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Assessing the role of children in the COVID-
19 pandemic in Belgium using perturbation
analysis

Leonardo Angeli 1 , Constantino Pereira Caetano2, Nicolas Franco1,3,
Pietro Coletti 1,4, Christel Faes1, Geert Molenberghs1,5, Philippe Beutels 6,
Steven Abrams 1,7, Lander Willem 6,7 & Niel Hens 1,6

Understanding the evolving role of different age groups in virus transmission
is essential for effective pandemic management. We investigated SARS-CoV-2
transmission in Belgium from November 2020 to February 2022, focusing on
age-specific patterns. Using a next generation matrix approach integrating
social contact data and simulating population susceptibility evolution, we
performed a longitudinal perturbation analysis of the effective reproduction
number to unravel age-specific transmission dynamics. From November to
December 2020, adults in the [18, 60) age group were the main transmission
drivers, while children contributed marginally. This pattern shifted between
January and March 2021, when in-person education resumed, and the Alpha
variant emerged: children agedunder 12 years oldwere crucial in transmission.
Stringent social distancing measures in March 2021 helped diminish the
noticeable contribution of the [18, 30) age group. By June 2021, as the Delta
variant became the predominant strain, adults aged [18, 40) years emerged as
main contributors to transmission, with a resurgence in children’s contribu-
tion during September-October 2021. This study highlights the effectiveness
of our methodology in identifying age-specific transmission patterns.

The COVID-19 pandemic has led to an unprecedented global health
crisis, demanding a detailed analysis of the factors driving its trans-
mission dynamics. As such, social contact patterns, immune response,
and infectiousness showed strong age-related heterogeneity early on
in different contexts1–3. These age-related differences have a critical
impact on transmission and key epidemiological outcomes such as
disease incidence and prevalence, hospitalisation, and mortality4–6.
Understanding the extent to which these differences influence such
vital outcomes is essential for the complex task of developing com-
prehensive policies that address the evolving challenges posed by a
global pandemic like COVID-19. In Belgium, multiple studies7–12 have

underscored the importance of analysing age-specific transmission
patterns to inform effective public health interventions. Our study
aligns with this objective by offering analytical tools that aim to clarify
the role of age in transmission within the complex landscape of evol-
ving Non-Pharmaceutical Interventions (NPIs), vaccination efforts, and
the emergence of virus variants in Belgium. These insights can aid
policymakers in crafting balanced strategies that consider not only
virus containment but also broader societal implications, such as
maintaining economic stability13,14 and safeguarding mental health15,16.
In particular, considering younger populations, it is crucial to weigh
the trade-offs of stringent measures such as extensive school closures
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and lockdowns. While these interventions have proven effective in
reducing transmission and disease prevalence7,9,11,17, research also
highlights their negative impact on children’s mental health and edu-
cational outcomes, particularly for those from socio-economically
vulnerable backgrounds18–21. The resulting stress on parents further
emphasises the need for robust support systems during these
times18,22. We will dwell on the children’s roles in transmission, offering
insights to help balance these trade-offs.

We use data from the CoMix social contact survey7,23,24, a long-
itudinal, multi-country survey capturing the social interactions of
representative samples of individuals including a broad range of
demographic variables such as age, gender, region of residence. Spe-
cifically, we use Belgian data to inform age-specific social contact
matrices over 34 consecutive survey waves from November 2020 to
February 2022.

Our approach integrates the evolutionofpopulation susceptibility,
the emergence of virus variants of concern (VOCs), vaccination rollout,
and the impact of NPIs into the analysis. By longitudinally evaluating
and interpreting sensitivity indices introduced in a related study25, we
aim to clarify the distinct roles of various age groups in virus spread,
with particular emphasis on the evolving role of paediatric populations.
This study is grounded in an age-structured Susceptible, Exposed,
Infectious, and Recovered (SEIR) model8,11, from which we derive our
key analytical tool, the Next Generation Matrix (NGM or K)26,27.

The NGM models how an infected individual from a specific age
group contributes to new infections in the same or different age
groups over successive generations of disease spread26. Each element
kij of the matrix quantifies the expected number of secondary cases in
age group j produced by an infectious individual in age group i. The
spectral radius of this matrix, ρ(K), corresponds to the basic repro-
duction number, R0, which is crucial for understanding the potential
for an outbreak in a fully susceptible population. By updating the NGM
to account for changes in susceptibility over time, our study provides
insights into the variation of the effective reproduction number (Rt)
throughout the study period. The said sensitivity indices are derived
from the sensitivity analysis of Rt as a function of the NGM entries. In
this context, sensitivity analysis refers to using differential calculus to
explore how changes in specific parameters influence a function of
those parameters. However, the term is used to describe a variety of
exercises, with a common example being the testing of findings
robustness against changes in model assumptions. To avoid any con-
fusion, we retain the term sensitivity for the indices but refer to the
process as perturbation analysis throughout the study for clarity.

Unravelling age-specific transmission patterns has posed con-
siderable challenges throughout the pandemic, particularly when it
comes to understanding the role of children. Early studies suggested
that children played a minimal role in transmission compared to
adults2,28. However, this may have been underestimated due to the
higher incidence of asymptomatic or mild cases in children and their
reduced exposure during school closures3,6. Later research highlighted
the noteworthy role of children, particularly in school and household
settings, in virus transmission11,29–32. The spread of more transmissible

variants, such as Alpha33–38, Delta39–43, and Omicron33,44,45 further
increased the prevalence and transmission risk within the paediatric
population globally32,46. Notably, this became more pronounced dur-
ing the phased reopening of schools, with studies revealing a strong
correlation between school operations and broader transmission
dynamics31,47.

Our results build on these findings, highlighting children as
key contributors to transmission during school reopenings and
the relaxation of NPIs. In addition, young adults under 40 con-
sistently played a substantial role, emerging as the main con-
tributors to transmission when averaged over the entire study
period. This study provides a nuanced understanding of how
different age groups have contributed to SARS-CoV-2 transmis-
sion in Belgium over time.

In the following Results section, we highlight key shifts in trans-
mission dynamics resulting from the interaction of behavioural factors
(evolving NPIs and contact patterns) and epidemiological factors
(vaccination and VOCs circulation). We stress that our results are
inherently sensitive to the availability and quality of the data and
parameter estimates that inform the model. In addition to the uncer-
tainty inherent in the social contact data, a limitation of our metho-
dology is the lack of serial serological survey data, would have
enhanced the precision of age-specific susceptibility estimates over
the observationperiod. To address this gap,weemployed an extended
stochastic compartmental model48, calibrated on early pandemic ser-
ological data, COVID-19-related hospitalisations and deaths, to simu-
late susceptibility across age groups. Further methodological details
are available in the Methods Section.

