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Assessing brain damage in children with spastic unilateral cerebral palsy (uCP)

is challenging, particularly in clinical settings. In this study, we developed

and validated a deep learning-based pipeline to automatically quantify lesion-

free brain volumes. Using T1-weighted and FLAIR MRI data from 35 patients

(aged 5–15 years), we trained models to segment brain structures and lesions,

utilizing an automatic label generation workflow. Validation was performed on

54 children with CP (aged 7–16 years) using quantitative and qualitative metrics,

as well as an independent dataset of 36 children with congenital or acquired

brain anatomy distortions (aged 1–17 years). Clinical evaluation examined the

correlation of lesion-free volumeswith visual-based assessments of lesion extent

and motor and visual outcomes. The models achieved robust segmentation

performance in brains with severe anatomical alterations and heterogeneous

lesion appearances, identifying reduced volumes in the a�ected hemisphere,

which correlated with lesion extent (p < 0.05). Further, regional lesion-free

volumes, especially in subcortical structures such as the thalamus, were linked

to motor and visual outcomes (p < 0.05). These results support the utility

of automated lesion-free volume quantification for exploring brain structure-

function relationships in uCP.

KEYWORDS

brain volume quantification, neurodevelopmental disorders, cerebral palsy, deep
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1 Introduction

Cerebral Palsy (CP), one of the most common childhood-onset motor disabilities,

is caused by non-progressive damage to the developing brain, resulting in permanent

movement and/or posture disorders (Cans, 2000). Structural magnetic resonance imaging

(MRI) is crucial for identifying the timing, extent, and location of brain injuries in CP

(Himmelmann et al., 2017). Hence, visual examination of structural MRI can aid in

diagnosing CP, determining subtypes and comorbidities, and classifying clinical outcomes

(Accardo et al., 2004; Franki et al., 2020; Bax et al., 2006). To standardize evaluation

of MRI findings in CP, visual-based classification systems such as the MRI classification

system (Himmelmann et al., 2017) and the semi-quantitative MRI (sqMRI) scale
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(Fiori et al., 2014) have been developed. The MRI classification

system is a qualitative classification based on pathogenic

patterns occurring at different stages of brain development,

including maldevelopments, predominant white matter

injury, predominant gray matter injury, miscellaneous

findings, and normal findings (Himmelmann et al., 2017).

The sqMRI scale is used to assess brain lesion locations and

extent (Fiori et al., 2014). While these methods have high

inter-rater reliability, they are limited by their reliance on time-

consuming subjective evaluations (e.g., 15–30 min per patient

for sqMRI).

Quantitative assessment methods, such as volumetric analysis,

offer a more objective approach to brain assessment compared

to visual MRI inspection alone. Traditional brain volumetric

analysis tools, such as FreeSurfer (Fischl, 2012), icobrain v1.0–

v5.9 (Struyfs et al., 2020), and childmetrix (Phan et al.,

2021), rely on anatomically typical or nearly typical priors.

Consequently, these methods often fail in the presence of

structural pathology (i.e., large anatomical alterations) (Amorosino

et al., 2020; Radwan et al., 2021). To address this limitation,

methods specifically designed for large anatomical alterations

have been developed. For example, a patch-based learning

method has been applied to patients with conditions such as

normal pressure hydrocephalus (Roy et al., 2015). Similarly,

an atlas-based approach was specifically designed to automate

brain lesion characterization in children with CP (Pagnozzi

et al., 2016), highlighting the clinical significance of white

matter (WM) and gray matter (GM) lesions in this population.

Outperforming traditional approaches based on atlas, deep learning

models provide an alternative for brain segmentation (Akkus

et al., 2017). For example, the deep learning model icobrain-

dl has shown improved measurement reproducibility in both

pediatric and adult populations compared to atlas-based methods

such as childmetrix and icobrain v5.9 (Simarro et al., 2024).

However, the ability of deep learning models to generalize to

unseen data remains a challenge, especially in patients with

severe morphological abnormalities and heterogeneous lesion

appearances (e.g., encephalomalacia caused by local infarct)

(Simarro et al., 2023). This limitation could be addressed by

incorporating training data representative of the target population,

as demonstrated in prior research focused on patients with

ventriculomegaly (Shao et al., 2019).

In this study, we aimed to develop and validate a deep learning-

based pipeline tailored for quantitative brain measurements

in children with spastic unilateral CP (uCP), characterized

by motor impairments predominantly affecting one side of

the body (Rosenbaum et al., 2007). We hypothesized that

lower lesion-free volumes (i.e., volumes of unaffected brain

structures) would be associated with greater brain lesion

extent, as assessed using the sqMRI scale. Given that brain

lesions in CP are non-progressive, we also explored the

clinical relevance of lesion-free volumes to better understand

structure-function relationships influenced by neuroplasticity.

This involved examining differences in regional volumes

between the affected and less-affected hemispheres and

exploring structure-function associations related to motor

and visual outcomes.

2 Materials and methodology

2.1 Datasets

In this study, data were obtained from two different cohorts

of children with uCP. The first cohort was used to develop

and validate the proposed model, with the data divided into

a training and test set. Data from the second cohort were

used to evaluate the model’s performance on an independent

dataset. For the clinical validation, we generated a merged

dataset consisting of both the test and independent datasets.

Demographic information and clinical characteristics of the

datasets are presented in Table 1. The acquisitionMRI protocols are

provided in Supplementary material.

For the datasets included in the current study, written parental

informed consent was obtained for all children, according to

the Declaration of Helsinki. Additionally, children aged 12 years

or above were asked for their written assent. Both studies were

approved by the local Ethical Committee of UZ Leuven, Belgium

(S67752 and S62906).

2.1.1 Training and test CP datasets
Fifty-five children with uCP, aged between 5 and 15

years, were recruited between May 2014 and April 2017 as

part of a previous project (FWO project G087213N). Brain

lesions (FLAIR hyperintensities and cavities) were manually

annotated by a neuroradiologist (A.M.R.) using ITK-snap

(Yushkevich et al., 2019). Thirty-five children were randomly

assigned to the training dataset to optimize the weights

of the deep learning models. The remaining 20 patients

formed the test set and were exclusively used to evaluate

the model’s performance, without being involved in any

training steps.

2.1.2 Independent CP dataset
The independent dataset consisted of 34 children diagnosed

with uCP, aged between 7 to 16 years. The data was collected

as part of a previous project performed between 2021 and 2023

(FWO project G0C4919N), where motor and visual performance

was assessed. A detailed description of the motor characteristics is

presented in Table 1, while the visual assessments are provided in

Supplementary Table S1.

