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The Belgian Approach for Local Laboratory Extensive Tumor Testing (BALLETT) study assessed the
feasibility of using comprehensive genomic profiling (CGP) in clinical decision-making for patientswith
advanced cancers. This multi-center study enrolled 872 patients from 12 Belgian hospitals. CGPwas
performedon tumor tissues using a standardizedCGPpanel (523 genes) across nine laboratorieswith
success in 93% of patients and a median turnaround time of 29 days. Actionable genomic markers
were identified in81%ofpatients, substantially higher than the21%usingnationally reimbursed, small
panels. A national molecular tumor board (nMTB) recommended treatments for 69% of patients, with
23% receiving matched therapies. Reasons for non-compliance were highly variable across clinical
sites. Overall, BALLETT demonstrates the feasibility of implementing decentralized CGP and its
potential to identify actionable targets in most patients with advanced cancers. BALLETT reinforces
CGP’s utility and emphasizes the importance of collaboration, standardization, and addressing
implementation challenges.

The complexity and heterogeneity of advanced-stage cancer in the context
of increasing availability of biomarker-specific and tumor-agnostic systemic
therapy provide significant challenges in treatment decision-making for
patients with advanced disease. Over the past decade, the advent of com-
prehensive genomic profiling (CGP) through next-generation sequencing
(NGS) has emerged as a promising avenue to unravel the intricate genomic
landscape of tumors, offering unprecedented insights into the continuously
broadening spectrum of potential therapeutic targets1. Next, to single-
nucleotide variants (SNVs), short insertions and deletions (indels), copy-
number variants (CNVs), and gene fusions, CGP also refers to the assess-
mentof genomic signatureswith increasing relevance inpredicting response
to targeted drugs and immunotherapy drugs such as microsatellite
instability (MSI), tumor mutational burden (TMB), and homologous
recombinationdeficiency (HRD)2–5. The incorporationof genomicdata into

clinical decision-making has consistently proven effective in customizing
treatment approaches for individual patients, marking the advent of pre-
cision oncology6–15. A recent, comprehensive review demonstrated that
progression-free survival (PFS) and overall survival (OS) were significantly
longer among patients who were matched to targeted treatment across
tumor types, confirming that genomeprofiling-based treatment canhave an
impact on survival across tumor types16.

Despite positive evidence for the clinical efficacy of CGP in numerous
studies,widespread adoption is hinderedbybudgetary constraints andother
barriers17. In a recent European Society for Medical Oncology (ESMO)
study, Bayle et al. highlighted the low access to CGP across Europe18. Small
NGSpanels aremorewidelyuseddue to their lowercost and complexity, but
the scope for identifying actionable targets is also smaller.While techniques
like whole exome sequencing, whole genome sequencing, and whole
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transcriptome sequencing offer the most comprehensive insights, their
implementation often faces even greater challenges in terms of cost, infra-
structure, and data interpretation.

To address these challenges and to provide a framework for CGP at the
national level, we initiated the Belgian Approach for Local Laboratory
Extensive Tumor Testing (BALLETT) study, a large-scale study with
pragmatic recruitment based on minimal eligibility criteria, aiming to
enhance treatment options and outcomes for patients with advanced can-
cers. BALLETT is part of a nationwide initiative by the PRECISION
working groupof theBelgian Society ofMedicalOncologists (BSMO)19. The
BSMOPRECISION initiative seeks to bridge the financial gap by partnering
with industrial stakeholders and the Belgian public healthcare scientific
institution Sciensano to make CGP more accessible, ultimately translating
genomic insights into clinical benefits for Belgian patientswithmetastasized
cancer. The BSMO genomic profiling studies, including BALLETT and
GeNeo20, aim to improve and democratize access to CGP and provide
evidence-based treatment recommendations to improve access to
biomarker-specific systemic treatment for patients with advanced solid
tumors.

Crucially, the BSMO genomic profiling studies employed a
multifaceted approach, combining the genomic information of
comprehensive profiling with the collective expertise of a national
molecular tumor board (nMTB). Patients enrolled in the study
received consolidated recommendations by the nMTB based on
their CGP results, a practice consistently demonstrating clinical
efficacy21,22. The collaborative effort of expert oncologists, patholo-
gists, geneticists, molecular biologists, and bioinformaticians within
the nMTB serves as a vital link between genomic findings and
actionable clinical decisions.

