
NAR Genomics and Bioinformatics , 2025, 7 , lqaf015 
https://doi.org/10.1093/nargab/lqaf015 
High Throughput Sequencing Methods 

Polyt ect: an aut omatic clust ering and labeling method f or 

multicolor digital PCR data 

Yao Chen 

1 , 2 , 3 , * , Ward De Spiegelaere 

1 , 3 , 4 , Wim Trypsteen 

1 , 3 , 4 , 5 , 6 , Jo Vandesompele 

1 , 4 , 5 , 6 , 7 , 

Ger tjan Wils 

7 , Da vid Gleerup 

1 , 3 , 4 , Ant oon Liev ens 

1 , Olivier Thas 

1 , 2 , 8 , 9 , * 

,† , Matthijs Vynck 

1 , 3 ,† 

1 Digital PCR Center (DIGPCR), Ghent University, 9820 Merelbeke, Belgium 

2 Department of Mathematics, Computer Science and Statistics, Ghent University, 9000 Ghent, Belgium 

3 Department of Morphology, Medical Imaging, Orthopaedics, Physiotherapy and Nutrition, Ghent University, 9820 Merelbeke, Belgium 

4 Cancer Research Institute Ghent (CRIG), Ghent University, 9000 Ghent, Belgium 

5 Department of Biomolecular Medicine, Ghent University, 9000 Ghent, Belgium 

6 OncoRNALab, Ghent University, 9000 Ghent, Belgium 

7 pxlence, 9000 Ghent, Belgium 

8 I-BioStat, Data Science Institute, Hasselt University, 3590 Hasselt, Belgium 

9 National Institute for Applied Statistics Research Australia (NIASRA), University of Wollongong, NSW 2522, Australia 
* To whom correspondence should be addressed. Email: yao.chen@ugent.be 
Correspondence may also be addressed to Olivier Thas. Email: olivier.thas@uhasselt.be 
† The last two authors should be regarded as Joint Last Authors. 

Abstract 

Digital polymerase chain reaction (dPCR) is a state-of-the-art targeted quantification method of nucleic acids. The technology is based on massive 
partitioning of a reaction mixture into individual PCR reactions. The resulting partition-le v el end-point fluorescence intensities are used to classify 
partitions as positive or negative, i.e. containing or not containing the target nucleic acid(s). Many automatic dPCR partition classification methods 
ha v e been proposed, but they are limited to the analysis of single- or dual-color dPCR data. While general-purpose or flow cytometry clustering 
methods can be directly applied to multicolor dPCR data, these methods do not exploit the approximate prior knowledge on cluster center 
locations a v ailable in dPCR data. We present Polytect, a method that relies on crude cluster results from flo wPeaks, pre viously sho wn to 
offer good partition classification performance, and subsequently refines flowPeaks’ results by automatic cluster merging and cluster labeling, 
exploiting the prior knowledge on cluster center locations. Comparative analyses with established methods such as flowPeaks, dpcp, and 
ddPCRclust re v eal that Polytect often surpasses established methods, both on empirical and simulated data. Polytect manages to merge e x cess 
clusters, while also successfully identifying empty clusters when fe w er than the maximally observable number of clusters are present. On par 
with recent de v elopments in instruments, Polytect e xtends be y ond tw o-color data. T he method is a v ailable as an R package and R Shiny app 
(https: // digpcr.shin y apps.io / Polytect / ). 

Gr aphical abstr act 

Received: September 20, 2024. Revised: February 8, 2025. Editorial Decision: February 12, 2025. Accepted: March 3, 2025 
© The Author(s) 2025. Published by Oxford University Press on behalf of NAR Genomics and Bioinformatics. 
This is an Open Access article distributed under the terms of the Creative Commons Attribution-NonCommercial License 
(https: // creativecommons.org / licenses / by-nc / 4.0 / ), which permits non-commercial re-use, distribution, and reproduction in any medium, provided the 
original work is properly cited. For commercial re-use, please contact reprints@oup.com for reprints and translation rights for reprints. All other 
permissions can be obtained through our RightsLink service via the Permissions link on the article page on our site—for further information please contact 
journals.permissions@oup.com. 

D
ow

nloaded from
 https://academ

ic.oup.com
/nargab/article/7/1/lqaf015/8063808 by H

asselt U
niversity user on 01 April 2025



2 Chen et al. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

D
ow

nloaded from
 https://academ

ic.oup.com
/nargab/article/7/1/lqaf015/8063808 by H

asselt U
niversity user on 01 April 2025
Introduction 

Digital polymerase chain reaction (dPCR) is an increas-
ingly popular molecular method that allows highly accurate,
calibration-free quantification of nucleic acids [ 1 ]. Its advan-
tages render it widely used across life science domains [ 2–5 ].
Unlike quantitative PCR, which requires real-time monitor-
ing for quantification and a standard curve, dPCR typically
relies on end-point fluorescence detection, i.e. fluorescence in-
tensity at the end of the PCR amplification process, simplify-
ing the reaction readout. Partition classification (thresholding;
clustering) is based on these end-point fluorescence intensities.
After thresholding, the binary or multinomial outcomes of the
partitions allow for the quantification of the targeted nucleic
acid(s) [ 5 ]. A dPCR glossary is available as Supplementary Ta-
ble ( Supplementary Table S1 ). 

