prognostic stratification performance. (A) Kaplan-Meier (KM) curves for overall survival (OS) stratified by actual 
pathologic complete response (pCR) status in the training set and three independent validation sets (test-set-1, test-set-2, 
and test-set-3). (B) KM curves for OS stratified by the model’s predicted pCR status. (C) KM curves for OS stratified by the risk 
scores output by the model, using a median cut-off value of −1.2 from the training set and applying it to the test sets.
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Figure 3  Model interpretation and feature importance. (A) Contributions of different input features to the model’s predictions. 
(B–D) From left to right, each panel shows an original CT image, the cropped tumor region, the SHAP value map, and the 
overlaid image. The SHAP value maps are overlaid on CT images, with darker red areas indicating regions that contributed 
more significantly to the model’s predictions. (B) The darker red regions, particularly in the tumor necrotic area (indicated by the 
arrow), highlight areas with a substantial influence on predicting pathologic complete response. (C) The darker red regions in the 
tumor edge region indicate significant SHAP values contributing to the model’s predictions. (D) Further visualizations emphasize 
the importance of enhanced regions in the model’s predictions. SHAP, SHapley Additive exPlanations.
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and low-risk groups, and provided an interpretable 
method to visualize the important regions for predictions. 
Collectively, our proof-of-concept study demonstrated 
that the voxel-level radiomics approach, combined with 
deep learning, can enhance the predictive power of CT 
images, advancing the goal of precision treatment strat-
egies in ESCC.

Neoadjuvant chemoradiotherapy has long been consid-
ered the standard of care for locally advanced esopha-
geal cancer, known as the CROSS (Chemoradiotherapy 
for Oesophageal Cancer Followed by Surgery Study) 
protocol.31 However, recent studies focusing on the omis-
sion of radiotherapy have demonstrated better outcomes 
for patients compared with the CROSS protocol. For 
instance, the ESOPEC trial showed that patients treated 
with perioperative chemotherapy had longer OS (66 
months vs 37 months) and comparable pCR rates to the 
CROSS regimen (19.3% vs 13.5%).32 Similarly, the JCOG 
1109 trial revealed that doublet chemotherapy combined 
with radiotherapy did not significantly improve survival 
compared with doublet chemotherapy alone.33 Adding 
immunotherapy has been shown to further improve 
outcomes compared with chemotherapy alone. The 
ESCORT-NEO/NCCES01 trial demonstrated that the 
addition of immunotherapy increased the pCR rate 
significantly (28.0% and 15.4% in the immunochemo-
therapy group vs 4.7% in the chemotherapy group).2 
In comparing nICT with nCRT, Yang et al found that 
the pCR rates were similar between the nICT and nCRT 
groups (20.2% vs 29.0%). However, the nICT group expe-
rienced fewer adverse events (42.7% vs 55.6%) and had 
lower postoperative 1-year distant metastasis and recur-
rence rates.34 Furthermore, Yu et al reported that the 
nICT group had a better 3-year OS rate (91.7% vs 79.8%) 
and 3-year disease-free survival rate (87.4% vs 72.8%) 
compared with the nCRT group.7 In summary, although 
the optimal neoadjuvant treatment strategy remains 
uncertain, current clinical trial evidence and our clinical 
experience suggest that neoadjuvant immunotherapy 
combined with chemotherapy holds significant potential. 
This promising approach underpins the rationale for our 
study.

Our model has three practical clinical implications. 
First, for patients who are highly likely to achieve pCR, we 
may be able to clinically evaluate the feasibility of a watch-
and-wait strategy for organ preservation. This approach 
reduces patient suffering and improves quality of life by 
avoiding unnecessary surgery. Importantly, by ensuring 
high specificity, the model helps accurately identify those 
patients who do not achieve pCR and need timely surgical 
intervention. This avoids the risk of misclassifying non-
pCR patients as pCR, which could delay necessary treat-
ment and compromise long-term outcomes. Second, the 
model provides accurate risk stratification, allowing for 
tailored treatment strategies based on patient prognosis. 
For example, high-risk patients may benefit from more 
aggressive consolidation therapy, while low-risk patients 
can avoid overtreatment. Third, our model can serve as 

a foundational model that can be fine-tuned for other 
treatment strategies such as nCRT. It can assist in selecting 
treatment plans by predicting the likely prognosis of 
patients undergoing different therapeutic approaches.