Results
Our analysis explores the role of different age groups in SARS-CoV-2
transmission in Belgium from November 2020 to February 2022. The
population is categorised into nine age groups alignedwith theBelgian
school system. Our observation begins with wave 9 of the CoMix
survey, as earlier waves did not include data on contacts of individuals
under 18 years of age7, a key focus of our study. Data from survey wave
9, collected from November 11 to 18, 2020, reflect the Belgian popu-
lation during the second lockdown, which was implemented on
November 2, 2020, following a peak in infections, hospitalisations, and
deaths around November 449.

Wepresent the results of our analysis on age-specific transmission
dynamics using key indices derived from the NGM, including Cumu-
lative Sensitivity (~sj, t), Infective Value (vj,t), and Cumulative Elasticity
(~ej, t). These indices, summarised in Table 1, provide insights into how
each age group influences Rt and overall transmission. A composite
index, Sj,t, integrates these measures to classify age groups according
to their contribution to transmission over the study period. The sub-
script j indicates the age group and the superscript t indicates the
specific point in time corresponding to each of the consecutive CoMix
survey waves covering the study period (see Table 2).

For a better comparison, age groups are displayed in four quad-
rants in Figs. 1, 2, and 3, based on their cumulative elasticity and

Table 1 | Interpretation of high values for the indices used todefine the role of different agegroups inSARS-CoV-2 transmission

Index Interpretation

Cumulative Sensitivity (~sj, t) High values indicate expected high incidence in this group, at time t; Rt is highly sensitive to changes in infectiousness and contacts
within this group.

Infective Value (vj,t) High values indicate a high force of infection acting on this group, at time t; Rt is highly sensitive to changes in susceptibility and
contacts within this group.

Cumulative Elasticity (~ej, t) High values indicate a high proportional contribution to Rt, at time t, making it highly sensitive to changes in this group’s parameters.

Composite Index (Sj,t) Summarises the role of an agegroup in virus spread at time t; it ranges from0 (all indices of group j are below average) to 3 (all indices
are above average).
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sensitivity values at specific points in time. Each quadrant corresponds
to an epidemiological category that defines the age-specific role
in transmission dynamics. The main Contributors are groups with
above-average cumulative sensitivity and elasticity, indicating the
strongest influence on Rt and key targets for control measures; Effec-
tive Spreaders have above-average cumulative sensitivity but below-
average cumulative elasticity; Incidental Spreaders have above-average

elasticity but below-average cumulative sensitivity; and Marginal
Contributors have below-average values for both indices, playing a
minimal role in transmission. The division of quadrants is based on
average cumulative sensitivity and elasticity values, defined as ~savg = 1
and ~eavg =0:11. Further explanation on the interpretation and deriva-
tion of these indices can be found in the Methods Section and in
the Supplementary Methods.

Table 2 | Evolution of key quantities over time

Age wave 9 wave 10 wave 11 wave 12 wave 13 wave 14 wave 15 wave 16 wave 17 wave 18 wave 19 wave 20

[0,6) 0 0 0 0 2 3 2 2 3 1 0 0

[6,12) 0 0 0 0 2 2 2 2 3 1 0 1

[12,18) 0 0 0 0 1 1 1 0 0 1 0 0

[18,30) 3 3 3 3 3 2 3 2 2 3 3 3

[30,40) 3 3 3 2 1 1 1 2 1 2 3 3

[40,50) 3 3 3 3 1 1 2 1 0 3 3 2

[50,60) 1 3 2 3 1 0 2 3 0 2 3 3

[60,70) 0 0 0 0 0 0 0 0 0 0 1 1

70+ 0 0 0 3 0 0 0 0 0 0 0 0

Stringency index 65.74 63.89 60.19 60.19 60.19 60.19 62.96 62.96 62.96 62.96 70.37 75.93

School & Work (%) 83 67 50 50 50 50 50 50 50 50 83 83

Travel ban & pub. trans-
port (%)

60 60 60 60 60 60 80 80 80 80 80 100

Avg. contacts/day 4.20 4.70 4.74 4.31 5.99 5.67 6.24 4.48 6.25 5.21 4.18 4.21

Avg. contacts/day (-18) 2.86 4.25 3.46 5.08 11.88 11.67 11.37 7.60 12.75 8.59 4.47 4.90

Avg. contacts/day (+18) 4.54 4.82 5.07 4.11 4.48 4.14 4.93 3.68 4.59 4.34 4.11 4.03

Rt (mean) 0.90 0.76 0.77 0.88 1.02 1.09 1.07 1.04 1.04 1.07 1.08 1.01

Date 13/Nov/20 30/Nov/20 11/Dec/20 24/Dec/20 06/Jan/21 20/Jan/21 05/Feb/21 20/Feb/21 02/Mar/21 18/Mar/21 02/Apr/21 16/Apr/21

Age Wave 21 Wave 22 Wave 23 Wave 24 Wave 25 Wave 26 Wave 27 Wave 28 Wave 29 Wave 30 Wave 31 Wave 32

[0,6) 3 1 2 2 0 2 1 0 0 2 3 2

[6,12) 3 2 3 2 2 1 3 0 0 2 3 1

[12,18) 1 1 2 2 2 1 0 0 0 1 0 1

[18,30) 1 3 1 2 1 3 3 3 3 1 0 3

[30,40) 1 3 2 2 3 3 3 3 3 3 2 3

[40,50) 0 2 2 2 0 2 0 3 0 3 0 3

[50,60) 0 1 0 0 0 0 0 2 2 1 0 1

[60,70) 0 0 0 0 0 0 0 2 0 1 0 0

70+ 0 0 0 0 0 0 0 2 0 0 0 0

Stringency index 60.19 50.93 50.93 50.93 50.93 50.93 50.93 47.22 47.22 43.06 43.06 32.18

School & Work 50 50 50 50 50 50 50 50 50 50 50 33.33

Travel ban 60 60 60 60 60 60 60 60 60 60 60 60

Avg. contacts/day 5.43 5.78 5.26 5.55 6.27 5.23 5.20 5.47 5.11 5.61 6.84 6.75

Avg. contacts/day (-18) 11.27 8.79 9.68 8.90 9.65 5.99 5.92 4.73 4.55 8.53 12.09 9.97

Avg. contacts/day(+18) 3.94 5.01 4.13 4.70 5.40 5.04 5.01 5.66 5.25 4.86 5.50 5.93

Rt (mean) 0.90 0.79 0.80 0.92 1.02 1.10 1.10 1.07 1.05 1.04 1.05 1.09

Date 28/Apr/21 16/May/21 28/May/21 12/Jun/21 23/Jun/21 10/Jul/21 24/Jul/21 06/Aug/21 20/Aug/21 03/Sep/21 17/Sep/21 01/Oct/21

Age Wave 33 Wave 34 Wave 35 Wave 36 Wave 37 Wave 38 Wave 39 Wave 40 Wave 41 Wave 42