A unique feature of the BALLETT study, distinguishing it from the
many similar precision oncology projects, lies in its objective to implement
the CGP broadly and uniformly across a consortium of nine Belgian local
NGS laboratories, using a fully standardized methodology. In contrast to
study designs with central CGP testing, this approach seeks to make the
expertise derived from CGP available in local oncology centers, situated
close to the clinicians and the patients. In addition, this approach amplifies
the potential for broader access to CGP, thereby increasing the chances of
reaching a wider patient population.

In this manuscript, we present the BALLETT study design, metho-
dology, and results. We discuss the detected variants and biomarkers, their
actionability, and the uptake of the CGP-based treatment recommenda-
tions. Furthermore, we provide insight into the real-world challenges and
limitations associated with integrating CGP into clinical practice, thereby
offering guidance for other institutions seeking to adopt similar standar-
dized approaches to make precision medicine an accessible reality for
patients worldwide.

Results
Patient recruitment and CGP success rate
Eight hundred seventy-two patients consented to this study between May
2021 andOctober 2023 (Table 1). For 58patients (7%), noCGPanalysiswas
performed due to insufficient tissue, DNA, or RNA, resulting in screen
failure (Fig. 1a). Aportion of these patientsmight have benefited from liquid
biopsy CGP testing; however, this approach was not included in the study
design. For the814 remainingpatients,CGPwas carriedout.Repeat analysis
was performed for 33 patients. Results were interpretable for 756 patients,
giving an overall CGP success rate of 93% (Fig. 1b). The age of the sample
was not a significant indicator of success (p = 0.0645, logistic regression). A
broad range of 32 different tumor typeswas includedwith themost frequent
being breast cancer (n = 123), colorectal cancer (n = 87), lung cancer
(n = 77), sarcoma (n = 56), cholangiocarcinoma (n = 42), urothelial cancer
(n = 41), pancreatic cancer (n = 41), glioma (n = 39), skin cancer (n = 39),
ovarian cancer (n = 37), prostate cancer (n = 27), and head and neck cancer
(n = 26). Histological subtypes are listed in the supplementary information
(Supplementary Fig. S1).

CGP was successful across all lab consortium partners
CGP success rates in the different tumor types ranged from 72% to 100%
(Supplementary Fig. S2). The lowest success rates are observed for uveal
melanoma and gastric cancer (72%and 74%, respectively). Thismight be
explained by the generally smaller biopsies available for CGP in these
tumor types. The success rate of CGP was not significantly different
across the nine NGS labs, except for NGS lab #6 (p = 0.0015 by logistic
regression). Despite the standardization efforts within the consortium,
the CGP success rate was significantly lower (76%) in this lab. This
observation may be attributed to local variability factors (e.g., DNA
extraction method, tissue preparation procedures, inter-operator
variability, etc.) (Fig. 2a).

The median turnaround time (TAT) from inclusion in the study (i.e.,
informed consent signed) to the nMTB report was 29 days (Fig. 2b, c), and
95% of the reports were available within 66 days of the informed consent.
ThemedianTATdiffered significantly betweenhospitals in the study (range
18–45 days, p < 0.0001 by ANOVA).

Molecular alterations and genome-wide biomarkers
In the 756 obtained CGP profiles, 1957 pathogenic or likely patho-
genic SNVs or indels, 80 pathogenic gene fusions, and 182 amplifi-
cations were identified across 276 different genes. The ten most
frequently altered genes were TP53 (370 alterations in 46% of
patients), KRAS (n = 95, 13%), APC (n = 95, 9%), PIK3CA (n = 92,
11%), TERT (n = 57, 8%), EGFR (n = 41, 4%), RB1 (n = 40, 5%),
ARID1A (n = 39, 5%), PTEN (n = 39, 5%), and NF1 (n = 34, 4%)
(Supplementary Fig. S3). Alteration frequencies per tumor type are
illustrated in Supplementary Fig. S4. The median number of altera-
tions per patient was three (range, 0–30, Supplementary Fig. S5). In
addition, 124 patients (16%) had a TMB-high score. A high TMB was
most frequently observed in lung cancer, melanoma, miscellaneous
cancer, CUP, cervical carcinoma, and urothelial carcinomas (Fig. 3).
For eight patients, an MSI-high status was detected; all eight also
exhibited a high TMB.