Recent advances in dPCR instrumentation give the user ac-
cess to up to seven colors, enabling the simultaneous quan-
tification of multiple target nucleic acids. However, multi-
color dPCR data clustering poses challenges. Manual clus-
tering is often performed, particularly for small series of
single or duplex experiments. This may, however, introduce
bias and low precision [ 6 ], and become increasingly diffi-
cult as the number of colors increases. We previously bench-
marked automatic partition classification methods, includ-
ing general-purpose, dPCR, and flow cytometry methods [ 7 ],
and concluded that all methods face limitations, especially
for the identification of small clusters or clusters with poor
separation. 

Some dPCR analysis methods make use of the expected
cluster center locations [ 8 , 9 ], whereas flow cytometry meth-
ods do not, as cluster positions are unpredictable in flow cy-
tometry. Current dPCR partition classification methods pri-
marily operate on two-color data, with some 1-color methods
having the potential to be extended to the multicolor setting
[ 10 ]. This contrasts with flow cytometry methods that could—
in principle—be directly applied to multicolor, (higher order)
multiplexed dPCR experiments. 

To address these limitations, we developed “Polytect”. The
software is based on hierarchical mixture modeling and makes
use of the expected dPCR cluster center locations. Unlike
current dPCR methods, Polytect is applicable to multicolor,
(higher order) multiplexed experiments. Polytect builds upon
“flowPeaks” [ 11 ], recognized as the top-performing cluster-
ing algorithm in our previous benchmarking study [ 7 ]. No-
tably, flowPeaks demonstrated robust performance, even with
very low target concentrations. However, a drawback of flow-
Peaks is that it occasionally yields more clusters than ex-
pected, posing challenges for automatic labeling and nucleic
acid concentration estimation. In contrast to flow cytome-
try, the maximal number of clusters in a dPCR experiment
is known, and their position is estimable. Polytect addresses
this limitation by allowing users to specify the expected (max-
imum) number of clusters and by enabling automatic clus-
ter labeling and nucleic acid concentration estimation. Poly-
tect remains accurate even when some or all targets are
absent. 

W e evaluated Polytect’ s performance using empirical and
simulated data. The testing scenarios range from (higher or-
der) two- to six-color data, detecting two to six targets in a
reaction. Polytect’s performance was compared with manual
expert clustering and automatic methods flowPeaks, “dpcp”,
and “ddPCRclust”. 
Materials and methods 

Methodology overview 

The different stages of Polytect involve (i) preliminary flow- 
Peaks clustering, (ii) merging of flowPeaks clusters via hierar- 
chical modeling, (iii) integration of cluster position informa- 
tion through penalty terms, and (iv) automatic labeling and 

target concentration estimation. Fig. 1 and Algorithm 1 give 
an overview of the Polytect algorithm, and details are pro- 
vided in the following sections. 

Initialization 

In a preliminary step, flowPeaks is performed. The number of 
estimated clusters by flowPeaks can be, and often is, higher 
than expected. In the subsequent hierarchical mixture model- 
ing step [ 12 ], excess clusters are merged. However, when fewer 
than the expected number of clusters are identified by flow- 
Peaks, Polytect will fail to find the correct clusters as Polytect 
relies on cluster merging and is unable to split clusters. To ad- 
dress this issue, flowPeaks’ parameters are tuned to obtain an 

excess number of clusters. This is achieved using Bayesian op- 
timization with the “mlrMBO” R package (version 1.1.5.1,
[ 13 ]). We specify the loss function as the discrepancy between 

the expected and observed number of clusters resulting from 

adjusting the input parameters for flowPeaks. As our method 

performs merging, we impose adjustments only when the ac- 
tual number of clusters falls below the expected value. Of note,
this adjustment is only performed during initialization but 
does not affect the subsequent cluster merging. 

When there is only one cluster, only flowPeaks is performed: 
the subsequent steps are not executed, as Polytect performs 
merging only, and a single cluster cannot be merged further. 

Hierarchical Gaussian mixture model 

Suppose that the levels represent the steps required for cluster- 
ing. Level l + 1 precedes level l . At level l + 1, more clusters are
identified than expected, while at level l , these clusters have 
been further merged. 

Assume there are k true clusters. At level l + 1 where only 
flowPeaks is performed, there are k 1 clusters. At the level l 
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Figure 1 . Sc hema of Polytect tool: (i) perf orm flo wPeaks; (ii) initializ e the cluster centers; and (iii) merge the cluster centers. 
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here the merging is performed, there remain k clusters. k 1 is
ften larger than k . 
The likelihood of the observed data belonging to k 1 clusters

t level l + 1 can be written as [ 12 ] 

L (X| θl+1 ) = 

n ∏ 

i =1 

⎡ 

⎣ 

k 1 ∑ 

g=1 

π l+1 
g f (x i | θl+1 ) 

⎤ 

⎦ , (1)

here x i represents the intensities of the i th partition (of a
otal of n partitions), π l+1 

g is the mixture weight (the fraction
f the total partitions that is estimated to belong to the g th
luster) of component (cluster) g at level l + 1, and f ( x i | θl + 1 )
s the probability density function of the i th data point x i given
he parameter set θ l + 1 . 

Data points assigned to a given cluster at level l + 1 are
ssumed to be within the same cluster at level l as the method
erforms merging. The likelihood of the observed data at level
 can be expressed as 

L (X| θl ) = 

k 1 ∏ 

g=1 

[ 

k ∑ 

h =1 

π l 
h f (X g | θl ) 

] 

, (2)

here X g represents all the data points in the g th cluster. 
Let Z denote the membership of clusters at level l + 1 to

lusters at level l . Z maps clusters across levels and is used
n an Expectation–Maximization (EM) algorithm to estimate
arameters. Specifically, z gh is 1 or 0, indicating whether the
 th component at level l + 1 belongs to h th component at level
 . The likelihood of the complete data at level l (given Z ) can
e formulated as 

L (X, Z | θl ) = f (X| Z, θl ) f (Z ) (3)

= 

∏ k 1 
g=1 

∏ k 
h =1 

[
π l 

h f (X g | z gh , θl ) 
]z gh (4)

nd the log-likelihood becomes 

l(X, Z | θl ) = 

k 1 ∑ 

g=1 

k ∑ 

h =1 

z gh log (π l 
h f (X g | z gh , θl )) , (5)

here X g is the data belonging to component g at level l +
, π l 

h is the mixture weight of component h at level l , and

 

f ( X g | z gh , θl ) is the probability density function of X g given that
it belongs to h at level l , parameterized by θl . 