2.1.3 Distorted brain benchmark dataset
The independent distorted brain benchmark dataset consists

of 36 children with congenital or acquired brain anatomy

distortions, aged between 1 to 17 years, selected from the

EMEDEA-PED archive (Amorosino et al., 2022). One patient

from the original dataset was excluded due to an age below

1 year. The distorted brains involve alterations in the normal

shape of cerebral structures (e.g., cortex, ventricles), the absence

of entire structures (e.g., corpus callosum, vermis), disrupted

spatial relationships among structures, and volume changes in

normal tissues or anatomical regions, including agenesis of the
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TABLE 1 Demographic information and clinical characteristics across training, test and independent CP datasets.

Training Test Independent

Number of children 35 20 34

Female 19 (54.3%) 8 (40.0%) 15 (44.1%)

Right-sided uCP 14 (50.0%)a 8 (40.0%) 16 (47.1%)

Age range in years 9.0± 2.7 12.0± 1.9 11.5± 2.8

(5.0–15.0) (7.0–15.0) (7.1–16.0)

Total sqMRI 10.0± 4.5a 11.0± 5.7 11.0± 5.9

(0.0–16.5)a (0.5–21.5) (0.0–26.0)

AHA 59.0± 12.0a 68.0± 17.1b 76.0± 15.5

(43–89)a (34–89)b (46–100)

MACS

I 7 (25.0%)a 8 (44.4%)b 20 (58.8%)

II 10 (35.7%)a 6 (33.3%)b 10 (29.4%)

III 11 (39.3%)a 4 (22.2%)b 4 (11.8%)

MRICS

Maldevelopments 0 (0.0%) 0 (0.0%) 2 (5.9%)

Predominant WM injury 18 (51.4%) 10 (50.0%) 23 (67.6%)

Predominant GM injury 16 (45.7%) 9 (45.0%) 6 (17.6%)

Miscellaneous 0 (0.0%) 0 (0.0%) 1 (2.9%)

Normal 0 (0.0%) 1 (5.0%) 2 (5.9%)

Mean± standard deviation (min–max).

uCP, unilateral cerebral palsy; sqMRI, semi-quantitative MRI; AHA, assisting hand assessment; MACS, manual ability classification system; MRICS, MRI classification system; WM, white

matter; GM, gray matter.
aData available for 28 children.
bData available for 18 children.

corpus callosum, posterior fossa malformations, malformations

of cortical development, and severe brain distortions related

to complex malformations or lesions (Amorosino et al.,

2022).

We selected this fully independent pediatric dataset of

T1-weighted images to validate the model’s performance in

patients with brain anatomy distortions. Ground truth annotations

were generated using a semi-automatic procedure guided by

an expert; for further details, we refer to Amorosino et al.

(2022).

2.2 Clinical and radiological assessment

2.2.1 Semi-quantitative MRI scores
MR images from the training, test, and independent datasets

were classified using the sqMRI scale. Brain lesions were mapped

onto a six-axial slice template, and brain damage was assessed

across various regions, with higher scores indicating greater

lesion extent. Lesion extent in the frontal, parietal, temporal,

and occipital lobes was scored from 0 to 3, as per sqMRI

scoring, with each hemisphere evaluated separately. Additionally,

brain structures, including the lenticular nucleus (sum of globus

pallidus and putamen), caudate nucleus, posterior limb of the

internal capsule (PLIC), thalamus, and cerebellum, were scored

on a binary scale (i.e., presence or absence of lesions). For a

detailed description of the sqMRI methodology, see Fiori et al.

(2014).

2.2.2 Clinical tests for motor ability
Manual ability was classified using the Manual Ability

Classification System (MACS) (Eliasson et al., 2006), and bimanual

performance was assessed via the Assisting Hand Assessment

(AHA) (Holmefur and Krumlinde-Sundholm, 2016). MACS

assesses the ability of children with CP to handle objects in everyday

activities, where higher levels indicate greater impairment. The

AHA evaluates the spontaneous use of the hand with greater

impairment during bimanual activities through a video-recorded

semi-structured play session. For the AHA, a lower scores indicates

greater impairment.

2.2.3 Clinical tests for vision
Clinical tests for vision included the assessment of visual

functions (i.e, the performance of components of the visual system)

and functional vision (i.e., visual task-related ability) (Bennett

et al., 2019). Visual functions were assessed through several tests;

(1) binocular stereoacuity was evaluated using the fly and circle

subtests of the Titmus Stereo Fly Test (2018)1; (2) binocular visual

acuity was measured with the Freiburg Visual Acuity Test (Bach,

1996); (3) motor-free visual-perceptual skills were assessed using

five subtests of the Test of Visual Perceptual Skills, Fourth Edition

(TVPS-4), including visual discrimination, spatial relationships,

form constancy, visual figure-ground, and visual closure (Martin,

1 https://www.stereooptical.com/products/stereotests-color-tests/

original-stereo-fly/
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2017); and (4) motor-dependent visual-perceptual skills were

assessed using the subtest of the Beery Buktenica Test of Visual-

Motor Integration, Sixth Edition (Beery-VMI) (Beery, 1989). Lower

scores in each of these tests indicated greater impairment, except

for the Freiburg Visual Acuity Test, where higher scores reflected

greater impairment. To assess functional vision, the Flemish

Cerebral Visual Impairment Questionnaire (FCVIQ) (Ortibus

et al., 2011), a 46-item binary-response screening tool completed by

caregivers, was implemented. The total FCVIQ score was calculated

by summing the positive answers, with higher scores indicating

greater impairment.

For a detailed description of the clinical tests for motor ability,

vision and relative scoring system, see Crotti et al. (2024).

2.3 Proposed MRI quantification pipeline

The proposed pipeline segments and quantifies brain structures

and lesions using 3D T1-weighted and 3D FLAIR images. Two

deep learning models were trained for this purpose: one for

structural segmentation and another, building on the first, for lesion

segmentation. Figure 1 outlines the proposed pipeline.

2.3.1 Structural segmentation model
The structural segmentation model processes T1-weighted

images to segment brain tissue, including WM, GM, and

cerebrospinal fluid (CSF), as well as 22 anatomical brain structures

(see a detailed list in Supplementary material). The structural

segmentation model was based on the extensively validated deep

learning model of icobrain-dl, which accurately quantifies brain

structures in both pediatric and adult populations where there are

no severe anatomical alterations of the brain (Simarro et al., 2024).

We retrained the model by fine-tuning its pre-existing weights

using the training dataset, which consisted of patients with severe

lesions and anatomical alterations. Training labels were generated

as detailed in Section 2.5.