HRD status was also analyzed for 100 patients included after
April 2023; 11 (11%) showed a positive result, including five breast
and two ovarian carcinomas (Fig. 3a). Amongst these HRD-
positive cases, two cases had (likely) pathogenic variants in
BRCA1/BRCA2 and 3 had (likely) pathogenic variants in other
homologous recombination repair (HRR) genes (ATM, BARD1 and
BRIP1+ PARP1).

Actionability
In the 756 obtained CGP profiles, 1086 actionable markers were
identified. Six hundred sixteen patients displayed at least one
actionable result, accounting for an overall 81% actionability. Overall
actionability varied according to the tumor type (Fig. 3a). Actionable
markers comprised 779 SNVs/indels, 129 amplifications, 35 gene
fusions, all previously described genome-wide markers predictive for
immune therapy (TMB, MSI, n = 124), and HRD (n = 11). Their
distribution across tiers with strong clinical significance (IA, IB) and
potential clinical significance (IIC and IID) differed between tumor
types (Supplementary Fig. S6). For 311 patients (41%), more than
one actionable alteration was found. For 104 patients (14%), both an
actionable alteration and an immunotherapy biomarker were
demonstrated.

Actionable markers were found in a total of 88 different genes. To
evaluate the additional benefit of CGP testing, we estimated the number of
patients for whom actionable results would have been obtained using the
standard-of-care diagnostic gene panels in Belgium by taking only those
genes into account that are included in the local guidelines (ComPerMed).
With standard-of-care panels, actionable results would have been obtained
for 160 patients, accounting for a substantially lower actionability of 21%,
compared to the 81% overall actionability considering the full CGP analysis
(Fig. 3b).
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nMTB treatment recommendations
Of the 756 patients with successful CGP analysis, 524 (69%) received at least
one treatment recommendation by the nMTB based on their CGP profiles
(Supplementary Fig. S7). The full list of biomarker—drug classmatches that
resulted in a treatment recommendation is provided in Supplementary
Table S4. This table also includes the type of highest-priority treatment
recommendation and the actionability according to ComPerMed versus
CGP at the patient level.

Most often, this concerned a recommendation to participate in a
biomarker-driven clinical trial (n = 422). The remaining treatment recom-
mendations were approved treatments (n = 58), off-label drug use (n = 34),
or participation in amedical needprogram(n = 10) (Fig. 1b). For 92patients
(15%), actionable CGP results were identified, but no treatment recom-
mendation could be made by the nMTB, mainly due to a lack of drug
approval in Belgium (e.g., for PI3K inhibitors) or clinical trials in Belgiumor
Europe. An overview of the actionable variants that did not lead to a
treatment recommendation is provided in Supplementary Table S5.

Uptake of treatment recommendations
Treatment recommendation uptake information was collected from the
participating hospitals for 454 patients. For 104 of 454 patients (23%), the
nMTB treatment recommendation was implemented. The main reasons
recommendations were not followed included the choice of the treating
physician (27%), unavailability of a trial within an acceptable distance
(21%), and rapid clinical deterioration of the patient (12%).

Both the rate of recommendation uptake and the reasons recom-
mendations were not followed differed significantly between the partici-
pating hospitals (p < 0.0001 by chi-squared test, Fig. 4, Supplementary Fig.
S8). The highest uptake was observed for hospital #7, where only patients
with lung cancer were included. Conversely, at hospital #, 40% of the nMTB

Table 1 | Characteristics of all patients with successful CGP

Age at inclusion, years

Median 62

Range 21–88

Sex

Male 330 (44%)

Female 426 (56%)

ECOG performance status

0 136 (18%)

1 343 (45%)

2 32 (4%)

Missing 245 (32%)

Metastasis at inclusion

No (locally advanced) 94 (12%)

Yes 662 (88%)

Missing 0 (0%)

Number of metastatic sites

Median 2

Range 1–20

Missing 96

Number of previous therapy lines for advanced disease

Median 1

Range 0–11

Missing 0

Fig. 1 | Patient characteristics and study flow. aGeneral overview of the BALLETT study recruitment, success rate, and recommendations. bOverview of the participants’
characteristics and tumor types.
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recommendations were followed. Reasons for the variability of uptake
across hospitals are not known.