This log -likelihood function is used in an EM algorithm for
estimating the parameters θ l of the hierarchical mixture model
at level l . 

Parameter estimation via an EM algorithm 

Here we assume a Gaussian mixture model at both level l and
l + 1. An EM algorithm is used to estimate the parameter set
θ l . 

In the E-step, q gh , the expected value of z gh | X g , θl can be
derived as 

q gh = E[ z gh | X g , θl ] = P(z gh = 1 | X g , θl ) (6)

= 

[ 
G ( μl+1 

g , μl 
h , �

l 
h ) e 

− 1 
2 tr ( �

l 
h 
−1 

�l+1 
g ) 

] M g 
π l 

h 

∑ 

k 

[ 
G ( μl+1 

g , μl 
k , �

l 
k ) e 

− 1 
2 tr ( �

l 
k 
−1 

�l+1 
g ) 

] M g 
π l 

k 

, (7)

where G (x, μ, �) is the Gaussian density function with mean
μ and covariance �. μl+1 

g is the mean of the g th component
at level l + 1, μl 

h is the mean of the h th component at level l ,
�l+1 

g is the covariance of the g th component at level l + 1, and
�l 

h is the covariance of the h th component at level l . 
The M-step consists of maximizing the complete-data like-

lihood with regard to θl , resulting in 

Q = 

k 1 ∑ 

g=1 

k ∑ 

h =1 

q gh log( π l 
h f ( X g | z gh = 1 , θl )) . (8)

More details can be found in the “EM algorithm”section of
the Supplementary material. 

Penalization 

To enforce constraints on cluster centers, penalty terms are
introduced that penalize deviations from the expected cluster
positions. 

In the case of a common, noncompeting two-target, two-
color assay design, we expect to observe (i) a negative clus-
ter with low fluorescence intensities in both colors, (ii) a sin-
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gle positive cluster representing partitions positive for target 1
only, aligning horizontally with the negative cluster, (iii) a sin-
gle positive cluster representing partitions positive for target
2, aligning vertically with the negative cluster, and (iv) a dou-
ble positive cluster representing partitions positive for both
targets, with its center approximately the sum of the centers
of the two single positives that is positive for a single target
(Fig. 2 ). The double positive cluster has the same endpoint
fluorescence as the two single positive clusters. In the vector
space, it is the sum of coordinates of the centers of the single
positive clusters. However, deviations from these expected po-
sitions may occur, such as the double positive cluster (e.g. top
right cluster, Fig. 2 A) deviating from its expected intensities
for color 1 (bottom right cluster, Fig. 2 A). To accommodate
such deviations, penalty terms are incorporated into Equation
8, resulting in 

Q = 

∑ k 1 
g=1 

∑ k 
h =1 q gh log ( π l 

h f ( X g | z gh = 1 , θl )) − r 1 ‖ μ1 − ˆ μ1 ‖ 2 2 

−r 2 ‖ μ4 − μ2 − μ3 + μ1 ‖ 2 2 , (9)

where μ1 , μ2 , μ3 , μ4 are the centers of the negative popula-
tion, single positive (target 1), single positive (target 2), and
double positive population, respectively. ˆ μ1 is the initial cen-
ter estimate of the negative population. The user-defined pa-
rameter r 1 controls the deviation between the estimated initial
cluster center of the negative population and the actual cluster
center, and r 2 controls the deviation between the actual cluster
center of the double positive population and the expected cen-
ter. That is, μ4 − μ1 should align as closely as possible with
μ2 − μ1 + μ3 − μ1 . Details of the parameter estimation can
be found in the “EM algorithm” section of the Supplemen-
tary material. 

With these constraints, the cluster labels (i.e. the identifi-
cation of what are the single and double positive clusters) are
automatically determined. This method can be easily extended
to (higher order) multiplexing settings [ 14 ] by imposing addi-
tional constraints. We provide mathematical formula deriva-
tions for higher order two- and four-color data in “EM algo-
rithm” section of the Supplementary material. 

Polytect can be extended to analyze other types of assays,
such as competitive assays, by adding a constraint coefficient
to the cluster centers. Equation 9 becomes 

Q = 

∑ k 1 
g=1 

∑ k 
h =1 q gh log ( π l 

h f ( X g | z gh = 1 , θl )) − r 1 ‖ μ1 − ˆ μ1 ‖ 2 2 

−r 2 ‖ μ4 − α1 μ2 − α2 μ3 + (α1 + α2 − 1) μ1 ‖ 2 2 , (10)

where α1 and α2 are the coefficients used to construct a linear
combination of the vectors formed by the cluster centers. They
are chosen so that μ4 − μ1 aligns as closely as possible with
α1 ( μ2 − μ1 ) + α2 ( μ3 − μ1 ) . α1 and α2 should be known and
specified beforehand. In a noncompetitive assay, α1 = α2 = 1.
For competitive assays, the fluorescence intensities of the dou-
ble positives do not align with those of the single positives (see
Supplementary Fig. S24 for an example). The typical fluores-
cence intensity of double positives in color 1 is ∼0.5 times the
fluorescence intensity of single positive 1 in color 1. For color
2, it is ∼0.8 times the fluorescence intensity of single positive
2. In this case, we have α1 = 0.5, α2 = 0.8. For more details,
please refer to “EM algorithm” section of the Supplementary

material. 
Performance evaluation 

For the evaluation of the clustering methods, we selected 

four empirical two-color datasets (Fig. 2 ), three higher or- 
der two-color datasets, one three-color dataset, one four-color 
dataset, one five-color dataset, and two six-color datasets 
( Supplementary Tables S3 –S8 ). These 12 datasets were ob- 
tained across 3 dPCR instruments. 