[0,6) 3 3 0 1 1 0 1 0 3 1

[6,12) 2 3 0 2 1 0 0 0 2 1

[12,18) 1 1 1 2 1 1 1 1 1 1

[18,30) 2 1 3 2 2 3 3 1 3 3

[30,40) 3 3 3 3 3 3 3 3 3 3

[40,50) 3 2 2 2 3 3 3 2 1 3

[50,60) 0 0 2 1 1 3 3 0 1 1

[60,70) 0 0 1 0 0 0 0 0 0 0

70+ 0 0 0 0 0 0 0 1 0 1

Stringency index 32.10 32 31.93 36.83 36.75 33.90 33.87 30.13 30.08 29.85

School & Work 33.33 33.33 33.33 33.33 33.33 33.33 33.33 16.67 16.67 16.67

Travel ban 60 60 60 60 60 40 40 40 40 40

Avg. contacts/day 6.38 6.06 5.32 4.75 4.68 4.33 4.06 4.88 4.31 5.23

Avg. contacts/day (-18) 10.21 10.72 6.35 7.93 6.32 4.23 4.54 5.75 6.95 7.90

Avg. contacts/day(+18) 5.41 4.87 5.06 3.94 4.26 4.36 3.93 4.66 3.63 4.55

Rt (mean) 1.15 1.21 1.21 1.17 1.11 1.05 1 0.96 0.94 0.94

Date 14/Oct/21 29/Oct/21 12/Nov/21 25/Nov/21 10/Dec/21 25/Dec/21 07/Jan/22 21/Jan/22 03/Feb/22 19/Feb/22

The table presents the progression of the Sj,t index across different CoMix survey waves for various age groups, listed in the first 9 rows of each panel. It also includes the stringency index50 of NPIs,
detailing specificmeasures affecting schools, workplaces, travel, and public transport. Average daily contact rates for the overall population, split by adults andminors, are provided, alongwith the
mean Rt values for each wave, estimated from positive PCR tests78. This comprehensive data offers insights into the evolving dynamics of SARS-CoV-2 transmission across demographic segments
over time.
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13/11/20-24/12/20, survey waves 9 to 12
During this period, the stringency of the NPIs in place declined, with
the stringency index50 dropping from65.74 in early November 2020 to
60.19 in late December 2020 (Table 2). This variation corresponds to
the return to in-person education for primary and secondary schools
from November 13, 2020, and the subsequent reopening of non-
essential shops from December 1, 202051. This period saw Rt con-
sistently below 1, indicating a controlled virus spread. Despite the
easing of restrictions, the population-weighted average of daily
reported contacts remained relatively stable, as well as the age-specific
proportion of susceptible individuals (see Table 2 and Fig. 4).
In this context, adults aged 18–60 years emerged as the main con-
tributors to SARS-CoV-2 transmission. The index Sj,t peaked at value 3
for these age groups, due to above-average indices ~ej, t , ~sj, t , and vj,t
(see Fig. 1a).

06/01/21-02/03/21, survey waves 13 to 17
During this time interval, theNPIs remainedmoderately stringent, with
an average stringency index of 61.9 (Table 2). This phase was marked
by the continuation of in-person education, starting January 6, 2021, in
the backdrop of increasing circulation of the Alpha VOC. Notably, the
Rt jumped from0.88 (December 11, 2020) to 1.02 (January 6, 2021). The
population-weighted average of daily contacts rose to a local max-
imum of 6.25 in wave 17 (March 2, 2021), when individuals under 18
years reported an average of 12.75 contacts per day (see Table 2). In
the Supplementary Discussion, we elaborate on how this sharp change
in the contact network supports the emergence of children aged 0 to
12 years as incidental virus spreaders. The cumulative elasticity (~ej, t)
and infective value (vj,t) indices remained above average throughout
this period, as reflected in an Sj,t consistently equal to 2 or higher.
Children’s role in virus transmission was notable in January andMarch

Fig. 1 | Return to school in early 2021.Age-specific cumulative sensitivity (~sj, t) and
elasticity (~ej, t ) values are visualised at times t = 13, 14, 17. These correspond to
different phases: (a) before-school reopenings, (b) after-school reopenings, and (c)
before the Easter break. The quadrants---Main, Incidental, Effective, andMarginal---

reflect the various roles in virus transmission based on cumulative sensitivity and
elasticity values. The size of the dots represents the infective value vj,t, which
averages 0.92 over the observation period.

Fig. 2 | Easter break 2021. Age-specific cumulative sensitivity (~sj, t ) and elasticity
(~ej, t ) values are visualised at times t = 18, 20, 21. These correspond to different
phases: (a) before the Easter Pause, (b) during the Easter Pause, (c) upon control
measures relaxation. The quadrants---Main, Incidental, Effective, and Marginal---

reflect the various roles in virus transmission based on cumulative sensitivity and
elasticity values. The size of the dots represents the infective value vj,t, which
averages 0.92 over the observation period.
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2021, when Sj,t = 3 for t = 14 (January 20, 2021) and t = 17 (March 2,
2021). Specifically, the cumulative elasticity peaks are observed at
~e½0, 6Þ, 14 = 0:32 and ~e½6, 12Þ, 17 = 0:38, as shown in Fig. 1b and c. Children in
the age groups [0, 6) and [6, 12) are classified as main contributors,
respectively. These findings align with a generalised increase in new
cases observed in Belgium from late February onwards52, particularly
in the 6–11 age band (school grades 1–6)46, culminating in a peak at the
end of March.

18/03/21-28/04/21, survey waves 18 to 21
Following the surge in cases andhospitalisations,which peaked in late
March 2021 and largely originated from school and work
settings46,51,52, Belgium implemented a set of stricter NPIs, referred to
as the “Easter Pause”51. During this period, from March 25 to April 19,
2021, the stringency index rose sharply to 75.93 on April 16, 2021
(Table 2). The perturbation analysis identifies adults in the age group
[18, 30) as main contributors to transmission, as shown in Fig. 2a. On
March 18, 2021, the group exhibited an S[18, 30),18 = 3, reflecting a high
proportional contribution to an Rt of 1.07 (~e½18, 30Þ, 18 = 0:29) and a
notably high cumulative sensitivity index (~s½18, 30Þ, 18 = 1:95).