2.3.2 Lesion segmentation model
The lesion segmentation model processes T1-weighted and

FLAIR images, as well as tissue segmentation generated by the

structural segmentation model described in Section 2.3.1 (i.e., WM,

GM, CSF, or background of the image). The model automatically

segments FLAIR hyperintensities (e.g. periventricular leukomalacia

lesions) and T1-weighted/FLAIR hypointensities (e.g. cavities).

The model initialized its weights using He weight initialization

(He et al., 2015), and was optimized using manual brain lesion

annotations of the training set (see Section 2.1.1).

2.3.3 Lesion-free volume
Based on the segmentation of brain structures and lesions

generated by the deep learning models, we calculated the lesion-

free volume, representing the volume of brain structures unaffected

by lesions (see Equation 1).

Lesion-free volume = Total volume− Lesion volume (1)

2.4 Model architecture, preprocessing and
postprocessing

Both models utilized established 3D U-net deep learning

architecture (Çiçek et al., 2016). Training continued until the

validation loss converged, with validation conducted on a subset

of five randomly selected patients from the training dataset.

Models utilized a loss function combining soft Dice loss and

weighted categorical cross-entropy. TensorFlow 2.6 was used for

implementation. Preprocessing steps included affine registration

to MNI space using NiftyReg (Ourselin et al., 2001) and intensity

normalization to minimize scanner variability. First, intensities

were clipped at the 1st and 99th percentiles to mitigate the impact

of outliers. Then, normalization was performed using a variation

of z-scoring, where the function was computed for values above

the 10th percentile, prioritizing the median over the mean. The

standard deviation was calculated within the 90th percentile range.

Postprocessing included segmentation of WM lobes and PLIC by

integrating the WM segmentation from the deep learning model,

with localization information from atlases (Mori et al., 2005). For

a detailed description of the preprocessing and implementation

methods, we refer to Simarro et al. (2024).

2.5 Training labels generations

Manual annotation of tissue and structures is highly time-

consuming and not feasible for large datasets. Therefore, we

proposed an efficient methodology to obtain labels, also referred to

as silver ground truth (see Figure 2). Starting with labels predicted

by icobrain-dl, we obtained the lesion-affected segmentation, which

lacked accurate labeling in the lesion areas. In parallel, we combined

the manual lesion segmentation labels with the T1-weighted

image to generate a lesion-filled representation using Virtual Brain

Grafting (Radwan et al., 2021). The result was then segmented

using icobrain-dl to generate the lesion-filled segmentation, and

both segmentations were merged to create the silver ground truth

according to the following conditions, which were empirically

defined on the training set:

• Outside the dilated manual lesion mask, the lesioned

segmentation was used.

• Inside the dilated manual lesion mask, and when the intensity

of the T1-weighted image fell within the 1st and 95th

percentiles of the CSF intensity in the lesioned segmentation,

the silver ground truth was labeled as CSF.

• Inside the dilated manual lesion mask and outside the T1-

weighted intensity range of CSF, the lesion-filled segmentation

was used.

2.6 Statistical analysis

The technical performance of the algorithm was evaluated

both quantitatively and qualitatively. In the clinical performance,

we tested the hypothesis that lower lesion-free volumes correlate

with greater brain lesion extent, as assessed using the sqMRI
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FIGURE 1

Proposed pipeline for automatic quantification of brain structures and lesions. The pipeline includes two deep learning models that process 3D

T1-weighted and 3D FLAIR images to automatically quantify brain structures and lesions (e.g., periventricular leukomalacia and cavities).

FIGURE 2

Workflow for generating silver ground truth labels. The methodology utilized icobrain-dl, a pre-trained deep learning model, on T1-weighted images

to predict a lesion-a�ected segmentation (noted for lacking accuracy). Manual lesion segmentation was combined with the T1-weighted image

using Virtual Brain Grafting (Radwan et al., 2021) to generate a lesion-filled representation, subsequently segmented by icobrain-dl to produce

lesion-free segmentation. The silver ground truth was created by merging both segmentations.

scale. Additionally, we investigated the differences in lesion-free

regional volumes between affected and less-affected hemispheres,

and explored the correlations between the volumes of the affected

hemisphere and motor and visual scores. In contrast to disjunction

testing, where all tests are evaluated together and rejecting the joint

null hypothesis requires at least one significant result (necessitating

alpha adjustment), we explored brain structure-function relations

through individual testing. In this approach, each structure-

function relation is evaluated independently, and significance must

be achieved individually to reject its corresponding null hypothesis.
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Consequently, no nominal alpha level adjustment (i.e., correction

for multiple comparisons) was applied (Rubin, 2021). Significance

levels were assessed at p-value 0.05, 0.01, and 0.001.

2.6.1 Technical validation
2.6.1.1 Quantitative validation

Quantitative validation involved comparing the overlap

between the structures predicted by themodel and the silver ground

truth in the test dataset as well as the manual annotations in the

distorted brain benchmark dataset. To align with the annotations

in the distorted brain benchmark dataset, regions were classified

as cerebrospinal fluid, GM, WM, deep GM (including thalamus,

putamen, caudate and pallidum), brainstem (including midbrain,

pons and medulla), and cerebellum. Segmentation accuracy was

assessed using the Dice similarity coefficient, and the 95th

percentile of the Hausdorff distance. The Dice similarity coefficient

quantifies the overlap between segmentation masks, ranging from

0 for no overlap to 1 for perfect agreement, while the Hausdorff

distance measures maximal contour distance (in millimeters)

between masks, with smaller values indicating greater similarity.

2.6.1.2 Qualitative validation

Qualitative validation was based on visual assessments of

segmentation quality by two independent raters in the independent

dataset. Prior to rater evaluation, and inspired by the qualitative

evaluation proposed in Radwan et al. (2021), we defined a protocol

for visual quality assessment.

The protocol aimed to measure the quality of the segmentation

and its impact on final volume measurements. The evaluation

process involved a neuroradiologist (A.M.R.) and a child

neurologist (E.O.), who visually assessed the segmentations on

high-resolution multi-frame panels of axial and coronal slices from

both T1-weighted and FLAIR images. Parcellation defects were

defined as unlabeled or erroneously labeled voxels within a region.

Those were considered minor if not exceeding ∼10% of a region’s

volume, intermediate if between 10%–25%, and major if exceeding

25% of a region’s volume as estimated by the experts. The quality

of the segmentation was evaluated across several regions, including

WM lobes, cortical GM lobes, and subcortical structures, using the

following categories:

• Rejected: segmentation fails to capture anatomy, with more

than three intermediate defects or one major defect.