For the two-color datasets, including the competitive as- 
say and higher-order multiplexing datasets, we benchmarked 

Polytect against flowPeaks, dpcp, and ddPCRclust. For more 
than two-color datasets, the comparison was limited to flow- 
Peaks, as dpcp and ddPCRclust are tailored to the two-color 
setting. 

To ensure fair comparisons and mitigate biases stemming 
from differences in intensity scales across colors [ 7 , 10 ], we 
conducted color-level min–max rescaling [ 15 ]. This procedure 
scales the data to a range [0, 1], preventing flowPeaks and 

dpcp from favoring colors with larger scales. Because ddPCR- 
clust fails to cluster effectively when applied to such rescaled 

data, consistently yielding two clusters, we resorted to apply- 
ing the method to the original, nonrescaled data. 

When Polytect made significant errors on empirical data,
such as failing to identify a cluster, we visually inspected the 
single-channel plots and increased the resolution, in order to 

identify the cause of the failure ( Supplementary Tables S10 

and S11 ). 
Additionally, we tested the proposed method on simu- 

lated two-color data [ 7 ]. The simulation, based on empirical 
datasets, encompasses various scenarios on different factors 
(150 factor combinations in total), including low to high tar- 
get concentrations, low to high percentages of rain, good to 

poor resolution, unimodal to bimodal distributions, orthog- 
onal to non-orthogonal relationships, and equal to unequal 
target concentrations [ 7 ]. 

We used the adjusted rand index (ARI) [ 16 ], the relative bias 
of the estimated average number of target DNA molecules per 
partition (denoted as λ), and the quantities of interest (QOIs) 
to evaluate the clustering performance on both 12 empirical 
datasets and simulated data. The ARI quantifies the similar- 
ity between two cluster results of the same dataset. In partic- 
ular, we compared the results of the proposed method with 

the expected labels of a reference clustering: true labels for 
simulated data and expert-determined clusters for empirical 
data. ARI scores range from −1 to 1, with 1 indicating per- 
fect agreement, 0 indicating agreement not better than that 
obtained by random assignment of partitions to clusters, and 

−1 indicating complete disagreement. The relative bias of a λ
estimate measures the deviation between the estimates and ref- 
erence, relative to that reference, expressed as ( ̂ λ − λref ) /λref .
Concerning the quantities of interest, most datasets were used 

for absolute quantification, except for the MM, CNV 5-plex,
and CNV 6-plex datasets. In the case of absolute quantifica- 
tion, the impact on the quantity of interest is directly related to 

the relative bias of λs . The MM dataset was analyzed to mea- 
sure DNA integrity, following the method described in [ 17 ].
The CNV 5-plex and CNV 6-plex datasets were analyzed to 

measure copy number variation. We reported the median of 
relative bias of λs and QOIs of the clustering methods across 
100 simulations. 

To match the clusters identified by flowPeaks to the refer- 
ence populations, we employ the Hungarian assignment algo- 
rithm [ 18 ], which efficiently solves the linear assignment prob- 
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Figure 2. ( A ) HR (high-resolution) dataset. The solid arrow represents the actual cluster center, while the dashed arrow represents the expected cluster 
center. ( B ) MM (multi-mode) dataset. ( C ) LR (low-resolution) dataset. 
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em by determining a one-to-one mapping that minimizes the
otal distance between the cluster centers provided by flow-
eaks and those of the reference populations (the known true
luster centers). Polytect , dpcp, and ddPCRclust include auto-
atic labeling. 
We assessed the performance of the methods using optimal

uning parameter values for the empirical datasets [ 7 ]. Ad-
itionally, we recorded the run times for the empirical data
nalyses. To assess the stability of clustering results, we im-
lemented the methods on 100 bootstrap samples drawn from
he original datasets, each sample containing fluorescence in-
ensities of 10 000 partitions. For the simulated data, we uti-
ized the default parameter values, as conducting a thorough
anual search for tuning parameters across all simulation sce-
arios was considered impractical. In the simulation setting,
n automatic search may also be problematic [ 7 ]. However,
e further examined scenarios where a method performed
oorly, characterized by an ARI < 0.8 or a relative bias > 20%
n both empirical and simulated data. For these cases, we op-
imized the methods’ parameters (details are provided in “Pa-
ameter optimization” section of the Supplementary material,
ee Supplementary Figs S1 –S5 and Supplementary Table S9 ). 

mplementation, data, and code availability 

e conducted all analyses using R (version 4.2.2) [ 19 ]. For
he R package version, please refer to Supplementary Table S2
n “Package version” section of the Supplementary Data. In
ddition, we have developed an R package and a Shiny app
hat enable users to interactively explore different parameters
nd apply Polytect to a dataset of choice (see https://digpcr.
hinyapps.io/ Polytect/ ). R code and data are available from
ttps:// zenodo.org/ records/ 14592424 . 