Throughout the Easter Pause (waves 19 to 20), we observe an increase
in all the indices for adults aged 18 to 60 years, while Rt remains above
1 (see Table 2 and Fig. 2b). The easing of restrictions (April 19, 2021),
marked by a drop in the stringency index to 60.19, was driven by a
reduction in Rt below 1, a decline in daily new SARS-CoV-2 cases, and
increased vaccination uptake49,51,52. Following the relaxation of NPIs,
the population-weighted average number of contacts rose from 4.21
(wave 20) to 5.43 (wave 21), with a notable increase in social interac-
tions among individuals under 18 years, who reported an average of
11.27 daily contacts (Table 2). On April 28, 2021, the perturbation
analysis revealed a marked contrast between young adults ([18, 30)
age group) and younger individuals ([0, 12) age group), with a notable
decline in elasticity for the former and a steep rise in cumulative
sensitivity and elasticity for the latter, as shown in Figs. 2c and 5. This
trend is reflected in the values ~e½18, 30Þ, 21 = 0:09, ~e½0, 6Þ, 21 = 0:27, and
~e½6, 12Þ, 21 = 0:38, representing the proportional contributions to anRtof
0.9. At the same time, above-average cumulative sensitivity indices,
allowed us to classify youngsters aged 0 to 12 years as the main
contributors to transmission. Concurrently, Fig. 4 illustrates a
noticeable drop in the age-specific proportion of susceptible

Fig. 3 | Return to school in September 2021. Age-specific cumulative sensitivity
(~sj, t ) and elasticity (~ej, t ) values are visualised at times t = 31, 32, 34. These corre-
spond to different phases: (a) return to school in September 2021, (b) re-opening
pubs and dancing clubs, (c) new wave of contagions in autumn 2021, with a mod-
erate increase in hospitalisations. The quadrants---Main, Incidental, Effective, and

Marginal---reflect the various roles in virus transmission based on cumulative sen-
sitivity and elasticity values. The size of the dots represents the infective value vj,t,
which averages 0.92 over the observation period. Panels (d–f) display the social
contact matrices for the same survey waves. We underline the marginal role of the
[0, 12) group,with their high numberof contactsof anextremely assortative nature.
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individuals aged 60 and above (wave 21). This trend corresponds to a
reduction in the proportional contribution of individuals over 60 to
transmission (see Fig. 5). A deeper exploration of the interplay
between these factors can be found in the Supplementary Discussion
(see Supplementary Fig. 5).

16/05/21- 20/08/21, survey waves 22 to 29
FromMay to August 2021, the gradual relaxation of NPIs continues in
Belgium, as indicated by a further drop in the stringency index (50.9 in
May and 47.2 in August 2021) - see Table 2 and Fig. 6. This phase
initially corresponded with a reduction in transmission levels marked
by an Rt = 0.79 on May 16, 2021(wave 22). However, the Rt increased
consistently and remained above 1 starting June 23, 2021 (wave 25). At
this time in Belgium, the Delta VOC replaced the Alpha VOC as the
predominant circulating SARS-CoV-2 strain. Characterised by
increased transmissibility and potential to evade vaccine-induced
immunity39,41,42, the Delta VOC represented over 50% of the sequenced
new cases at the beginning of July 202153,54. Concurrently, the progress
of vaccination across adult age groups, particularly the accelerated
rollout for young adults ([18, 30)) from early summer 2021, and its
subsequent extension to individuals aged [12, 18) after the EMA
approved the Pfizer/BioNTech vaccine for those over 12 years old49,51,52,
altered the population’s susceptibility profile. Figure 4 shows a steep
decline in susceptibility within the [18, 40) age group during June and
July 2021 (waves 25 to 27) and within the [12, 18) age group between
July and August (waves 26 to 29). By late August 2021, a gradual
rebound in susceptibility is observed across all adult groups, likely due
to waning vaccine immunity and increased susceptibility to the Delta
VOC39–41. During May-June 2021 (waves 22 to 25), individuals aged
[12, 18) exhibited high elasticity and an increasing contribution to
transmission, in contrast to their marginal role until late April (wave
21), as shown in Fig. 5. While this trend coincides with an increase in
observed daily contacts (Supplementary Fig. 13), this alone does not
fully explain the shift in age-specific contribution patterns reflected in
cumulative elasticity indices. Elasticity patterns at waves 14 (Fig. 1b)
and 31 (Fig. 3a) provide a counterexample, demonstrating that the
[12, 18) age group can still play amarginal role in transmissiondespite a

high number of contacts. Further analysis of the cumulative elasticity
gradient with respect to the NGM’s columns suggests that the shift in
socialmixing, alongwith a decreased contribution from the [0, 12) and
[18, 30) groups, may have sustained the dominant role of the [12, 18)
and [30, 40) groups in transmission in late June 2021. Additional details
are provided in the Supplementary Discussion and Supplementary
Fig. 7. On June 23, 2021, the [30, 40) age group exhibited a remarkable
elasticity of ~e½30, 40Þ, 25 = 0:36, coinciding with an Rt above 1. In July
and August 2021, a consistent Sj,t = 3 across waves 26 to 29 highlights
adults in the [18, 40) age group as the main contributors to transmis-
sion. Meanwhile, the [12, 18) age group reverted to a marginal role
(see Table 2 and Fig. 5) and experienced a noticeable decline in sus-
ceptibility starting in late June 2021 (wave 25). However, the shift of
age-specific elasticity during this period was primarily driven by
changes in contact patterns, as discussed in detail in the Supplemen-
tary Discussion (Supplementary Fig. 6).

03/09/21-29/10/21, survey waves 30 to 34
September and October 2021 marked a phase of further relaxation of
NPIs (see Fig. 6), with the stringency index dropping to 32 by October
2021. After school reopened in September, CoMix survey data from
waves 30 to 34 revealed notable variations in daily contact numbers,
particularly among individuals aged under 18 years. Children under 18
years old reported an average of 8.53–12.10 daily contacts, compared
to an average of 4.86–5.93 for adults (see Table 2 and Supplementary
Fig. 13). During this period, adult susceptibility, which had been rising
since July, peaked between September and November 2021 (Fig. 4),
driven by waning immunity and the increasing circulation of the Delta
VOC40. These shifts are reflected in the cumulative sensitivity and
elasticity indices, which highlight children under 12 and adults aged
[18, 50) as the main contributors to SARS-CoV-2 transmission
(Figs. 3 and 5). Interestingly, despite a high overall contact rate within
the [12, 18) age group, its contribution to transmission remained
marginal. This may be attributed to its highly assortative mixing pat-
tern and lower susceptibility, which together likely limited its role
(Fig. 3 and Supplementary Fig. 9b). At the same time, the return to
school coincided with an unprecedented elasticity value of

Fig. 4 | Evolution of the susceptible compartment over time. The curves depict
the estimated daily number of individuals in the susceptible compartment by age
group across the study period. This compartment includes individuals naive to
both infection and vaccination, as well as those in the four compartments of

waning immunity (seeMethods Section for details). The points represent themean
estimates of the age-specific number of susceptibles at each point in the study
period, with shaded areas showing 95% confidence intervals.
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~e½0, 6Þ, 31 = 0:43, making children in the [0, 12) age group the main con-
tributors to transmission on September 17, 2021 (wave 31), when Sj, t
peaked at 3 for j = [0, 6) and [6, 12). From October 1, 2021 (wave 32),
further easing of NPIs, including the reopening of pubs and dance
clubs51, corresponded with a shift in transmission dynamics. Adults
aged [18, 50), particularly the [30, 40) group, had the highest pro-
portional impact on Rt, joined later by children in the [0, 12) age group
on October 29, 2021 (wave 34) (Fig. 3). Defining age-specific con-
tributions to Rt using cumulative elasticity is valuable, especially when
Rt exceeds 1, as it signals potential exponential growth. This was the
case during this period, with Rt peaking at 1.2 in late October and early
November 2021. The analysis indicates that interventions targeting
children under 12 years had a high potential to reduce Rt. For example,
a hypothetical 14% reduction in the number of susceptibles in the
[6, 12) age group at the start of the school year (wave 31) would have
lowered Rt just below the critical threshold of 1 (Supplementary Fig. 8).