Incidental findings of likely germline variants
In 90 patients (12%), a variant in a cancer susceptibility gene (CSG) was
identified, as evaluated bymolecular geneticists at the local laboratories and
the nMTB. The detection of a CSG variant, along with the assessment of its
potential germline origin, was documented in the BALLETT nMTB report
and communicated to the treatingphysician to initiate appropriate germline
follow-up and clinical genetic counseling. Reanalysis of the data according
to the recently updated ESMO recommendations for germline-focused
analysis of tumor-only sequencing23 revealed 123 CSG variants in 113
patients (15%), fulfilling the ESMO criteria considering all 40 ESMO CSG
genes and all tumor types (Supplementary Fig. S9).

Discussion
While the clinical benefit of CGP has been substantiated in various
publications6–15, unlocking its full potential to maximize benefit in patients
with cancer requires broad and equitable access to diagnostic technologies
and innovative drugs17. Presently, obstacles to accessing genomic profiling
include the substantial costs associated with comprehensive genomic
testing—often not covered by existing reimbursement systems—the
absence of a feasible pathway for generating evidence to support
reimbursement decisions by national healthcare systems, and the
complexity of genomic data that necessitates collaborative, multi-
disciplinary efforts and education of healthcare workers. By setting up
BALLETT in a multi-stakeholder approach involving industry, the
national healthcare institutions (represented by Sciensano), and a large
group ofmultidisciplinary healthcareworkers across Belgium,we aimed
to overcome these challenges. We also sought to enhance access by
securing financial support from industrial partners, thereby paving the
way for the introduction of CGP in real-world clinical oncology. During
the ~2.5-year study period, this approach allowed to provide CGP
analyses for 814 patients with advanced cancer, recruited in a large
number of Belgian oncology centers (n = 12). Through this study,
patients received CGP-based treatment recommendations from the
dedicated nMTB, which was set up by the PRECISION group of BSMO,
with the support of Sciensano.

Actionable genomic markers and CGP-based treatment recommen-
dations were provided for 81% and 69% of patients, respectively. These

results are in line with other precision oncology projects6–15. Furthermore,
using standard-of-care diagnostic gene panels in Belgium (ComPerMed),
actionable results would have been found in only 21%of patients, compared
to 81% with full CGP analysis, demonstrating CGP’s superior potential for
tailored treatment recommendations.

We also describe the large collaborative effort of nineNGS laboratories
involved in the project. We demonstrate the feasibility of implementing a
fully standardized CGP approach, including variant classification and
clinical interpretation, across these nine laboratories, thereby ensuring
broad accessibility for Belgian patients. The uniform CGP success rates
observed across the nineNGS labs, with one exceptionpossibly attributed to
local variability factors, underscore the importance and feasibility of
implementing robust quality control systems. Addressing factors such as
inter-operator differences and variability in sample preparation and DNA/
RNA extraction processes is essential to guarantee the accuracy and relia-
bility of CGP results throughout the entire workflow.

The intensive collaboration of all involved NGS labs to collectively
deliver high-quality and consistent CGP results undoubtedly enhanced the
knowledge and expertise of all laboratory personnel involved, effectively
addressing challenges posed by the complexity of genomic data and tech-
nology. Similarly, discussing all patients with their CGP results in the nMTB
was found to be crucial, not only to allow standardization and prioritization
of appropriate treatment recommendations in line with similar projects6–15,
but also to serve as a valuable framework for education, exchangeof expertise,
and increasing awareness of oncologists and other healthcare workers. The
project, therefore, has contributed to strengthening the confidence of both
laboratory personnel and oncologists during local multidisciplinary patient
discussions, benefiting patients across the Belgian territory.