esults 

olytect achieved high ARI and low relative bias on 

mpirical data 

cross the 12 empirical datasets, Polytect consistently demon-
trated strong performance, compared with other methods,
merging as the top performer in terms of ARI and rela-
ive bias (Table 1 and Supplementary Figs S11 –S22 ). Polytect
(median absolute relative biases: [0 to 6.70], sd: [0 to 2.28])
outperformed flowPeaks (median absolute relative biases: [0
to 46.44], sd: [0.052 to 19.31]), dpcp (median absolute rela-
tive biases: [0 to 13.63], sd: [0.064 to 11.86]) and ddPCRclust
(median absolute relative bias: [0 to 8406.43], sd: [0.045 to
184]). This high relative bias of flowPeaks likely stems from
cluster mislabeling, which is supported by the disconnection
between the observed ARI (high) and the relative bias (high).
Visual review indeed suggests appropriate clustering by flow-
Peaks ( Supplementary Figs S3 and S12 ). However, the high
dimensional setting renders automatic labeling difficult. For
the five-color and six-color data, Polytect (median absolute
relative biases: [0 to 0.46], sd: [0 to 1.18]) also did better than
flowPeaks (median absolute relative biases: [0.09 to 1.08], sd:
[0.35 to 2.76]). 

Polytect often outperformed other methods in terms of ac-
curately quantifying the quantity of interest (Table 1 ). In terms
of relative bias for DNA integrity, Polytect achieved a sig-
nificantly lower bias (0.15) compared with flowPeaks (2.41),
dpcp (1.18), and ddPCRclust (14.64). Similarly, for the CNV
5-plex and CNV 6-plex datasets, Polytect demonstrated ex-
cellent performance with low relative biases for CNV (0 and
0.24, respectively) compared with flowPeaks ( −2.96 and 0.24,
respectively). 

Performance of Polytect when compared with the auto-
matic thresholding provided by dPCR instrument-specific pro-
prietary software was mixed (Table 1 and Supplementary 
Figs S6 –S10 ). For the HR, LR, CA, BPV, and CNV 5-plex
datasets, the proprietary software produced results similar
to those obtained by manual thresholding, with ARI val-
ues of 1 and relative biases close to 0. For these datasets,
Polytect performed nearly as good (median ARI: [0.996 to
1]; median absolute relative biases: [0 to 1.04]). For the
MM dataset, the proprietary software misclassified many
data points at the edge of clusters, and rain (median ARI
0.988, Supplementary Fig. S7 ) while Polytect performed bet-
ter, achieving a higher median ARI (0.997). For the higher or-
der multiplexing datasets (HO-HIGH, HO-MED, and HO-
LOW), the proprietary software could not be used for quan-
tification because the number of targets exceeded the number
of channels and the software only provided one threshold for
each channel, making some clusters indistinguishable. Poly-
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Table 1. Performance metrics from the resampling study of the empirical data 

Dataset Method ˆ λ1 −λ1 
λ1 

(%) ˆ λ2 −λ2 
λ2 

(%) 
ˆ λ3 −λ3 

λ3 
(%) ˆ λ4 −λ4 

λ4 
(%) 

ˆ λ5 −λ5 
λ5 

(%) 
ˆ λ6 −λ6 

λ6 
(%) 

QOI 
(%) ARI 

HR Polytect − 0 .89 − 0 .29 / / / / / 0 .999 
flowPeaks − 1 .87 − 0 .60 / / / / / 1 
dpcp − 1 .87 − 0 .62 / / / / / 0 .999 
ddPCRclust 0 .33 − 0 .30 / / / / / 0 .999 
Biorad quantaSoft − 0 .24 0 .42 / / / / / 0 .999 

MM Polytect 0 .19 − 0 .39 / / / / 0 .15 0 .997 
flowPeaks 2 .07 − 0 .23 / / / / 2 .41 0 .996 
dpcp − 0 .01 − 0 .30 / / / / 1 .18 0 .960 
ddPCRclust 17 .04 0 .24 / / / / 14 .64 0 .973 
Stilla crystal Miner 2 .6 0 .43 / / / / − 2 .5 0 .988 

LR Polytect − 1 .04 − 0 .13 / / / / / 0 .996 
flowPeaks − 1 .18 − 0 .13 / / / / / 0 .996 
dpcp − 3 .35 0 / / / / / 0 .985 
ddPCRclust − 0 .06 0 / / / / / 0 .998 
Biorad quantasoft 0 0 / / / / / 1 

CA Polytect − 3 .77 − 0 .26 / / / / / 1 
flowPeaks − 20 .33 − 1 .08 / / / / / 0 .999 
dpcp − 10 .55 − 0 .32 / / / / / 0 .996 
ddPCRclust 8406 .43 − 2 .47 / / / / / 0 .865 
Roche digital 0 0 / / / / / 1 
LightCycler development 

HO-HIGH Polytect 0 − 0 .32 − 0 .23 / / / / 0 .999 
flowPeaks 0 − 0 .39 − 0 .23 / / / / 0 .998 
dpcp − 1 .76 − 0 .72 13 .63 / / / / 0 .994 
ddPCRclust 0 .29 0 .23 0 .46 / / / / 0 .999 
Biorad quantasoft / / / / / / / 0 .999 

HO-MED Polytect 0 0 0 / / / / 1 
flowPeaks 0 − 0 .32 0 / / / / 1 
dpcp 1 .37 0 .33 1 .84 / / / / 0 .999 
ddPCRclust 0 .33 2 .12 3 .09 / / / / 0 .996 
Biorad quantasoft / / / / / / / / 