12/11/21- 04/03/22, survey waves 35 to 42
The stringency of NPIs slightly increased betweenmid-November 2021
and early January 2022 due to new restrictions aimed at reducing the
winter burden on the healthcare system, triggered by increased hos-
pital admissions51,52. This led to a general reduction in social contacts,
although individuals under 18 years of agemaintained a relatively high
level of contact until November 10, 2021 (wave 37) (Table 2). Con-
currently, the Belgian government expedited administering a third
vaccine dose, starting in early October 2021, to increase coverage
among vulnerable and over-65-year-old individuals before Christmas.
This is reflected in a gradual decline in age-specific curves of the sus-
ceptible population, counteracting the previously observed rebound
(Fig. 4). Our perturbation analysis describes a notable change in SARS-
CoV-2 transmission dynamics during this period. Children’s contribu-
tion to transmission became marginal, while adults, especially those
aged [30, 40), assumed a sustained dominant role. Table 2 shows a

Fig. 5 | Age-specific elasticity evolution: children (top), adults (middle), elderly
(bottom). On the top x-axis, we report the sequence of CoMix waves; on the
bottom x-axis, the corresponding calendar date. On the y-axis, we display the
corresponding value of the elasticity indices relative to each of the age groups
considered, together with the stringency index50 indicating the severity of the
social distancing policies in place: here the index is rescaled such that themaximal
level of stringency is 1. The dashed horizontal line marks the value 0.11 for the

elasticity, i.e., average contribution to Rt. In addition, the effective reproduction
number (Rt) is plotted in solid black and on a different scale indicated by the
secondary y-axis (right); the solid horizontal black line indicates the critical
threshold 1. A bar just above themain x-axis indicates the emerging VOCs of SARS-
CoV-2. The lengthof every colouredbar represents theperiodof timeduringwhich
the corresponding VOC was detected in more than 50% of the sequenced SARS-
CoV-2 infections.
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consistent S[30, 40),t = 3 during this period, highlighting the above-
average cumulative elasticity of this group (Fig. 5) and sensitivity
(Supplementary Fig. 14). At wave 40 (January 21, 2022), the Omicron
VOC, characterised by increased transmissibility44,45, was the dominant
strain, accounting for 99.7% of sequenced cases50,53. At this time, the
perturbation analysis identified adults aged [30, 40) as the main con-
tributors to transmission. This is emphasised by a peak elasticity value
of ~e½30,40Þ, 40 =0:36. Figure 4 illustrates a marked decrease in the
number of susceptibles from January 7, 2022 (wave 39), coinciding
with a surge in infections across all age groups49,52. A notable exception
is observed in adults over 60 years old, who received booster vacci-
nations early on. For this group, a linear increase in susceptibility
coincides with the emergence of the Omicron VOC, possibly reflecting
immunity waning combined with the immune evasion features of the
variant45,55.

Discussion
This study examines how age-specific susceptibility, vaccination cover-
age, social behaviour, and NPIs shaped SARS-CoV-2 transmission
dynamics in Belgium. By conducting a longitudinal perturbation analysis
of the NGM, we provide insights into the role of different age groups
over time, offering a valuable tool for targeted pandemic management.

In our study, children aged [0, 12) emerged among the main
contributors to SARS-CoV-2 transmission at specific periods, particu-
larly in early 2021 and September-October 2021, contrasting with their
marginal role during the early pandemic stages2,25,28. The said periods
coincided with school reopenings, high contact rates, and delayed
vaccination efforts for young children, while other age groups bene-
fited from prior immunity through infection or vaccination.

We emphasise that our analysis offers a relative measure of age-
specific contributions to transmission, capturing the dynamic inter-
play between susceptibility, contact rates, and immunity at each
observation point. Vaccination efforts targeting older populations can
increase the relative susceptibility of children, amplifying their role in

transmission when combined with high contact intensity. Even with
stable overall susceptibility of younger groups, local factors such as
immunity waning in the population or the emergence of VOCs can
significantly enhance children’s influence during specific periods.

Moreover, by the mathematical definition of the indices
employed in our analysis, children emerged as potential optimal tar-
gets for intervention during specific moments. Their above-average
cumulative sensitivity and elasticity indices suggested that changes in
their epidemiological parameters were expected to produce larger
fluctuations in Rt, particularly when it exceeded the threshold value of
1. This pattern was evident at the beginning of 2021, coinciding with
the resumption of face-to-face education in primary and secondary
schools. The observed fluctuation in the elasticity of children aged
[0, 12) years coincided with shifts in contact patterns (Supplementary
Figs. 3 and 13). A similar trend was noted between April 28 and June 12,
2021, following the relaxationofNPIs after Easter.However, during this
period, the estimated Rt based on confirmed cases remained safely
below the value 1. Children again emerged as main contributors to
transmission in September and October 2021, coinciding with another
rise inRt above 1 (Fig. 3). Here, while their high daily contact rates were
a factor, the evolving immunity landscape—shaped by the vaccination
campaign and the circulation of new viral variants—also played a cru-
cial role in redefining the transmission hierarchy among age groups
(see Supplementary Fig. 9). Throughout the study period, high daily
contact numbers reported by children aged up to 12 years often
aligned with their increased contributions to virus transmission (as
indicated by high elasticity values). However, this relationship is not
always straightforward. For instance, the [12, 18) group reported con-
sistently high contact rates but contributed marginally to transmis-
sion, except during late May-June 2021. During this period, increased
disassortativemixing of this groupwith adults (Supplementary Fig. 7d)
corresponded with infective values v[12, 18),t above average (Supple-
mentary Fig. 15). This observation aligns with our mathematical char-
acterisation of the dominant left eigenvector (v) components as the

Fig. 6 | Timeline of the main NPIs in place in Belgium throughout the observation period. The red dashed line corresponds to the average stringency index50.
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gradient of Rt with respect to the NGM’s rows, which directly involve
the group’s contact structure. High infective values indicate age
groups with a greater per-susceptible risk of initiating transmission
chains, driven by this strong behavioural component. In addition,
variations in age-specific susceptibility strongly influence changes in
the NGM rows. We consistently observed higher-than-average vj,t
values for the [0, 6) and [6, 12) age groups, underscoring the critical
need for focused screening and contact tracing in younger age groups
to effectively mitigate transmission, as supported by other
research11,29,46.