Findings of potential germline genetic alterations in 15% of cases
highlight an additional layer of benefit from CGP. The nMTB’s recom-
mendation for referral to germline genetic testing and counseling under-
scores the potential for early identification of patients and families at risk,
enabling the timely implementation of cancer preventivemeasures. Follow-
up studies are crucial to evaluate the long-term impact on patients, their
families, and the healthcare budget, aligningwith the broader discussions in
the literature on the ethical implications andoutcomesof germline testing in
oncology24,25.

While the BALLETT study has played a pivotal role in overcoming
obstacles associated with precision oncology in Belgium, as was anticipated
by BSMO, it is crucial to recognize and address several limitations and
persistent challenges. Effectively overcoming these challenges is essential for
the sustainable introduction of CGP in healthcare systems.

One major challenge lies in the difficulty of accessing innovative
treatments.Although (potentially) actionable geneticmarkersweredetected
for 81% of patients, 15% of them did not receive a treatment recommen-
dation. Three primary reasons could be suggested. Firstly, drug accessibility
after European Medicines Agency (EMA) approval might be delayed. A
recent study on drug access in six European countries found that the time to
access may differ in different countries of the E.U. and that hospitals in
Belgium had slower access than Italy and France26. Secondly, clinical trials
involvingmatched drugsmay be conducted exclusively abroad, possibly not
even within Europe. This underscores the importance of expert review by
nMTB members actively involved in conducting clinical trials. An up-to-
date clinical trial database for trials active in Belgium, as was recently
established (cancertrials.be), will increase the usefulness of MTB recom-
mendations. Of note, the BSMO PRECISION initiative might have itself
played a role in attracting more clinical trials to Belgium19. Thirdly, in
contrast to other countries where large clinical trials are being conducted to
facilitate access to and evaluate the effectiveness of targeted and immu-
notherapy drugs, such as theDRUP trial in theNetherlands27, a comparable
large-scale initiative is lacking in Belgium. In anticipation of establishing a
similar pan-cancer multi-drug basket trial in Belgium, leveraging the
insights and experience gained from BALLETT would be essential, as suc-
cessful implementation of such an initiative would require widespread
access to CGP.
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Of the 69% of patients who received a CGP-based treatment
recommendation, 23% received the matched treatment. A prominent
reason for deviation was the physician’s choice, often due to prioritizing
another treatment strategy. Thismight be attributed to the high frequency
of variants with low potential clinical evidence (tier IID), often matched
with less attractive Phase I/II clinical trials. Secondly, patients frequently
rejected the recommendation, particularly if theproposed clinical trialwas
not available within an acceptable distance. This represents an additional
challenge in accessing novel drugs and clinical trials and may underscore
the need for a broader roll-out of clinical studies across Europe and across
the country. In addition, our findings support the need for decentralized
clinical trials, which would, however, require a major shift in the con-
sideration, implementation, and conduct of cancer clinical trials28. Dete-
riorating health was another reason for deviation from nMTB
recommendations, suggesting the need for NGS-informed treatment
selection earlier in a patient’s disease course. Implementing CGP at
diagnosis for all patients with advanced cancer could support better
treatment strategies and early genome-directed therapies, rather than
using them as a last resort. Window-of-opportunity treatments, given

before exhausting standard options, could increase both the uptake and
efficacy of these therapies.

Notably, the uptake of the treatment recommendations differed greatly
among participating hospitals, with no uptake in one hospital. Reasons for
this finding should be explored. Possibilities include lack of awareness and
training of physicians and limited availability of an adequate clinical study
infrastructure in the hospital, among other factors. These observations
highlight the need for training in precision oncology and should drive
national and local efforts toward improved clinical trial infrastructure and
access.

Another major challenge encountered in this study involved standar-
dizing treatment recommendations within the nMTB. The custom-
designed app for providing clear data visualization to nMTB members
emerged as indispensable, facilitating structured and harmonized discus-
sions (Supplementary Fig. S10).Matching drugs and clinical trials to targets
primarily involved manual searches of online databases and consultation
with two different tertiary NGS data analysis systems that were available for
the study. While these systems provide automated matching of targets to
drugs and clinical trials, manual filtering and consideration of trial options
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are still required to ensure relevance and adequacy considering the patient’s
cancer history. The development of a comprehensive, user-friendly, up-to-
date, and effective decision support tool is crucial to aid healthcare profes-
sionals in interpreting complex genomic data and formulating evidence-
based treatment recommendations. Such a tool would enhance the effi-
ciency of the decision-making process and contribute to the harmonization
of CGP-based interventions.