HO-LOW Polytect − 2 .16 3 .05 3 .69 / / / / 1 
flowPeaks − 2 .17 0 .91 0 .28 / / / / 0 .997 
dpcp 0 .29 4 .64 4 .64 / / / / 1 
ddPCRclust 4 .07 3 .75 15 .24 / / / / 0 .983 
Biorad quantasoft / / / / / / / / 

BPV Polytect 0 0 0 / / / / 1 
flowPeaks 0 0 0 / / / / 1 
Stilla crystal 1 .94 0 .97 1 .3 / / / / 1 
Miner 

HIV 4-plex Polytect − 6 .70 − 0 .40 − 3 .40 − 0 .81 / / / 0 .985 
flowPeaks − 4 .94 8 .17 − 0 .38 − 46 .44 / / / 0 .985 
Biorad quantasoft / / / / / / / / 

CNV 5-plex Polytect 0 − 0 .06 0 .11 − 0 .46 0 / 0 0 .998 
flowPeaks 3 .90 − 0 .09 − 0 .22 − 0 .47 1 .06 / − 2 .96 0 .998 
Roche digital 0 − 0 .1 0 − 0 .1 0 .02 / − 0 .13 1 
LightCycler development 

HIV 6-plex Polytect − 0 .11 0 .29 0 .01 0 .06 − 0 .26 0 .14 / 0 .991 
flowPeaks − 0 .78 − 0 .49 − 0 .68 − 0 .73 − 1 .08 − 0 .57 / 0 .993 
Biorad quantasoft 0 0 0 0 0 0 / 1 

CNV 6-plex Polytect − 0 .09 − 0 .26 − 0 .09 − 0 .09 − 0 .29 − 0 .25 0 .24 0 .992 
flowPeaks − 0 .09 − 0 .26 − 0 .09 − 0 .09 − 0 .29 − 0 .25 0 .24 0 .991 
Roche digital FAIL − 0 .02 − 0 .01 0 .07 − 0 .14 − 0 .14 FAIL FAIL 

LightCycler development 

Median relative bias of λ1 , λ2 , λ3 , λ4 , λ5 , and λ6 , QOI, and the ARI calculated for all resampled 10 000 data points. The result with the optimal tuning 
parameter value is shown. HR, MM, and LR are noncompeting two-color assay data, CA is competing mutation data, HO-HIGH, HO-MED, and HO-LOW 

are higher order two-color three-target data, BPV is three-color data, HIV 4-plex and 6-plex are four-color and six-color data, respectively, CNV 5-plex 
and CNV 6-plex are five-color and six-color data, respectively. “/ ” means “not applicable”. “FAIL” means the software was not able to distinguish between 
positive and negative partitions. All partitions were marked as positive with this automatic thresholding method. 

D
ow

nloaded from
 https://academ

ic.oup.com
/nargab/article/7/1/lqaf015/8063808 by H

asselt U
niversity user on 01 April 2025



Polytect 7 

Figure 3. ( A ) Median ARI across the 150 factor combinations. ( B ) Median relative bias of λ1 across the 150 factor combinations. ( C ) Median relative bias 
of λ2 across the 150 factor combinations. The methods are ranked from best left panel to worst right panel. All methods perform well with median ARI 
close to 1 and bias of λs close to 0. Polytect outperforms flowPeaks and dpcp. 
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ect provided excellent clustering performance (median ARI
0.999 to 1]; median absolute relative biases [0 to 3.69]). For
he CNV 6-plex dataset, the proprietary software failed to dis-
inguish between positive and negative partitions in channel
, mislabeling all partitions as positive. Contrarily, Polytect
emonstrated robustness (median ARI 0.992; median abso-
ute relative biases [0 to 0.29]). 

Per sample run times were low overall ([0.61 to 16] s, see
upplementary Table S12 ), with Polytect requiring 1.14 s per
ample, flowPeaks being fastest (0.61 s) and ddPCRclust the
lowest (16.41 s). dPCP and ddPCRclust offer options to re-
uce runtime. After optimization, ddPCRclust was the fastest
0.21 s), while dPCP also showed improvement (from 3.84 to
.06 s). For the details, please refer to section “Runtime” of
he Supplementary Data. 

olytect outperformed other methods on simulated 

ata 

cross the simulation scenarios, all methods exhibited strong
erformance, with average median ARI values ranging from
.954 to 0.996 and relative bias of λ1 (absolute values) rang-
ng from 0.13% to 10.6% (Fig. 3 ). Notably, Polytect demon-
trated superior performance compared with both flowPeaks
nd dpcp in terms of ARI and relative bias. Moreover, Poly-
ect exhibited smaller variation compared with flowPeaks and
pcp. 

olytect performed well in various scenarios 

he effectiveness of Polytect was evaluated across various sce-
arios: (i) When more clusters than expected were identified
y flowPeaks (Fig. 4 A). (ii) When the expected number of clus-
ers were identified by flowPeaks (Fig. 4 B). (iii) When the ac-
ual number of clusters was 3, but the expected number was
pecified as 4 (Fig. 4 C). 

The results demonstrate that additional clusters were suc-
essfully merged by Polytect (Fig 4 D). When the number of
lusters identified by flowPeaks aligned with the expected
umber, Polytect refrained from merging, thereby retaining
he cluster centers (Fig. 4 E). In such cases, only automatic la-
eling was performed. However, when the expected number of
lusters exceeded the actual count (e.g. four expected clusters
or third actual ones), a cluster center was assigned without
ny data points belonging to this additional cluster. 