Understanding immunity changes within these age groups is cru-
cial for controlling transmission dynamics. Our simulations indicated
that before the vaccination campaign in December 2020, children
under 18 had approximately half the susceptibility of adults, consistent
with studies linking age-related susceptibility increases to stronger
initial antibody responses in younger individuals1,5,10,56,57. Our sensitivity
indices identified children in the [0, 12) age group among the main
contributors to virus transmission between January and March 2021.
This period coincided with the Alpha VOC becoming the dominant
strain inBelgium,whichhas been associatedwithhigher transmissibility
and increased susceptibility in younger populations36–38. Similarly, this
group of children exhibited an above-average proportional contribu-
tion to transmission between September and October 2021, when the
Delta VOC—characterised by higher Rt, increased hospitalisations, and
vaccine-evasive properties40,41,58,59—was the predominant circulating
variant. By July 2021, vaccination in Belgium had been extended to
adolescents aged 12 years and older, but younger children remained
unvaccinated until early 2022, leaving them relatively more susceptible
and influential in transmission dynamics. In the Supplementary Dis-
cussion (Supplementary Figs. 8 and 9), we apply perturbation analysis
to demonstrate that earlier vaccination of the [0, 12) age group could
have played a key role in reducing Rt, potentially helping to keep it
below the value 1. However, during this period, while vaccines were
confirmed to be safe for children aged 5 to 11 years60,61, emerging data
and public caution—partially fuelled by reports of adverse events62,63—
contributed to delays in vaccination rollout for this age group.

Adults aged [18, 60) consistently exhibited high cumulative sen-
sitivity indices, reflecting their larger pool of susceptibles and above-
average q-susceptibility and q-infectiousness (Supplementary Table 3
and Supplementary Fig. 14). Within this group, young adults aged
[18, 30) were among themain contributors to transmission formost of
the observation period, particularly during the rise in hospitalisations
observed inMarch 2021. This dynamic shifted with the introduction of
stricter NPIs across Easter (March 31 toApril 19), coincidingwith a drop
in Rt below 1 and a decline in the [18, 30) group’s cumulative elasticity,
which fell below average for the first time by the end of April
2021 (Fig. 5).

The emergence of new VOCs, ongoing vaccination efforts, and the
easing of NPIs—along with corresponding shifts in contact patterns—
created an intricate landscape of transmission dynamics. Our analysis
helped identify that, from late June 2021, as the Alpha strain was
replacedby theDeltaVOC, the [18, 40) age groupplayed a crucial role in
sustaining virus spread. Within this group, the [30, 40) age group
emerged as a main contributor, a role that became even more pro-
nouncedby theendofDecember 2021when theOmicronVOCreplaced
Delta as thedominant strain. Throughout this period, the [30, 40) group
consistently exhibited high elasticity and infective values, surpassing
younger age groups in their impact on transmission (see Fig. 5).

Our analytical approach leverages extensive data collected during
theCOVID-19 pandemic, capturing the evolving transmission dynamics
from November 2020 to February 2022. The social contact data from
this period provided the interaction network between age groups,
while epidemiological parameter estimates determined the likelihood
that each interaction resulted in a new infection. This framework
shaped the role of each age group in overall transmission. Through our

perturbation analysis, we developed indices that capture the hierarchy
of these roles, summarising how changes in contact patterns, NPI
stringency, age-specific susceptibility, and Rt influenced the contribu-
tions of different age groups to virus spread. At the same time, the
somehow inverse analysis of pinpointing specific causes behind shifts
in these indices is inherently challenging due to the constantly evolving
NGM’s structure. In the Supplementary Discussion, we present addi-
tional theoretical tools (detailed in the Supplementary Methods) that
provide valuable insights into our case study and may serve as a basis
for future research into these dynamics. Specifically, applying differ-
ential calculus to the sensitivity indices allows for a deeper examination
of the factors driving age-related transmission patterns.

While our study offers an unexplored perspective on epidemic
observation, several other studies have employed social contact data
and the next-generation matrix approach to explore the effects of NPIs
on age-specific transmission dynamics across various countries. In the
UK context, multiple studies64–66 have shown that young adults aged
20–50 years were the primary contributors to virus transmission over-
all. However, the role of children, particularly those aged 5–17 years,
became increasingly important when schools were open. Notably, the
reopeningof schools after prolonged restrictionswas identified as a key
driver of transmission increases in these studies. Similarly, studies in the
Netherlands67 and Italy68,69 found that reduced school contacts among
children aged 0 to 17 years were pivotal in controlling virus spread
during closures and driving transmission after reopening. In Canada70

and South Korea71, school closures, alongside social distancing, were
highly effective in reducing transmission. InChina72,73, prolonged school
closures kept the role of the [0, 18) age group minimal, with their
relative contribution to virus transmission being much lower than that
of the age group of adults [30, 60) during the spread of Omicron var-
iants fromMarch to June 2022. These studies support our findings and
emphasise the critical need to accurately assess the impact of different
age groups on transmission dynamics when designing control policies.

Finally, it is essential to acknowledge the limitations of our study,
which may influence the interpretation and generalisability of our
findings. One key limitation is the resolution of available data. Our age
structure, aligned with Belgium’s educational settings, relies on multi-
ple data sources to informage-specific epidemiological parameters1,8,10.
However, in early epidemic stages, such detailed data may be
unavailable17, limiting the generalisability of our approach to other
contexts and the possibility of reconstructing finer age structures from
social contact surveys74. On the other hand, efforts to reconstruct
social contact data on a finer time scale75 would enhance the potential
of our linear analysis25,76. This is particularly crucial when social contact
patterns change rapidly, such as with new NPIs or seasonal shifts, an
aspect not explicitly addressed in our study. Another limitation con-
cerns data uncertainty and its impact on our results in a heterogeneous
framework like ours. Reporting biases, sampling errors, and selection
biases can affect the age-specific representativeness of social contact
data12. A recent study emphasised the importanceof accounting for the
frequency and repetitiveness of contacts, as these factors can sig-
nificantly influence epidemic dynamics75. Uncertainty in contact pat-
terns, susceptibility estimates, and the parameters informing our NGM
likely affect the statistical significance of detected age-specific differ-
ences. Future work should include comprehensive error propagation
analysis while considering contact correlationswithin and between age
groups12,77. Nevertheless, while our approach operates in a determi-
nistic fashion byway of average values, it lays the foundation for future
explorations employing perturbation analysis coupled with stochastic
models. This creates a pathway for more robust, uncertainty-
accounting studies, aligning our approach with evolving needs in
pandemic response. The present study focuses on SARS-CoV-2 trans-
mission in Belgium, though the flexibility of ourmethodologymakes it
applicable to a wide range of infectious diseases where transmission is
tied to contact rates. This adaptable approach offers a valuable tool for

Article https://doi.org/10.1038/s41467-025-57087-z

Nature Communications |         (2025) 16:2230 9



analysing disease dynamics and has broad relevance in epidemiology
and public health management.