Using thefindings of thepresent study to inform theBelgianhealthcare
system about reimbursement decisions also remains a challenge. In future
work, wewill explorewhether patients have experienced benefits in terms of
their PFS ratio upon the completion of patient follow-up. However, the
likelihood of observing significantly improved clinical outcomes will be
challenged by the fact that only a minority of patients received thematched
treatment. Convincing stakeholders ideally also involves presenting data on
compelling economicoutcomes. Itwaspreviously reported thatNGS testing
led to annual cost savings of 25000 USD per patient due to reduced drug
costs resulting from enrollment in clinical trials29. However, the cost-
efficiency of CGP remains unclear and is a major barrier to reimbursement
in many countries. In this study, the cost of CGP was estimated at 1.831,94
euros per test (incl. VAT).Going forward, the BALLETT study databasewill

further be utilized for healthcare technology assessment in collaboration
with theNetherlandsCancer Institute (NKI, Amsterdam) as part of the EU-
funded Can.Heal project (Can.Heal - Building the EU genomics platform
(canheal.edu)). These efforts aim to clarify the economic impact of CGP.

In conclusion, the BALLETT study not only reinforces the clinical
utility of CGP in identifying actionable targets but also emphasizes the
importance of collaborative efforts, standardized approaches, and com-
prehensive decision-making frameworks. It offers a potential framework for
decentralized CGP implementation in other regions, though feasibility
depends on local challenges and infrastructure. As precision oncology
continues to evolve, ourfindings contribute to the growingbodyof literature
advocating for integrating CGP into routine clinical practice. Addressing
challenges related to innovative drug access, standardizing treatment
recommendations with decision support tools, and evidence generation is
imperative for the sustained integration of CGP into the Belgian healthcare
system.

Methods
Study design and ethical approval
The PRECISION working group of BSMO designed the clinical study pro-
tocol which is available at clinicaltrials.gov (NCT05058937). The study was
conducted under the precepts established in the Declaration of Helsinki,
GoodClinical Practice guidelines, and all applicable regulatory requirements.

The study was approved by the local ethical committees of the 12
participating clinical sites (Supplementary Table S1) and confirmed after
central review by the central ethical committee (Commission for Medical
Ethics, University Hospital Ghent, EC study reference BC-08269). For
registration of the study data, an electronic Case Report Form (eCRF) was
developed on the Castor EDC platform (Amsterdam, The Netherlands).

Clinical sites and patients
Patients were recruited from 12 Belgian hospitals, comprising 4 university
hospitals and 8 general hospitals. All participating hospitals have a clinical
trial infrastructure, though the level of activity and extent of capabilitiesmay
vary. Patients eligible for the project were adults (>18 y) with any solid
tumor type, metastasized or locally advanced, either at diagnosis or at
progression on a standard-of-care treatment. Early treatment lines were
preferred to maximize the chance of therapeutic clinical trial enrollment.
Patients were required to have a life expectancy of >12 weeks, an Eastern
Cooperative Oncology Group (ECOG) Performance Status of ≤2, and no
severe hematopoietic, renal, and/or hepatic dysfunction as assessed by the
local principal investigator. Patients had to have a tissue biopsy available of
less than two years old containing >10% tumor cells for CGP analysis. The
number of enrolled breast, colorectal, and lung cancer cases was capped at
120 per tumor type to ensure a significant number of patients with less
prevalent tumor types. An initial number of 864 slots were available. All
patients gavewritten informedconsent for the study. Patientswere recruited
from May 2021 to October 2023.

CGP by the BALLETT NGS laboratory consortium
A consortium of nine Belgian NGS laboratories was installed. Every week,
one CGP run of eight or 16 samples pooled from the 12 participating sites
was performed, alternating in one of the nine NGS laboratories. These
laboratories comply with the ISO15189 standard formedical laboratories as
assessed by the Belgian Accreditation Instance and are recognized by the
Belgian healthcare authorities to perform NGS for clinical oncology. The
consortium had weekly meetings to discuss technical aspects and patient
results and to promote standardization of testing and variant classification,
which needs to be performed according to the Belgian ComPerMed
guidelines (Commission Personalized Medicine)30.