• Approved with remarks: segmentation captures overall

volume but has up to three intermediate-scale defects or more

than three minor defects.

• Approved: accurate segmentation with up to three minor

defects.

Inter-rater reliability was assessed by computing the average

random raters’ intraclass correlation coefficient. Moderate

reliability was defined by an intraclass correlation coefficient

between 0.5 and 0.75, while good reliability was defined between

0.75 and 0.9 (Koo and Li, 2016).

2.6.2 Clinical validation
2.6.2.1 Correlation analysis with sqMRI scores

Spearman’s rank correlation was used to analyze the

relationship between lesion-free volumes and sqMRI scores of the

WM in the different lobes (scored from 0 to 3). For subcortical

structures, significant differences in regional volumes between the

regions with and without sqMRI findings were assessed using the

non-parametric Mann-Whitney U test. Confidence intervals with

a confidence level of 95% were calculated using bootstrapping.

2.6.3 Exploratory analysis using the lesion-free
volume
2.6.3.1 Relative di�erence between regional volumes in

a�ected and less-a�ected hemispheres

The affected brain hemisphere in uCP is defined as the one

contralateral to the clinical side (i.e. the side with predominant

motor impairments). We computed the lesion-free regional

volume differences between hemispheres, and tested the

significance of these differences using the non-parametric

Wilcoxon signed-rank test.

2.6.3.2 Exploratory analysis with clinical tests for motor

ability and vision

We investigated the Spearman’s rank correlations between

lesion-free volumes in the affected hemisphere and motor and

visual scores.

3 Results

3.1 Quantitative validation of the
segmentation model

In the independent CP dataset, the brain structures segmented

by the model achieved a Dice similarity coefficient greater than

0.95 and a 95th percentile Hausdorff distance below 1.2 mm across

all brain structures compared to the silver ground truth in 20

patients from the test set. See Supplementary Table S2 for detailed

information on the quantitative validation of the brain regions.

In the distorted brain benchmark dataset, as shown in Table 2,

the model achieved a Dice similarity coefficient greater than

0.74 and a 95th percentile Hausdorff distance below 11.2 mm

across all parenchymal regions (i.e., excluding CSF) compared to

manual annotations. Figure 3 presents the automatic segmentation

compared with manual annotations, showcasing the performance

of the model in cases with congenital or acquired brain anatomy

distortions including agenesis of the corpus callosum, posterior

fossa malformations, malformations of cortical development, and

severe brain distortions.

3.2 Qualitative validation of the
segmentation models

Table 3 presents the segmentation quality as evaluated by each

rater for various brain regions in the independent dataset. The

intraclass correlation coefficient between raters was 0.75, indicating
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moderate/good agreement. Subcortical structure segmentations

were approved (with or without remarks) for every patient. For

the 34 patients in the dataset, between 1 and 8 segmentations

were rejected for WM, and between 2 and 5 for CGM. Figure 4

shows the automatic segmentation of patients with varying quality,

ranging from the only patient whoseWM and CGM segmentations

were rejected by both raters (Figure 4A) to patients with approved

segmentations (Figures 4B–D) despite anatomical alteration and

heterogeneous lesion appearance.

TABLE 2 Segmentation overlap in patients with congenital or acquired

brain anatomy distortions.

Dice similarity
coe�cient

Hausdor� distance 95th
percentile

CSF 0.67 (0.1) 5.65 (3.25)

GM 0.8 (0.06) 2.67 (2.59)

WM 0.83 (0.05) 1.96 (0.83)

Deep GM 0.74 (0.14) 5.74 (5.99)

Brainstem 0.84 (0.04) 7.15 (13.89)

Cerebellum 0.8 (0.11) 11.19 (12.13)

Mean (standard deviation) of the dice similarity coefficient and Haus-dorff distance 95th

percentile of the segmentation produces by the model and the manual annotation in the

distorted brain benchmark dataset. CSF, cerebrospinal fluid; WM, white matter; GM, gray

matter.

3.3 Clinical validation

3.3.1 Correlation with sqMRI scales
Table 4 presents the correlations between the regional lesion-

free volume and the regional sqMRI across the test, independent,

and merged CP datasets. In the merged dataset, significant

correlations were found between lesion-free volume and sqMRI

scores in the frontal, parietal, and temporal lobes (|r| = 0.58–

0.77, p < 0.001), as well as in the left occipital lobe (|r| =

0.35, p < 0.01). For brain structures with binary sqMRI

scores, significant volume differences were identified between

regions with and without sqMRI findings in the thalamus,

caudate nucleus, and lenticular nucleus (U = 0 − 109, p <

0.05). The cerebellum was excluded due to the absence of

sqMRI-assessed lesions.

3.4 Exploratory analysis

3.4.1 Regional volume di�erences between
a�ected and less-a�ected hemispheres

Table 5 shows the relative regional volume differences

between hemispheres (affected minus less-affected). In

the merged dataset, all the cerebral regions showed lower

volumes in the affected hemisphere, with relative reductions

FIGURE 3

Examples of automatic segmentation compared with manual annotations from the distorted brain benchmark dataset, including patients with

congenital or acquired brain anatomy distortions such as agenesis of the corpus callosum, posterior fossa malformations, malformations of cortical

development, and severe brain distortions related to complex malformations or lesions. CSF, cerebrospinal fluid; WM, white matter; GM, gray matter.
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TABLE 3 Visual evaluation of segmentation quality by each of the expert raters in the independent datasets.

Structures White matter Cortical gray matter

R1 R2 R1 R2 R1 R2

Rejected 0 (0.0%) 0 (0.0%) 8 (23.5%) 1 (2.9%) 2 (5.9%) 5 (14.7%)

Approved with remarks 9 (26.5%) 9 (26.5%) 17 (50.0%) 13 (38.2%) 14 (41.2%) 10 (29.4%)

Approved 25 (73.5%) 25 (73.5%) 9 (26.5%) 20 (58.8%) 18 (52.9%) 19 (55.9%)

The intraclass correlation coefficient between raters is 0.75. R1, rater 1; R2, rater 2.