Methods
Overview
Our research expands upon the concept of NGMperturbation analysis25

by conducting a longitudinal study. We examine dynamic shifts in the
epidemiological landscape across distinct time points, from November
2020 to March 2022. The proposed approach allows us to monitor the
changes in sensitivity indices over time. The time points in our study
align with 34 consecutive waves of social contact data collection24,
gathered from a representative sample of the Belgian population. For
in-depth information, refer to the “Social Contacts” section below. The
analysis in our study is executed at each time point through a two-step
procedure. Initially, wederive the next generationmatrix26 froman SEIR
compartmental model8,48, which was designed to capture the spread of
SARS-CoV-2 in Belgium. Within this framework26,27, the NGM is repre-
sented as a square matrix whose dimensions depend on the infectious
states considered in the system, in this case, the age groups. Impor-
tantly, the spectral radius of the NGM indicates the outbreak potential,
equivalent to the average number of secondary infections caused by a
typical infected individual while infectious. In a fully susceptible popu-
lation, this represents the basic reproduction number; otherwise, it
reflects the effective reproduction number (Rt). The NGM in our study
incorporates the latest data on age-specific social contacts, the count of
susceptible individuals per age group, and the Rt derived from available
PCR test-based estimates78. Specifically, the effective reproduction
number at each time step is the arithmetic mean of the daily Rt esti-
mates over a 7-day period centred on the date of the corresponding
social contact survey wave. This ensures that the NGM’s dominant
eigenvalue matches the observed Rt values, avoiding reliance on Rt
estimates directly derived from the SEIR model simulations. Impor-
tantly, this calibration choice does not affect our perturbation analysis,
as the sensitivity indices defined in our study are invariant under the
multiplication of the NGM (and the Rt) by a nonzero scalar.

The SEIR model further provides a robust framework for recon-
structing the evolving age-specific susceptibility8,48. By accounting for
various forms of protection, including natural infection, vaccination,
and the impact of viral variants of concern (VOCs), it successfully
integrates heterogeneous data sources—such as hospitalisation, ser-
oprevalence, and PCR positivity data—to reliably capture epidemic
trends in Belgium. In the second step, the epidemiological character-
isation from the first step is employed to conduct a longitudinal per-
turbation analysis. This process enables us to analytically quantify how
local variations in the parameters of the NGM entries influence the Rt.
Changes in epidemiological parameters may be due to variations in
NPIs, viral mutations, shifts in contact behaviour, depletion of sus-
ceptibles from natural infection progression, and the effects of vacci-
nation campaigns.

Social contact data
The core assumption underpinning the calculation of changes in
infected host numbers due to virus transmission relies on the social
contact hypothesis79. According to this hypothesis, the number of
secondary infections an infected individual generates is proportional
to their social contacts. The proportionality constant (indicated as q)
and the definition of relevant contact hinge on the specific pathogen
under consideration. A contact qualifies as either a face-to-face con-
versation of at least a few words or skin contact, aligning with the
definitions used in the principal studies on social contacts in
Belgium7,24. Our study employs social contact data derived from 34
consecutive waves of the CoMix survey conducted in Belgium from
November 2020 to March 2022 amid the COVID-19 pandemic. The
surveywaves were collected every twoweeks. Participants logged their
daily contacts detailing the type, location, and age of the person

contacted. The data were subsequently processed and stratified by age
using the open-source tool SOCRATES23,24. Social contacts shape the
structure of the next-generation matrix, influencing its overall struc-
ture. From the CoMix survey, we obtain the average daily number of
contacts that an individual of a particular age (i)makes with individuals
of age (j), denoted by mij. This information helps us construct the
pivotal social contact matrix. Subsequently, we process these matrices
further to:
i. Meet the reciprocity constraint. Given the nature of the contacts

considered, the total number of contacts between two age groups
(i and j) should be the same whether derived from mij or mji. In
simple terms, Nimij =Njmji, where Ni and Nj are the number of
individuals in each age group considered.

ii. Account for the impact of participation fatigue, particularly in
longitudinal studies engaging participants over extended periods.
A recent study12 conducted on CoMix survey data collected in
Belgium revealed that individuals participating in multiple survey
waves tended to under-report the number of their daily contacts,
indicating a potential impact of participation fatigue on the
accuracy of the data collected. In the current research, we
incorporate the adjustments suggested by the aforementioned
study to correct for this bias. This involves adapting the social
contactmatrices according to thewave and ageof the participants.

iii. Account for the impact of symptom onset on the infected indi-
viduals’ level of social interaction, particularly in non-household
environments. This acknowledges that symptoms typically reduce
social contacts80, notably influencing the virus transmission
dynamics. We refer to the Supplementary Methods for further
details.