In the case of the three-color BPV data, Polytect demon-
trated effective performance, producing estimated cluster
enters that closely matched those obtained by manual thresh-
lding. Despite an expected presence of eight clusters for three
targets, the triple positives are absent due to low target con-
centrations. Consequently, while Polytect provided a cluster
center for the hypothetical triple positives, no partitions were
assigned to this cluster (Table 2 ). When analyzing the four-
color HIV data, Polytect effectively aligned cluster centers and
sizes with the reference; however, it failed to identify a sin-
gle positive cluster (+ − − −, see Supplementary Table S10
and Supplementary Figs S19 and S20 . Supplementary Fig. S20
provides better visualization with clusters that are positive in
other colors removed). This discrepancy may stem from a low
resolution in color 1 ( Supplementary Fig. S23 ). After we ar-
tificially increased the fluorescence intensity of the partitions
above the threshold in color 1 by 0.2, the method successfully
identified the missing cluster of 17 data points, aligning with
the manual thresholding, and supporting that a low resolu-
tion caused Polytect to fail ( Supplementary Table S11 ). In the
case of the five-color and the six-color data, Polytect matches
well with the manual thresholding results ( Supplementary 
Fig. S25 ). 

Methods failed on empirical and simulated data 

When methods performed poorly, further manual parameter
optimization often improved the results, but sometimes failed.
For the CA dataset, both flowPeaks and ddPCRclust failed to
provide accurate estimates of λ1 . While flowPeaks achieved
high ARI by correctly classifying most partitions (Fig. 5 A), it
generated more clusters than expected (six rather than the ex-
pected four clusters), resulting in incorrect partition labeling.
After parameter optimization, flowPeaks produced four clus-
ters, reducing the absolute relative bias of λ1 from 20.33% to
4.17% (Fig. 5 D). ddPCRclust initially produced only two clus-
ters and showed no improvement after parameter adjustments
(Fig. 5 E). For the HIV 4-plex dataset, flowPeaks struggled to
identify many positive partitions in channel 4 (Fig. 5 C). Ini-
tially, it generated only nine clusters (16 are expected). Af-
ter optimization to match the expected number of clusters,
flowPeaks produced 17 clusters; however, these were small,
often comprising just one or two partitions. Due to limi-
tations in the labeling method, the results did not improve
significantly even after parameter optimization (Fig. 5 F). In
the simulated dataset, Polytect generally achieved high ARI
and low bias. flowPeaks failed in five cases (3.3%), while
dpcp failed in 25 cases (16.7%). To match the number of
flowPeaks failure cases, for dpcp, we visually inspected the
five worst cases (with the lowest ARI). Parameter tuning im-
proved the results for both methods in these failure scenarios
( Supplementary Figs S3 and S5 ). 
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Figure 4. Clustering results obtained from flowPeaks and Polytect. The first row represents the clusters identified by flowPeaks, while the second row 

depicts those by Polytect. Each column corresponds to a different dataset: ( A ) and ( D ) HR dataset; ( B ) and ( E ) MM dataset; and ( C ) and ( F ) simulated 
data at very low concentration. The cluster centers are highlighted with a dot and a number. In first case, flowPeaks produced more clusters than 
expected (panel A), but Polytect successfully merged the surplus clusters (panel D). In second case, flowPeaks generated the expected number of 
clusters (panel B), and Polytect only relabeled the clusters in (panel E). In third case, flowPeaks produced fe w er clusters than expected (panel C), and 
Polytect did not assign a partition to the double-positive cluster in (panel F). 

Table 2. Cluster centers and siz es giv en b y manual thresholding and Poly- 
tect on three-color BPV data 

Cluster label Methods Cluster center Cluster size 

− − − manual (0.057, 0.086, 0.105) 24 401 
Polytect (0.057, 0.086, 0.105) 24 401 

+ − − manual (0.876, 0.074, 0.094) 481 
Polytect (0.875, 0.074, 0.094) 482 

− + − manual (0.056, 0.814, 0.087) 245 
Polytect (0.056, 0.814, 0.087) 245 

− − + manual (0.056, 0.079, 0.87) 323 
Polytect (0.056, 0.079, 0.87) 323 

+ + − manual (0.746, 0.558, 0.141) 4 
Polytect (0.744, 0.618, 0.161) 3 

+ − + manual (0.748, 0.084, 0.787) 6 
Polytect (0.748, 0.084, 0.787) 6 

− + + manual (0.057, 0.530, 0.733) 1 
Polytect (0.057, 0.530, 0.733) 1 

+ + + manual / 0 
Polytect (0.874, 0.795, 0.845) 0 

“−” indicates the absence of the targets and “+” indicates the presence. 
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Discussion 

We have developed and validated Polytect, an automatic mul-
ticolor dPCR data classification and labeling method. Unlike
previous partition classification methods that are limited to
one- or two-color data, Polytect can be applied to experi-
ments using any number of colors. Further strengths of Poly- 
tect are its automatic cluster labeling component, a step neces- 
sary for subsequent target nucleic acid concentration estima- 
tion, through exploitation of expected cluster positions, and 

exploitation of prior knowledge on the (maximum) number 
of distinct clusters. The latter is used for cluster merging of 
preliminary flowPeaks clusters. Importantly, Polytect accom- 
modates scenarios where certain clusters may be absent due 
to low concentrations or absence of target(s). When there are 
only negative samples and no target is present, the method 

still functions effectively. In such a scenario, only flowPeaks 
is performed. One advantage of flowPeaks is that it does not 
require prespecification of the number of clusters. 