FIGURE 4

Examples of patients with unilateral cerebral palsy from the independent set illustrate varying segmentation quality as evaluated by the raters. Patient

(A) was the only case where both raters rejected the white matter and cortical gray matter segmentations, likely due to extreme lesion appearance

and limited healthy tissue. In contrast, the segmentations for patients (B–D) were approved despite their severe and heterogeneous lesions,

demonstrating the model’s robustness in handling diverse cases in children with unilateral cerebral palsy. L, left; R, right; PLIC, posterior limb of the

internal capsule; WM, white matter; CGM, cortical gray matter.

ranging from 5% (occipital CGM) to 34% (PLIC). Significant

differences were observed in all these regions, including

the thalamus, caudate, lenticular nucleus, PLIC, occipital

WM, WM and CGM in the parietal, frontal, and temporal

lobes (p < 0.001), as well as occipital CGM (p < 0.05). In

contrast, the cerebellum showed a trend toward greater volume

in the affected hemisphere, though this difference was not

statistically significant.

3.4.2 Correlation with clinical tests for motor
ability

As shown in Table 6, motor ability (AHA andMACS) correlated

significantly with the regional lesion-free volumes of the affected

hemisphere in the thalamus, caudate, and lenticular nucleus, as

well as WM and CGM in parietal, frontal, and temporal lobes

(|r| = 0.4–0.55, p < 0.01) in the merged dataset. Significant

correlations were found between AHA and occipital WM and PLIC
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TABLE 4 Lesion-free volumes were consistent with the semi-quantitative lesion burden scores (sqMRI).

Test (n = 20) Independent (n = 34) Merged (n = 54)

Spearman correlation (r)

WM frontal L –0.77 (–0.4, –0.91)∗∗∗ –0.74 (–0.47, –0.87)∗∗∗ –0.75 (–0.58, –0.85)∗∗∗

WM frontal R –0.81 (–0.52, –0.94)∗∗∗ –0.75 (–0.5, –0.87)∗∗∗ –0.77 (–0.61, –0.87)∗∗∗

WM occipital L –0.57 (–0.15, –0.8)∗∗ –0.24 (0.17, –0.58) –0.35 (–0.06, –0.59)∗∗

WM occipital R –0.12 (–0.57, 0.42) 0.05 (–0.34, 0.4) 0.0 (–0.3, 0.29)

WM parietal L –0.85 (–0.74, –0.93)∗∗∗ –0.7 (–0.43, –0.85)∗∗∗ –0.74 (–0.56, –0.84)∗∗∗

WM parietal R –0.74 (–0.42, –0.9)∗∗∗ –0.81 (–0.71, –0.9)∗∗∗ –0.77 (–0.63, –0.87)∗∗∗

WM temporal L –0.74 (–0.39, –0.87)∗∗∗ –0.45 (–0.07, –0.72)∗∗ –0.58 (–0.31, –0.75)∗∗∗

WM temporal R –0.7 (–0.31, –0.87)∗∗∗ –0.5 (–0.14, –0.75)∗∗ –0.59 (–0.35, –0.75)∗∗∗

Mann–Whitney U-test (U)

Thalamus L 17 (2, 42)∗ 18 (0, 60)∗ 78 (13, 205)∗∗

Thalamus R 15 (1, 40)∗ 43 (12, 93)∗ 109 (48, 202)∗∗∗

Caudate L 0∗∗ 28 (8, 46) 42 (8, 119)∗∗

Caudate R 9 (0, 18) 0a 17 (0, 51)∗

Lenticular L 0∗∗ 0a 0∗∗∗

Lenticular R 0∗∗∗ 4 a 11 (2, 36)∗∗∗

PLIC L 17 (5, 41)∗ 78 (40, 103) 163 (89, 257)∗

PLIC R 27(9, 47) 125(109, 132) 257 (156, 335)

An inverse Spearman correlation was found between lesion-free volumes and sqMRI scores in WM lobes (sqMRI: 0–3). For subcortical structures, significant differences in regional volumes

between the regions with and without sqMRI findings were found using the non-parametric Mann–Whitney U-test. The analysis was conducted on the test, independent, and merged CP

datasets. For WM lobes: Spearman correlation coefficient with 95% confidence intervals. For subcortical structures: Mann–Whitney U with 95% confidence intervals.

L, left; R, right; WM, white matter; CGM, cortical gray matter; PLIC, posterior limb of the internal capsule.
aConfidence intervals cannot be computed due to the presence of only one positive sample.
∗p < 0.05.
∗∗p < 0.01.
∗∗∗p < 0.001.

(|r| = 0.28–0.32, p < 0.05), while no significant correlations were

observed between the motor ability test and the occipital CGM lobe

or the cerebellum.

3.4.3 Correlation with clinical tests for vision
Table 7 shows the correlation between the lesion-free volume

of the affected hemisphere and visual tests. Titmus Stereo Fly,

Freiburg Visual Acuity, TVPS-4, and FCVIQ showed significant

correlations with total WM volume (|r| = 0.35–0.51, p < 0.05).

The total score of the functional vision questionnaire, FCVIQ,

correlated with each WM lobe independently (|r| = 0.35–0.49, p <

0.05). Notably, the frontal and temporal lobes correlated with all the

motor-free visual-perceptual skills measured by the TVPS-4 scores

(|r| = 0.35–0.43, p < 0.05). The thalamus also exhibited significant

correlations with Titmus Stereo Fly, Freiburg Visual Acuity, TVPS-

4 (excluding the spatial relationships subtest), Beery-VMI, and

FCVIQ (|r| = 0.35–0.58, p < 0.05).

4 Discussion

In this study, we developed, trained, and validated deep

learning models tailored for quantitative brain measurements in

children with uCP, enabling the automatic computation of regional

lesion-free volumes. The models demonstrated good segmentation

performance in patients with severe anatomical alterations

and heterogeneous lesion appearances, both quantitatively and

qualitatively. In addition, our findings support the hypothesis

that the regional lesion-free volumes correlate with lesion severity

and extent, as assessed by the sqMRI scale. Exploratory analyses

of structure-function relationships revealed associations between

regional lesion-free volumes and motor and vision outcomes.

While existing volumetric analysis tools such as childmetrix
(Phan et al., 2021), FastSurfer (Henschel et al., 2020), and icobrain
(Struyfs et al., 2020; Simarro et al., 2024) are widely used, they
often encounter difficulties when segmenting brain images with
large anatomical alterations, such as those observed in children

with CP (Simarro et al., 2023). In response, we developed a

workflow for generating silver ground truth labels, addressing

the impracticality of manual annotations for large datasets. These

labels allowed us to train deep learning models tailored to the

uCP population, achieving good segmentation performance in

patients with severe anatomical alterations and heterogeneous

lesion appearances. This was demonstrated by a high overlap with

silver ground truth in the testing dataset and a high approval rate

for the segmentation quality provided by the pipeline, assessed by a

neuroradiologist and a pediatric neurologist in the independent CP

dataset. Additionally, the model’s segmentation performance was

validated on a fully independent dataset of children with congenital

or acquired brain anatomy distortions. Despite the wide age range

(1–17 years) and diverse lesion etiologies, including agenesis of
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TABLE 5 Relative di�erence between regional volumes in a�ected and less-a�ected hemispheres.