To the best of our knowledge, this study represents the 
largest artificial intelligence (AI)-aided investigation to 
date predicting pCR in patients with esophageal cancer 
undergoing nICT, encompassing the highest number 
of patients. It was also the first to propose a voxel-level 
radiomics method for constructing a deep learning 
model. Previous studies, such as Li et al’s delta-radiomics 
approach with 95 patients with ESCC, achieved an AUC 
of 0.848.35 Similarly, Yang et al combined radiomics and 
hematological features to construct a model with an 
AUC of 0.934.36 However, these studies were limited by 
small validation sets (eg, 29 samples) or lacked external 
validation altogether. In contrast, our study highlighted 
the poor generalizability and performance of classical 
radiomics in external validation sets. This limitation is 
likely due to the high compression of features in classical 
radiomics, where each feature is represented by a single 
value. Detailed differences in feature distribution, as 
observed in radiomics feature maps, are overlooked. Our 
proposed voxel-level radiomics technique addresses this 
by analyzing subtle feature distributions and leveraging 
deep learning models to explore nonlinear relationships 
and complex interactions between features.

The results demonstrated that our model achieved 
high accuracy, particularly in specificity, across all test 
sets (table 2). However, the sensitivity was lower than 0.8 
in test-set-1 and test-set-3. This may be attributed to the 
smaller number of pCR samples compared with non-pCR 
samples. To address this, efforts should be made to expand 
the data set or employ data augmentation methods specif-
ically for pCR samples to enhance the model’s sensitivity. 
Despite these sensitivity challenges, the model exhibited 
consistent performance across different test sets, indi-
cating good generalizability. Nonetheless, future studies 
could incorporate harmonization methods to further 
improve the model’s generalizability. Regarding prog-
nostic stratification, we found that using the risk scores 
output by the model provided superior prognostic stratifi-
cation compared with using the model’s pCR predictions 
or the actual pCR status (figure 2). A subset of non-pCR 
patients was predicted by the model to achieve pCR. We 
speculate that these might be patients with a major patho-
logical response, although further statistical analysis is 
required to validate this hypothesis. While the median 
cut-off was effective in prognostic stratification, the imbal-
ance between pCR and non-pCR patients in the training 
cohort could have influenced the model’s cut-off value, 
potentially limiting its generalizability when applied to 
the validation cohort. Future studies should consider 
larger data sets and methods to mitigate the impact of 
data imbalance, such as adjusting the cut-off value or 
exploring more sophisticated stratification techniques.

We addressed the interpretability of our model from 
two perspectives. First, we ranked the importance of 
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input features. The raw CT images, containing all avail-
able detailed information, emerged as the most signifi-
cant feature. Additionally, two radiomics features also 
held substantial weight. Based on the definitions of these 
radiomics features, we propose the following hypoth-
eses. The feature glszm_SmallAreaLowGrayLevelEm-
phasis quantifies the prominence of small areas with 
low gray levels in the image, which is likely representa-
tive of necrotic regions within esophageal tumors. This 
hypothesis was supported by our second interpretability 
method, the visualization of SHAP value maps, where we 
observed that necrotic regions significantly influenced 
the model’s predictions. Therefore, we believe that the 
glszm_SmallAreaLowGrayLevelEmphasis feature map 
may reflect tumor necrosis, contributing greatly to the 
prediction of pCR. The feature gldm_LargeDependence-
HighGrayLevelEmphasis quantifies the prominence of 
large, high-gray-level dependencies, which might repre-
sent denser, more continuous regions such as the esoph-
ageal wall. Our SHAP value maps also indicated that 
regions surrounding the esophagus impacted pCR predic-
tions. However, it remains unclear whether this influence 
is due to the esophageal wall itself or areas adjacent to 
the tumor. This speculation requires further pathological 
studies for validation. Moreover, the peritumoral region 
warrants further analysis in future studies.