For optimal standardization, the commercial, off-the-shelf TruSight
Oncology 500 CGP kit (TSO500) (Illumina, Inc., San Diego, CA) was used
in all laboratories. This kit was previously thoroughly validated for its
diagnostic implementation by one of the BALLETT laboratories (Jessa
Hospital, Hasselt). Methodology and validation results were described
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Fig. 4 | Treatment recommendations and uptake. a Relative distribution of
treatment recommendation types across tumor types. b Uptake rate of the nMTB
recommendations and reasons for deviation from recommendations across parti-
cipating hospitals in the BALLETT study. MNP medical need program.
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previously31. In short, TSO500 is a hybrid capture-based CGP assay that
allows for the detection of SNVs and indels in 523 tumor-associated genes,
CNVs of 59 genes, fusions with 55 cancer driver genes, as well as MSI and
TMB. Starting with 40–80 ng DNA and 40–80 ng RNA extracted from
formalin-fixed and paraffin-embedded (FFPE) samples revealed a precision
and accuracy >99% for all variant types. The analytical sensitivity and
specificity were at least 99% for SNVs, indels, CNVs, MSI, and fusions. For
TMB, only values near the threshold of 10 mutations/Mb could result in
divergent clinical interpretations (TMB-high versus TMB-low). The limit-
of-detection for SNVs and indels was well below the set threshold of 5%
variant allele frequency (VAF). The effectiveness of its adoption in a clinical
diagnostic setting for CGP was further prospectively demonstrated in a
consecutive series of 624 patients with cancer31. A micro-costing study
estimated the total cost of the TSO500 CGP test, at €1832 (incl VAT). This
covered sample preparation, DNA/RNA extraction, instruments, labor, all
reagents and consumables, sequencing, bioinformatics, quality control, and
validation.All other NGS labs implemented TSO500 after engaging in an
Illumina proficiency test run that yielded satisfactory results across all nine
labs. Five labs performed their analyses with the standard TSO500 protocol
withpoolingof eight samples (DNA+ RNA)per runonaHighOutput v2.5
(300 cycles) flow cell and 2 × 101 bp paired-end sequencing on a Next-
Seq500/550Dx instrument (Illumina, Inc.). The other four labs used the
TSO500 High-Throughput (TSO500-HT) protocol, pooling 16 samples
(DNA+RNA) per run on an SP flow cell and 2 × 101 bp paired-end
sequencing on a NovaSeq6000 instrument (Illumina, Inc.).

During the trial, HRD testing was added to the CGP analysis in four
NGS labs and was performed in 100 patients enrolled after April 2023 in a
tumor-agnostic way. The TSO500 HRD analysis assesses the relevant
genomic scars including loss of heterozygosity (LOH), telomeric-allelic
imbalance (TAI), and large-scale state transitions (LST), producing a
genomic instability score (GIS) using a proprietary algorithm powered by
MyriadGenetics. AGIS score of 42 or higher was consideredHRDpositive.

All sequencing data were analyzed using the Illumina TruSight
Oncology 500 Local App software version 2.2. The sequencing data of the
samples with HRD testing included were analyzed on an Illumina, Inc. on-
premise DRAGEN server version 3 with the DRAGENTruSight Oncology
500 Analysis Software version 2.1.

National molecular tumor board
Within the BSMO PRECISION initiative framework, a virtual nMTB was
set up for weekly patient discussions19. nMTB members are PRECISION
working groupmembers, investigators of theGeNeo andBALLETT studies,

other interested expert oncologists, pathologists, clinical biologists, geneti-
cists, molecular biologists, and bioinformaticians from all over Belgium.
CGP-based treatment recommendations by the expert group could consist
of (1) an approved treatment, (2) participation in a Phase I, II, or III clinical
trial, (3) a drug in a medical need/compassionate use/early access program,
or (4) off-label use of a drug. Likely incidental findings of a germline genetic
aberration predisposing to cancer were identified and discussed in view of
patient referral for germline genetic testing and genetic counseling. To allow
optimal visualization of patient data and results during the nMTB, a custom
interactivewebdashboardwas developedusing the Shiny package inR. This
application retrieves data directly from the eCRF, allowing for an efficient
display and analysis of the information in a user-friendly interface. To
facilitate standardization of target-drug and target-clinical trial matching
during the nMTB, the laboratory investigators had access to the tertiary
NGS data analysis tools OncoKDM (OncoDNA, Gosselies, Belgium) and
Clinical Genomics Workspace (CGW; Velsera, Charlestown, MA).