Training (n = 35) Test (n = 20) Independent (n = 34) Merged (n = 54)

WM

Parietal –30.5 (30.1)∗∗∗ –35.4 (40.3)∗∗∗ –20.8 (30.0)∗∗∗ –25.9 (34.6)∗∗∗

Occipital –17.3 (20.8)∗∗∗ –19.6 (30.4)∗ –12.6 (23.7)∗∗ –15.0 (26.4)∗∗∗

Frontal –22.0 (20.4)∗∗∗ –39.8 (48.0)∗∗∗ –11.4 (15.7)∗∗∗ –21.2 (33.8)∗∗∗

Temporal –14.5 (22.4)∗∗∗ –23.1 (38.6)∗∗ –9.1 (17.6)∗∗ –13.9 (27.6)∗∗∗

Total –22.0 (20.5)∗∗∗ –31.6 (35.8)∗∗∗ –12.5 (15.8)∗∗∗ –19.1 (26.3)∗∗∗

CGM

Parietal –19.6 (27.2)∗∗∗ –26.7 (35.3)∗∗∗ –17.7 (27.5)∗∗∗ –20.8 (30.7)∗∗∗

Occipital –7.6 (11.0)∗∗∗ –8.1 (14.8)∗ –4.3 (12.4) –5.6 (13.4)∗

Frontal –12.8 (12.6)∗∗∗ –27.1 (38.7)∗∗∗ –7.3 (10.4)∗∗∗ –14.1 (26.0)∗∗∗

Temporal –12.2 (20.0)∗∗∗ –23.4 (35.2)∗∗∗ –6.1 (12.6)∗ –12.1 (24.5)∗∗∗

Total –13.5 (15.9)∗∗∗ –22.4 (28.5)∗∗∗ –8.5 (11.6)∗∗∗ –13.3 (20.3)∗∗∗

Structures

Thalamus –36.0 (28.0)∗∗∗ –48.2 (45.8)∗∗∗ –18.3 (26.4)∗∗∗ –28.7 (37.2)∗∗∗

Caudate –35.6 (42.1)∗∗∗ –56.4 (63.5)∗∗∗ –11.7 (18.5)∗∗∗ –27.2 (45.5)∗∗∗

Lenticular –31.2 (42.1)∗∗∗ –49.7 (62.5)∗∗∗ –9.4 (22.3)∗∗ –23.4 (45.2)∗∗∗

PLIC –67.2 (60.7)∗∗∗ –69.9 (65.9)∗∗∗ –16.0 (53.1)∗∗ –34.7 (63.3)∗∗∗

Cerebellum 2.4 (3.2)∗∗∗ 1.8 (4.2) 1.5 (7.5) 1.6 (6.6)

Mean (standard deviation) of affected minus less-affected, divided by the mean of both. Significant differences were assessed using the non-parametricWilcoxon signed-rank test. Volumes from

the training dataset were derived from the silver ground truth, while volumes from the test, independent, and merged CP datasets were computed using the proposed pipeline.

WM, white matter; CGM, cortical gray matter; PLIC, posterior limb of the internal capsule.
∗p < 0.05.
∗∗p < 0.01.
∗∗∗p < 0.001.

TABLE 6 Correlations between lesion-free volume in the a�ected hemisphere and motor scores.

Parietal Occipital Frontal Temporal Total

WM

AHA 0.46 (0.21, 0.66)∗∗∗ 0.32 (0.05, 0.54)∗ 0.49 (0.24, 0.69)∗∗∗ 0.45 (0.2, 0.66)∗∗∗ 0.53 (0.29, 0.72)∗∗∗

MACS –0.4 (–0.11, –0.61)∗∗ –0.27 (–0.53, 0.03) –0.5 (–0.24, –0.68)∗∗∗ –0.44 (–0.13, –0.66)∗∗ –0.48 (–0.21, –0.68)∗∗∗

CGM

AHA 0.55 (0.32, 0.72)∗∗∗ 0.1 (–0.21, 0.38) 0.42 (0.14, 0.65)∗∗ 0.43 (0.14, 0.65)∗∗ 0.51 (0.26, 0.7)∗∗∗

MACS –0.52 (–0.25, –0.72)∗∗∗ –0.09 (–0.39, 0.22) –0.43 (–0.14, –0.65)∗∗ –0.41 (–0.09, –0.65)∗∗ –0.48 (–0.21, –0.69) ∗∗∗

Thalamus Caudate Lenticular PLIC Cerebellum

Structures

AHA 0.54 (0.27, 0.73)∗∗∗ 0.41 (0.13, 0.62)∗∗ 0.45 (0.19, 0.66)∗∗∗ 0.28 (–0.01, 0.54)∗ –0.25 (–0.51, 0.05)

MACS –0.52 (–0.24, –0.71)∗∗∗ –0.44 (–0.18, –0.66)∗∗ –0.45 (–0.19, –0.65)∗∗∗ –0.25 (–0.52, 0.05) 0.19 (–0.12, 0.45)

Significant Spearman correlations between lesion-free volume in the affected hemisphere and motor scores, MACS and AHA were observed in most of the regions in the merged dataset (n =

54). Spearman correlation coefficient and 95% confidence intervals.

WM, white matter; CGM, cortical gray matter; PLIC, posterior limb of the internal capsule; AHA, assisting hand assessment; MACS, manual ability classification system.
∗p < 0.05.
∗∗p < 0.01.
∗∗∗p < 0.001.

the corpus callosum, posterior fossa malformations, malformations

of cortical development, and severe brain distortions, the model

achieved accurate results and generally outperformed the baseline

U-Net model proposed for this dataset (Amorosino et al., 2022),

particularly in key regions such as the deep GM.

Visual evaluation systems of MRI, such as sqMRI, are used in

research and have been associated with cognition (Laporta-Hoyos

et al., 2022), sensorimotor function (Fiori et al., 2015; Mailleux

et al., 2017), and visual function (Tinelli et al., 2020). However,

assessing the location and extent of brain damage in these children

remains challenging, particularly in routine clinical settings (Fiori

et al., 2014). Our study supported the hypothesis that automatically

computed lesion-free volumes significantly correlate with visual

evaluation of regional brain damage (i.e., sqMRI).