In this study, we compared the transformer-based 
Vision-Mamba model with ViT and a modified ResNet 
(adapted for 3D data multi-inputs) regarding valida-
tion performance, convergence speed, stability, and 
training efficiency. The Mamba model was selected for 
its superior performance. It excels in handling long 
sequence data through SSMs, making it ideal for 3D 
imaging tasks like CT scans. SSMs process multiple slices 
as sequences, capturing long-range dependencies and 
maintaining data continuity. The bidirectional nature 
of SSMs enhances comprehensive data understanding 
by processing sequences in both directions. The Mamba 
model also offers linear time complexity in sequence 
length, unlike the quadratic complexity in traditional 
transformers like ViT, resulting in faster processing and 
lower computational costs. Compared with ResNet, which 
has deeper networks and more parameters, the Mamba 
model demonstrated faster training speeds and greater 
efficiency in handling large 3D data volumes. Specifically, 
the 3D-ResNet model took twice as long to complete an 
epoch compared with the Mamba model.

This study had several limitations. First, in this study, 
the external validation set is concentrated in one country. 
To validate its generalizability, more cross-country data 
sets are needed. Additionally, we believe that random-
ized clinical trials in real-world settings are the best stan-
dard for testing AI-based models. However, such trials are 
currently constrained by ethical and legal issues that need 
to be addressed. Future rigorous randomized clinical 
trials should test the model’s predictive ability. Second, 
our study did not incorporate biomarkers previously 
thought to predict immunotherapy efficacy, such as tumor 

mutation burden, PD-L1 expression, and combined posi-
tive scores. Due to the financial cost of testing for these 
biomarkers, a subset of patients in our data set did not 
have these biomarkers available. Future studies should 
explore the incorporation of these biomarkers into the 
modeling process. Third, although we conducted an 
interpretability analysis of the model and explored it 
visually, the conclusions drawn are still subjective without 
solid evidence to prove our conjectures. We believe that 
future studies should conduct histological analyses to 
observe and verify the conclusions drawn from radio-
mics. Additionally, comprehensive and stable biomarkers 
may be established by combining macroscopic radiology 
with microscopic pathology. Fourth, the random 8:2 split 
between the training and validation sets was intended to 
provide a representative distribution of cases for model 
training. However, the lower proportion of pCR cases 
in the internal validation cohort (test-set-1) resulted in 
reduced sensitivity, with a value of 0.76, which was below 
the expected threshold. This issue may have arisen due to 
the relatively small number of pCR cases in the validation 
set, combined with the inherent variability in pCR rates 
across different clinical centers. The unequal distribution 
of pCR and non-pCR cases in the validation set highlights 
the challenge of ensuring sufficient representation of 
minority classes in smaller data sets. To address this limita-
tion in future studies, we plan to explore several strate-
gies, such as employing data augmentation techniques 
to better balance the data set, and incorporating more 
diverse data sets from multiple centers to more accurately 
capture the variability in pCR rates across different clin-
ical settings. Finally, while our study has demonstrated 
promising performance, the relatively low number of 
pCR cases in the validation sets, may have resulted in an 
overestimation of the model’s predictive performance, 
as reflected in the AUC values. We acknowledge that the 
imbalance in the pCR and non-pCR patient distribution 
could influence the model’s sensitivity. In future work, 
we aim to expand the sample size and collect more pCR 
cases to improve the model’s sensitivity and offer a more 
balanced evaluation of its performance.

In conclusion, we developed a deep learning model 
to accurately predict pCR after neoadjuvant immu-
notherapy combined with chemotherapy in patients 
with ESCC. This was achieved using a novel voxel-level 
radiomics approach applied to standard diagnostic CT 
images obtained before surgery. Our results underscore 
the potential of this imaging-based biomarker to guide 
precision treatment decision-making. However, further 
validation in large prospective trials is necessary to refine 
these findings and fully assess the clinical utility of our 
proposed method.
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