Workflow
The workflow is illustrated in Fig. 5. After patient recruitment by local
oncologists, the local pathologist verified the availability of a suitable tissue
biopsy. Subsequently, the local lab extracted DNA and RNA from FFPE
slides using their accredited methods, and if the yield was sufficiently high
the samplewas registered into a custom-designedonline sample registration
and run scheduling (SRRS) tool. The SRRS tool then assigned the sample to
aweeklyCGPrun, alternating across nine labs according to apredefined run
schedule.AllDNA/RNAsampleswere sent to the labwhere theweeklyCGP
runwas scheduled. After sequencing, the raw datawere sent to the local labs
from which the samples originated for further CGP data analysis.

All patient data, including demographics, tumor types, treatment
history, and the CGP results, were registered in the eCRF by the local
investigators and visualized for the nMTBmembers by the BALLETTShiny
app. The local investigators were invited to join the nMTB, often con-
tributing additional clinical insights on their patients. After patient discus-
sion in the nMTB, the treatment recommendations were also registered in
the eCRF, and a reportwas automatically generated from theBALLETTapp
and sent to the local oncologist as advice for patientmanagement, to be used
at the treating physician’s discretion. The full content of this report is
available in Supplementary Table S2. Enrollment in a therapeutic clinical
trial requires the signature of the trial-specific informed consent form (ICF).

Outcome measures
The outcome measures were of a descriptive nature:

Patients selected
by local clinician

DNA samples collected
from all hospitals

A report is generated and sent to
the local clinician

All patients are 
discussed at the

nMTBApproved drug

Medical Need Program

Personalised treatment recommendation

Off label drug

Clinical trial

DNA/RNA
prepared by

local NGS lab

CGP data analysed and
prepared for nMTB at 

local NGS labs 

All pooled samples 
analysed alternating at 1 

of 9 NGS labs

Every Friday at 2 pm

Fig. 5 | BALLETT study workflow. Workflow diagram, illustrating the process from patient recruitment to treatment recommendation.
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1) Variants were clinically classified using the AMP/ASCO/CAP tier-
ing system: Tier IA or IB, strong clinical significance, and Tier IIC and IID,
potential clinical significance32. Tier IA, Tier IB, Tier IIC, and Tier IID
variants were considered actionable, broadly aligning with the ESMO Scale
for Clinical Actionability of Molecular Targets (ESCAT) tiers: I (ready for
routine use), II (investigational), and III/IV (hypothetical)33.

The number and prevalence of actionable variants, categorized by type
(SNVs/CNVs/fusions) and clinical tier using CGP were analyzed. This
prevalence was compared to the prevalence of actionable variants if only the
minimal tumorNGSpanels requiredper tumor type in Belgiumwouldhave
been used, which are restricted to genes with level 1 and level 2a designation
according to ComPerMed.be (See Supplementary Table S3: evidence levels
for diagnostic, prognostic or theragnostic biomarkers, as defined by
ComPerMed.be).

2) Description of the patient journey, including the percentage of
patients with successful CGP, the percentage of patients with MTB
recommendationandby typeof treatment recommendation, thepercentage
of patients accessing the CGP-based nMTB recommended treatment, and
reason fordeviating fromthe treatment recommendation (as assessedby the
local teams at the end of the study), TAT from ICF signature to nMTB
recommendation, and timing of treatment initiation following the nMTB
recommendation.

Data availability
The datasets generated and/or analyzed during the current study are
available in the cBioPortal repository, https://www.cbioportal.org/study/
summary?id=ballett_bsmo.

Code availability
The code utilized for statistical analysis and figure creation in this study,
written in R, is available upon request. Interested parties are encouraged to
reachout for access, andwewill provide the necessaryfiles in a timelymanner.
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