Volume loss in specific brain regions has been associated

with declines in memory, verbal fluency, and visuospatial ability

in cognitively normal older adults, reflecting domain-specific

behavioral patterns corresponding to regional brain atrophy
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TABLE 7 Correlations between lesion-free volume in the a�ected hemisphere and clinical tests for vision scores.

Parietal Occipital Frontal Temporal Total

WM

Titmus Stereo Fly 0.32 (–0.02, 0.6) 0.28 (–0.1, 0.59) 0.36 (0.03, 0.62)∗ 0.27 (–0.13, 0.59) 0.4 (0.07, 0.66)∗

Freiburg Visual Acuity –0.39 (–0.02, –0.66)∗ –0.28 (–0.58, 0.09) –0.28 (–0.57, 0.09) –0.27 (–0.57, 0.1) –0.38 (–0.64, 0.0)∗

TVPS-4 visual discrimination 0.34 (0.01, 0.59) 0.13 (–0.25, 0.47) 0.37 (0.08, 0.62)∗ 0.41 (0.01, 0.68)∗ 0.35 (0.0, 0.6)∗

TVPS-4 spatial relationships 0.33 (–0.01, 0.62) 0.12 (–0.27, 0.48) 0.4 (0.09, 0.65)∗ 0.42 (0.05, 0.67)∗ 0.38 (0.05, 0.65)∗

TVPS-4 form constancy 0.37 (0.02, 0.63) ∗ 0.24 (–0.11, 0.53) 0.41 (0.09, 0.66)∗ 0.35 (–0.03, 0.64)∗ 0.43 (0.08, 0.67)∗

TVPS-4 visual figure–ground 0.28 (–0.03, 0.55) 0.18 (–0.15, 0.49) 0.35 (0.06, 0.59)∗ 0.39 (0.03, 0.64)∗ 0.36 (0.05, 0.6) ∗

TVPS-4 visual closure 0.31 (–0.02, 0.56) 0.14 (–0.24, 0.46) 0.36 (0.06, 0.61)∗ 0.43 (0.07, 0.66)∗ 0.4 (0.09, 0.63)∗

Beery-VMI 0.19 (–0.19, 0.52) 0.26 (–0.12, 0.56) 0.39 (0.04, 0.65)∗ 0.11 (–0.28, 0.47) 0.27 (–0.1, 0.58)

FCVIQ –0.45 (–0.11, –0.69)∗∗ –0.47 (–0.17, –0.7)∗∗ –0.49 (–0.2, –0.66)∗∗ –0.35 (–0.01, –0.61)∗ –0.51 (–0.19, –0.71)∗∗

CGM

Titmus Stereo Fly 0.12 (–0.27, 0.49) 0.17 (–0.22, 0.52) 0.09 (–0.32, 0.45) –0.07 (–0.46, 0.37) 0.11 (–0.3, 0.5)

Freiburg Visual Acuity –0.11 (–0.47, 0.26) 0.04 (–0.33, 0.41) –0.05 (–0.4, 0.32) 0.16 (–0.22, 0.51) 0.0 (–0.37, 0.37)

TVPS-4 visual discrimination 0.31 (–0.04, 0.58) 0.02 (–0.36, 0.42) 0.24 (–0.12, 0.54) 0.18 (–0.23, 0.53) 0.25 (–0.13, 0.56)

TVPS-4 spatial relationships 0.4 (0.01, 0.67) ∗ 0.17 (–0.22, 0.5) 0.34 (–0.04, 0.62)∗ 0.15 (–0.24, 0.5) 0.35 (–0.07, 0.64)∗

TVPS-4 form constancy 0.18 (–0.19, 0.5) 0.03 (–0.35, 0.4) 0.16 (–0.22, 0.49) –0.03 (–0.42, 0.39) 0.11 (–0.28, 0.47)

TVPS-4 visual figure–ground 0.22 (–0.12, 0.54) –0.08 (–0.42, 0.28) 0.11 (–0.27, 0.45) 0.06 (–0.35, 0.43) 0.13 (–0.27, 0.48)

TVPS-4 visual closure 0.24 (–0.07, 0.51) –0.07 (–0.41, 0.27) 0.17 (–0.2, 0.47) –0.01 (–0.39, 0.38) 0.15 (–0.2, 0.46)

Beery-VMI 0.3 (–0.01, 0.57) 0.11 (–0.28, 0.44) 0.28 (–0.14, 0.6) 0.06 (–0.34, 0.41) 0.29 (–0.11, 0.59)

FCVIQ –0.42 (–0.05, –0.68) ∗ –0.11 (–0.47, 0.28) –0.23 (–0.54, 0.18) –0.21 (–0.53, 0.2) –0.32 (–0.62, 0.12)

Thalamus Caudate Lenticular PLIC Cerebellum

Structures

Titmus Stereo Fly 0.58 (0.22, 0.8)∗∗∗ 0.27 (–0.08, 0.56) 0.29 (–0.07, 0.59) 0.12 (–0.23, 0.46) 0.04 (–0.39, 0.45)

Freiburg Visual Acuity –0.37 (–0.66, 0.01)∗ –0.09 (–0.45, 0.27) –0.16 (–0.5, 0.21) 0.08 (–0.29, 0.4) 0.31 (–0.13, 0.63)

TVPS-4 visual discrimination 0.35 (–0.03, 0.65)∗ 0.07 (–0.29, 0.41) 0.18 (–0.19, 0.5) –0.02 (–0.38, 0.34) –0.26 (–0.57, 0.15)

TVPS-4 spatial relationships 0.3 (–0.08, 0.6) 0.2 (–0.16, 0.5) 0.24 (–0.07, 0.52) 0.01 (–0.34, 0.35) –0.05 (–0.44, 0.36)

TVPS-4 form constancy 0.39 (0.01, 0.68)∗ 0.16 (–0.19, 0.48) 0.08 (–0.31, 0.44) –0.01 (–0.34, 0.36) –0.1 (–0.46, 0.28)

TVPS-4 visual figure–ground 0.47 (0.14, 0.69)∗∗ 0.21 (–0.12, 0.5) 0.29 (–0.09, 0.58) 0.09 (–0.22, 0.39) –0.21 (–0.55, 0.21)

TVPS-4 visual closure 0.39 (0.03, 0.67)∗ 0.05 (–0.31, 0.38) 0.13 (–0.25, 0.48) 0.12 (–0.23, 0.45) –0.1 (–0.45, 0.31)

Beery-VMI 0.49 (0.17, 0.74)∗∗ 0.3 (–0.02, 0.55) 0.39 (0.06, 0.64) ∗ 0.03 (–0.35, 0.38) –0.14 (–0.5, 0.25)

FCVIQ –0.45 (–0.07, –0.7)∗∗ –0.07 (–0.37, 0.24) –0.25 (–0.55, 0.11) –0.28 (–0.58, 0.08) 0.02 (–0.34, 0.37)

Significant Spearman correlations between lesion-free volumes in the affected hemisphere and scores of clinical tests for vision scores were observed in most of the regions in the independent

dataset (n = 34). Lower volume is associated with greater impairment across all tests. A positive correlation was found between volumes and the Titmus Stereo Fly, TVPS-4, and Beery-VMI

tests, as lower scores indicated greater impairment. In contrast, a negative correlation was observed with the Freiburg Visual Acuity Test and FCVIQ, where higher scores reflected greater

impairment. Spearman correlation coefficient and 95% confidence intervals.