An increasing need for methods like Polytect stems from 

the latest developments in dPCR instrument hardware. Instru- 
ments now allow analysis of up to seven colors, corresponding 
to 2 

7 (128) observable clusters for simple one-color, one-target 
seven-plex assays. Data complexity increases further when us- 
ing, e.g. multiple probes for (a subset of) targets (“higher order 
multiplexing”). Indeed, for such assays, the number of clus- 
ters is typically (much) higher. Unfortunately, current state- 
of-the-art dPCR clustering methods are restricted to at most 
two colors. While some of these methods could be extended 

to accommodate more colors, a curse of dimensionality issues 
arises [ 10 ]. Therefore, the development of improved methods 
capable of accurately clustering partitions and accommodat- 
ing more than two colors is imperative. Polytect, being inher- 



Polytect 9 

Figure 5. Scenarios where flowPeaks and ddPCRclust fail. The first row illustrates clusters identified before parameter optimization, while the second 
ro w sho ws clusters af ter optimization. Panels (A)–(D) correspond to the CA dataset, and panels (C) and (F) represent c hannel 4 of the HIV integrity-4 
dataset. ( A , D ): Results from flowPeaks on the CA dataset. In panel (A), flowPeaks produced more clusters than expected. After parameter optimization, 
the surplus clusters were merged, as shown in panel (D). ( B , E ): Results from ddPCRclust on the CA dataset. In panel (B), ddPCRclust identified only 
two clusters, and this result did not improve even after optimization in panel (E). ( C , F ): Results from flowPeaks on channel 4 of the HIV integrity-4 
dataset. In panel (C), flowPeaks failed to identify many positive partitions, misclassifying them as negative partitions. This issue persisted even after 
parameter tuning panel (F). 
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ntly applicable to any number of colors, addresses this gap,
nd increases partition classification robustness through in-
orporation of prior knowledge on cluster location and count.

One example of Polytect’s strengths is in rare mutation de-
ection. In such experiments, one target (wild type) is often
bundant while the other is rare or absent. Due to this low
bundance, some single, double (triple, etc.) positive parti-
ion clusters will contain few or no partitions. Polytect ex-
ibits high sensitivity in detecting such small clusters. Impor-
antly, even in the absence of expected clusters, Polytect, will
ot split the largest partition cluster, unlike some generic clus-
ering methods such as kmeans . Users benefit from the con-
enience of specifying only the expected (maximum) num-
er of clusters, alleviating concerns regarding cluster absence.
dditionally, Polytect’s flexibility allows analysis of different
pplications, such as noncompetitive and competitive assays,
he latter through fine-tuning the constraint coefficients of the
luster centers (Methods section). 

We have conducted a comparative analysis of Polytect
gainst dpcp, ddPCRclust, flowPeaks, and software provided
y dPCR instruments. Across both empirical and simulated
atasets, Polytect consistently outperformed or showed com-
arable performance to these methods. While flowPeaks, the
ase clustering algorithm for Polytect, demonstrates compe-
ence in handling multicolor data and detecting small clus-
ters, its tendency to generate more clusters than expected poses
challenges for automatic labeling. Because cluster locations in
flow cytometry experiments are hard to predict, the cluster la-
beling issue arising in dPCR experiments is not addressed by
flowPeaks. Polytect leverages the strengths of flowPeaks while
addressing its limitation by merging excess clusters and auto-
matically labeling clusters based on the prior knowledge of
cluster center locations. Polytect’s robustness on this front is
supported by the excellent concordance of estimated cluster
center locations with expertly assigned ones. 

dpcp and ddPCRclust are constrained to (higher-order mul-
tiplexing) two-color datasets. Performance assessment shows
that dpcp may misclassify (Fig. 3 , outliers), potentially stem-
ming from misidentification of negative or primary clusters.
ddPCRclust yields inaccurate results when fluorescence inten-
sity scales vary substantially across colors ( Supplementary 
Fig. S14 ). 

Polytect faces a few limitations. First, as it merges excess
clusters using hierarchical Gaussian mixture modeling and re-
lies on an EM algorithm for parameter estimation, the ini-
tialization of cluster centers is important. When initial clus-
ter centers are too close together or too extreme, the algo-
rithm may not converge. Second, the method labels automat-
ically by imposing constraints on cluster centers, implying
a requirement for position rules between the cluster centers
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of single positive partition clusters, double positive partition
clusters, and so forth. That is, we assume no interference be-
tween assays so that they are positioned in a near orthogonal
way. However, if this assumption is violated, then an adapta-
tion of the design is needed. As an example, we introduced
a specific design for competing assays. For other assays, such
as drop-off assays, further design changes would be needed.
Moreover, since the method merges clusters rather than split-
ting them, it cannot generate more clusters than those pro-
duced by flowPeaks. In scenarios where data resolution is low
( Supplementary Fig. S23 ), flowPeaks may fail to identify all
clusters that actually exist, leading Polytect to overlook these
clusters as well ( Supplementary Table S10 ). While we try to
alleviate this drawback by implementing the parameter opti-
mization procedure outlined in [ 7 ], leading flowPeaks to iden-
tify more clusters, still fewer than the actual number is re-
trieved (9 versus 13 versus 14, before optimization, after opti-
mization, and actual number, respectively). Utilizing different
base clustering methods proficient in detecting small clusters
is then a viable alternative. Indeed, Polytect is compatible with
any initial clustering result. 

In conclusion, our proposed automatic multicolor dPCR
data clustering method, Polytect, can be applied beyond two-
color data across different dPCR instruments and for various
assay design types. It has demonstrated strong performance on
both empirical and simulated data, achieving high ARIs and
low relative biases. The method performs automatic labeling,
making it convenient for analyzing data with three or more
dimensions. 
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