Model choices and calibration
Crucial to our analysis is the derivation of the NGM from the chosen
compartmental model describing disease dynamics. We consider an
age-structured Susceptible, Exposed, Infectious, and Recovered (SEIR)
model developed by Abrams et al.8, categorising individuals into ten
age groups, each spanning ten years. To align with our specific age
partitions,Ω = [0, 6), [6, 12), [12, 18), [18, 30), [30, 40), [40, 50), [50, 60),
[60, 70), [70, ∞), we adjust these groups, assuming that the distribu-
tion within overlapping intervals reflects the demographic composi-
tion. This adjustment is particularly important for those under 18
years, mirroring divisions within the Belgian school system. This age
structure is matched by age-specific estimates of key epidemiological
parameters, such as q-susceptibility (the probability of a susceptible
individual becoming infected after close contact) and q-infectiousness
(the probability of an infected individual transmitting the virus during
close contact). Thesequantities, as in Francoet al.10, aredefinedup to a
constant q which is calibrated at each observation point so that the
NGM dominant eigenvalue matches the value of Rt estimated from
positive PCR tests78. Transition rates through the different infectious
states after exposure are alsomodelled according to this age structure
(more details in the Supplementary Methods). The model tracks the
progression from a susceptible state (S) to an exposed state (E) upon
effective contactwith an infectious person. After exposure, individuals
enter a pre-symptomatic infectious state, followed by either a symp-
tomatic or asymptomatic state before recovery. Symptomatic cases
may progress to severe illness, potentially leading to hospitalisation or
ICU admission. Although the model includes disease-related mortality
in hospitalised cases, these factors do not affect the NGM structure. It
is the choice of infected and infectious compartments and the specific
age structure that defines the NGM26. The NGM’s formulation depends
on parameters governing transmission (the force of infection) and
transitions between various infectious states (occupancy time in each
state). Pre-infectious and post-infectious states are irrelevant to the
NGM’s formulation; hence, using a different model (e.g., SIR) with the
same age structure and infectious state choices would yield an
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identical NGM. However, it is important to consider the complete
model structure when extending our perturbation analysis over time.
Since we don’t have comprehensive serological data for Belgium, we
use numerical simulations to track the age-specific changes in the
susceptible population. This, in turn, affects the structure of the NGM
and, consequently, the sensitivity indices. To this end, we use the
estimated susceptibility from an SEIRS model developed by Willem
et al.48, extending the original SEIRmodel8 to include VOCs circulation,
vaccination uptake, and waning immunity. The model uses a stochas-
tic, binomial chain approach to simulate epidemic progression in
discrete generations, with a time resolution of 0.25 days. It specifically
accounts for VOC-related changes in transmissibility, hospitalisation
risk, and latency period. The model also uses the same social contact
data from CoMix surveys to estimate age-specific proportionality
factors that translate reported contact rates into transmission rates
(under the social contact hypothesis79). Susceptibility in our frame-
work is based on four distinct immune states representing combina-
tions of infection history and vaccination status, as outlined byWillem
et al.48 and better detailed in the Supplementary Methods. Individuals
are considered susceptible if they have never been infected or vacci-
nated or have waning immunity. The model transitions individuals
from full protection to susceptibility over time, reflecting the gradual
decrease in immunity (see Supplementary Table 4). This approach
ensures that susceptibility estimates reflect the dynamic nature of
population immunity during the pandemic. To effectively integrate
various data sources that became available at different stages of the
pandemic in Belgium, the model calibration employed a multi-step
Bayesian approach with Markov ChainMonte Carlo (MCMC) sampling
using 60 chains. Each step focused on different time horizons and
specific parameters, which were sequentially updated based on pre-
vious calibration results. Transmission-related parameters were initi-
ally estimated using data from hospital admissions49, early
seroprevalence data (available up to October 17, 2020)81, and genomic
surveillance data for Belgium53. Subsequently, parameters affecting
hospital and ICU occupancy were estimated by minimising a least
squares criterion, ensuring the best fit between observed and simu-
lated hospital loads. Lastly, mortality-related parameters were refined
to account for COVID-19-related deaths in hospitalised patients. From
60 MCMC chains, the 40 best-fitting parameter sets were selected
based on their agreement with observed data. For each of these sets,
10 stochastic realisations were performed, resulting in 400 estimates
of age-specific susceptibility over 730days (March 1, 2020, to February
28, 2022). The daily age-specific number of susceptible individualswas
then calculated as the mean across these estimates. A comprehensive
explanation of the model, the calibration process and the result of the
calibration are provided inWillem et al.48, especially within the related
Supplementary Information.

Next generation matrix analysis
In our analysis, we utilise sensitivity indices to elucidate the roles of
different age groups in SARS-CoV-2 transmission dynamics. These
indicesmeasure the impact of epidemiological changes on the effective
reproduction number (Rt), as resulting from the next generationmatrix
(NGM). They are grounded in the concept of classical sensitivity index
(∂Rt/∂kij= sij), which assesses the rate of change in the NGM’s spectral
radius due to a variation in a single matrix entry76. The epidemiological
implications of these indices are further explained, and their mathe-
matical foundations are detailed in the Supplementary Methods.

Key indices include:
• Cumulative Sensitivity (~sj, t): This indexmeasures the impact on Rt
resulting from changes in how a single index case in age group j
transmits the infection, at time t. Higher ~sj, t values signify a
greater sensitivity of Rt to secondary infections from a single
infected individual in age group j, thereby identifying effective
spreaders in the current infected generation. Each index ~sj, t is

proportional to the relative incidenceof the infection in agegroup
j, as elaborated in the Supplementary Methods.

• Cumulative Elasticity (~ej, t): This index quantifies the proportional
contribution to Rt of an age group j in the current generation
(assumed to start at time t). High indices pinpoint age groups that
substantially contribute to the overall disease propagation and for
which proportional variations in the epidemiological parameter
set translate into higher proportional shifts of Rt.

• Infective Value (vj,t): This index quantifies the impact on the Rt

following a perturbation in either the force of infection exerted
on individuals in age group j or their susceptibility, at time t. Each
vj,t corresponds to the influence a single new case in age group j
has on the number of new infections in each future generation.
Specifically, one new case in age group j is expected to increase
the overall infection count by Rtvj,t in the next generation of
infections, and by Rm

t vj, t after m generations25. Higher values
identify age groups with a higher potential for initiating trans-
mission chains.

A composite index, Sj,t, combines the above indices to provide a
comprehensive view of each age group's contribution (j) to virus
propagation at specific times (t), aligned with CoMix survey waves.
This index is derived as the sum of 3 Boolean values, specifically:
1. ~ej, t >

1
n;

2. ~sj, t >~savg Or vj,t > vavg;
3. ~sj, t >~savg & vj,t> vavg.

Condition 1 indicates that the age group j’s contribution to Rt (as
represented by ~ej, t) exceeds 11%, corresponding to the average
cumulative elasticity value with n = 9 age groups (∑j ~ej, t = 1, see Sup-
plementary Methods). Conditions 2 and 3 assess whether the cumu-
lative sensitivity index~sj, t and the infective value index vj,t surpass their
respective average values, ~savg and vavg, calculated as the mean of the
arithmetic averages of these indices across all survey waves.
Throughout the 34 CoMix waves, we note ~savg = 1ð0:98, 1:03Þ and
vavg =0.93(0.90, 0.95), indicating the 99% confidence intervals. The
resulting Sj,t index, varying from0 to 3, allows us to deduce the relative
transmission roles of different age groups at specific times. A value of
Sj,t = 3 indicates a distinctly above-average transmission role, as seen in
Table 2. More specifically, individuals in such a high-index age group j
are primary contributors to overall virus transmission, likely to drive
notable variations in Rt upon experiencing age-specific epidemiological
changes (such as through NPIs or vaccination), and possess a higher
potential to initiate transmission chains when exposed to infec-
tion risks.

Reporting summary
Further information on research design is available in the Nature
Portfolio Reporting Summary linked to this article.

Data availability
The datasets analysed in the current study are available in the Zenodo-
based repository82, https://zenodo.org/records/10549953, as well as
through the CoMix-Socrates App https://socialcontactdata.org/tools/.

Code availability
The analysis and results presented in this study are fully reproducible
using the R code provided in the following GitHub repository: https://
doi.org/10.5281/zenodo.1477739283. All scripts were developed in R
version 4.3.0 (2023-04-21 ucrt).
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