WM, white matter; CGM, cortical gray matter; PLIC, posterior limb of the internal capsule; TVPS-4, Test of Visual Perceptual Skills, Fourth Edition; Beery-VMI, Beery Buktenica Test of

Visual-Motor Integration, Sixth Edition; FCVIQ, flemish cerebral visual impairment questionnaire.
∗p < 0.05.
∗∗p < 0.01.
∗∗∗p < 0.001.

(Armstrong et al., 2020). In our exploratory analysis, lesion-free

volume was associated with motor scores, including AHA and

MACS, in subcortical structures such as the thalamus, caudate,

and lenticular nucleus, as well as with the WM and CGM in the

parietal, frontal, and temporal lobes. These findings align with

previous literature, where lesions in the affected hemisphere of

children with uCP were associated with motor hand function,

including AHA (Fiori et al., 2015). In children with dyskinetic CP,

global and parietal lobe lesions have been linked to poorer motor

functioning, including the Gross Motor Function Classification

System and MACS (Laporta-Hoyos et al., 2018). Additionally, in

patients with traumatic brain injury, atrophy in the thalamus,

putamen, and pallidum has been correlated with poorer bimanual

performance (Gooijers et al., 2016). In this study, lower lesion-

free PLIC volume was significantly associated with greater AHA

impairment, but not significantly associated with MACS. In
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previous studies, visually-assessed PLIC lesions were associated

with reduced sensorimotor performance (Fiori et al., 2015;Mailleux

et al., 2017). This discrepancy may be due to challenges in

accurately defining the PLIC anatomically automatically, as T1-

weighted images lack sufficient contrast between the PLIC and

surrounding WM tissue. Including diffusion-weighted imaging

could enhance the accuracy of WM structure quantification,

particularly for regions like the PLIC.Moreover, diffusion-weighted

MRI could provide a complementary assessment of WM integrity

to the volumetric analysis conducted in this study.

Lower total WM volume was associated with poorer visual

functions and functional vision, including stereoacuity (Titmus

Stereo Fly), visual acuity (Freiburg Visual Acuity), and motor-

free visual-perceptual performance (TVPS-4). WM volumes in the

frontal and temporal lobes were significantly correlated with TVPS-

4 scores. In the frontal lobe, the Frontal Eye Field plays a key

role in attentional and visual cognition (Vernet et al., 2014), and

is structurally connected to the parietal cortex via the superior

longitudinal fasciculus (Radwan et al., 2022). In the temporal

lobe, the inferior longitudinal fasciculus is associated with object

recognition deficits (Ortibus et al., 2012), further underscoring

the importance of these regions in higher-order visual processing

and potentially explaining the correlations we found. Interestingly,

despite the role of the occipital lobe in primary visual processing,

and previous research showing that occipital lobe lesion severity

correlated with a general visual score (Tinelli et al., 2020), no

significant correlation was found between occipital volume and

visual function tests in this study. Further research is needed

to clarify this finding. However, lesion-free WM volume in each

lobe, including the occipital lobe, was positively associated with

functional vision performance, as measured by the total FCVIQ

score. This suggests that a global reduction in WM volume impacts

functional vision limiting daily activities.

The study highlights the important role of the thalamus

in motor and visual functions. These associations are well-

documented in the literature: reorganization of thalamocortical

projections has been linked to sensorimotor deficits (Tsao et al.,

2015), and thalamic atrophy has been associated with abnormal

visual development (Ricci et al., 2006). The lateral geniculate

nucleus, part of the dorsal thalamus, is involved in transmitting

visual information to the cerebral cortex (Usrey and Alitto, 2015).

Thalamic lesions have shown strong correlations with visual scores

(Tinelli et al., 2020). Similar associations were observed in children

with dyskinetic CP, where visuospatial and visuoperceptive abilities

were linked to lesions in the medial dorsal thalamus (Laporta-

Hoyos et al., 2018). Additionally, reduced thalamic volume has

been observed in infants with WM lesions and moderate to severe

periventricular leukomalacia, with the reduction proportional to

the extent of WM damage (Lin et al., 2001).

A limitation of this study is the use of silver ground truth

for validation, which may artificially inflate performance metrics

due to inherent similarities between the training and evaluation

processes. To mitigate this, we performed an additional validation

on an externally annotated dataset, as well as a visual assessment of

the independent CP dataset.

Additionally, this study utilized a relatively small sample of

children with uCP (35 for training and 54 for validation). This

limitation, combined with the variability in lesion types and

severities, may impact model performance in extreme cases (as

shown in Figure 4A). Nonetheless, this study serves as a proof of

concept, demonstrating the feasibility of tuning a deep learning

model with a small sample size, which is often a constraint

when recruiting pediatric patients, especially those with significant

structural pathology. Furthermore, while the study focuses on

unilateral CP, which is characterized by significant heterogeneity

in clinical outcomes and lesion characteristics, the model’s

performance across other CP populations remains unexplored and

warrants further investigation.

The proposed methodology provides a foundation for

a standardized and automatic reporting system for MRI

characteristics in uCP. This system could aid clinicians

in identifying brain lesions and structural damage without

relying on time-intensive visual classification methods, thereby

enabling more consistent and objective measurements of brain

structures in children with uCP. The association between lesion-

free volumes and motor and visual outcomes underscores

the potential of these measurements to detect functional

impairments through brain imaging. Accounting for specific

brain injury patterns in individual patients could facilitate

personalized treatment strategies, potentially improving motor

and visual outcomes.

5 Conclusion

The proposed pipeline for brain structure quantification can

be used to study brain development and structure-function

relations in children with uCP. By providing automated

measurements of lesion-free structural volumes, this approach

offers a comprehensive understanding of how brain structures

correlate with a child’s motor and visual functions. These findings

support the potential use of structural MRI in personalized

treatment planning selection.
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