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A B S T R A C T

While the antioxidative potential of certain vitamins and minerals in cardio-protection has garnered increasing 
interest, their ability to attenuate associations between air pollution exposure and cardiometabolic diseases 
(CMDs) remains unexplored. This study examined the associations of air pollution (particulate matter including 
ultrafine particles (UFP), and nitrogen oxides, including NO2 and NOx) and six dietary antioxidants with incident 
non-fatal CMDs in 30,519 EPIC-NL study participants. Data on CMD incidence (total cardiovascular disease 
(CVD), acute myocardial infarction (AMI), coronary heart disease (CHD) and heart failure (HF)) and Type 2 
Diabetes Mellitus (T2DM) diagnoses were obtained from medical registries. Annual average ambient concen
trations of air pollutants at the participants’ baseline residential addresses were predicted using land use 
regression models. Dietary intake of antioxidants was assessed via a food frequency questionnaire. Multivariable 
Cox regression models were used to explore associations. Exposures to NO2 and UFP were associated with 
elevated HF risk (Hazard Ratio (HR) (95 % CI): 1.24 (1.00, 1.54) and 1.69 (1.04, 2.76), respectively). Higher 
beta-carotene intake was associated with reduced risk of total CVD and CHD incidence (HR (95 % CI): 0.94 (0.89, 
0.99) and 0.92 (0.84, 0.99), respectively), whereas, in general, antioxidant intake was positively associated with 
incident T2DM. Interaction analyses indicated some variability in CMD risk by antioxidant intake, but none of 
these interactions remained significant after correcting for multiple comparisons. These findings indicate that the 
associations of air pollution with incident CMD do not differ by dietary antioxidant intake.

1. Introduction

The adverse impact of air pollution exposure on the development and 
progression of various cardiometabolic diseases (CMDs), including Type 
2 Diabetes Mellitus (T2DM) and cardiovascular diseases (CVDs) such as 
acute myocardial infarct (AMI), coronary heart disease (CHD) and heart 
failure (HF), are well-established, with systemic inflammation and 
oxidative stress proposed as the main underlying mechanisms (Pearson, 
2011; Walton-Moss et al., 2014; Janjua et al., 2021; Patel et al., 2010; 
Callahan et al., 2022). Given the predominance of air pollution in urban 

settings, understanding these associations is particularly crucial for 
informing urban health policies and mitigation strategies, since the 
urban context introduces unique exposure patterns, making it essential 
to explore potential interventions at various policy levels. Consequently, 
there is an increasing emphasis on the identification and implementa
tion of interventions at both individual as well as community policy 
levels that could potentially mitigate the adverse cardiometabolic health 
effects associated with these factors (Pearson, 2011; Walton-Moss et al., 
2014; Janjua et al., 2021).

Certain dietary micronutrient vitamins and minerals are known to 
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have antioxidative properties, due to their ability to scavenge free rad
icals and oxidative species, thus shielding sensitive biological targets 
from oxidative damage (Patel et al., 2010; Callahan et al., 2022; Halli
well and Gutteridge, 2015). This suggests a role for dietary antioxidants 
within the context of mitigation of CMD risks from air pollutants (Sesso 
et al., 2008; Jenkins et al., 2020; Nascimento et al., 2018; da Silva et al., 
2021). However, despite the abundance of studies investigating the ef
fect of common antioxidants, especially vitamins C and E, beta-carotene 
and selenium, on various cardiometabolic events, conditions and mor
tality rates, their findings remain largely inconsistent (Aune et al., 2018; 
Gale et al., 1995; Sahyoun et al., 1996; Lawlor et al., 2005; Aucott et al., 
2007). While some studies show inverse associations between antioxi
dant intake and cardiometabolic risk, others report no significant asso
ciations and some positive associations have also been suggested 
(Bjelakovic et al., 2007; Lonn et al., 2005; Miller et al., 2005; Myung 
et al., 2013). Moreover, the focus of such epidemiological studies has 
primarily centered on the independent effect of individual antioxidants, 
with relatively less exploration into the combined antioxidant activity of 
specific phytochemicals, vitamins, and minerals (Parohan et al., 2019; 
Mozaffari et al., 2018). Furthermore, only a limited number of studies 
have investigated the individual effects of multiple antioxidants on 
cardiometabolic outcomes within the same study framework 
(Klipstein-Grobusch et al., 1999; Rimm et al., 1993; Kushi et al., 1996; 
Mirmiran et al., 2022; Montonen et al., 2004). Additionally, the epide
miological evidence regarding the potential of primary antioxidants, 
including vitamins A, C, and E, to modulate the toxic cellular and sys
temic effects induced by air pollutants remains scarce and limited to 
respiratory outcomes and T2DM incidence, leaving their overall car
diometabolic effects largely unexplored (Li et al., 2022; Shin and Kim, 
2023; Hatch, 1995). Such emerging evidence suggests the plausibility of 
dietary antioxidants, especially those linked with circulating inflam
matory biomarkers like interleukin β and tumor necrosis factor α, to 
modify the risk of air pollution-related adverse cardiometabolic risk (Wu 
et al., 2023).

Downward et al. (2018) previously compared and elucidated the 
effects of ultrafine particles (UFP) and various conventional air pollut
ants on the incidence of fatal as well as non-fatal cardiovascular and 
cerebrovascular outcomes in adults residing in (major) urban areas in 
the Netherlands using the EPIC-NL study. Their study offered evidence 
regarding the detrimental impact of UFP exposure on cardiovascular 
health. The present study extends those analyses, and aims to examine 
the associations of air pollution and dietary antioxidants, individually 
and as a composite score, with non-fatal CMD incidence in the same 
population. Furthermore, this study aims to assess whether dietary an
tioxidants attenuate the risk of CMD incidence, attributable to air 
pollution exposure.

2. Materials and methods

2.1. Study population

The European Prospective Investigation into Cancer and Nutrition 
(EPIC) study is a multicenter research endeavor devised to investigate 
the relationship between nutrition, lifestyle, environmental and genetic 
factors and the etiology of cancer, as well as other chronic diseases 
(Barricarte et al., 2002; Bingham and Riboli, 2004). The Dutch contri
butions to the EPIC study (i.e., EPIC-NL) comprised two cohorts: Pros
pect, comprising 17,357 women aged 49–70 years, residing in or around 
the city of Utrecht, and the Monitoring Project on Risk Factors for 
Chronic Diseases (MORGEN) comprising 22,654 men and women, aged 
20–59 years, residing in the cities of Amsterdam, Doetinchem and 
Maastricht. Recruitment for both cohorts occurred concurrently be
tween 1993 and 1997, with participants providing written informed 
consent for study enrollment. The EPIC-NL study was conducted ac
cording to the guidelines in the Declaration of Helsinki, and all pro
cedures involving the participants were approved by the institutional 

review board of the University Medical Center Utrecht (Prospect) and 
the medical ethical committee of TNO Nutrition and Food Research 
(MORGEN).

Following the withdrawal of consent for participation by one 
participant, the total EPIC-NL study population consists of 40,010 par
ticipants, of which 96.7 % (n = 38,707) participants consented to 
follow-up. After the exclusion of participants with prevalent CVD or 
T2DM at the time of study recruitment, missing information on cova
riates, exposure or outcome measurements, vital status, and withdrawal 
or lack of informed consent to follow-up, a total of 30,519 participants 
were included in the present study. Fig. 1 presents the study sample 
selection.

2.2. Outcome assessment

2.2.1. Incidence of cardiometabolic diseases
The outcomes of interest for this study were defined as the first 

occurrence of any and specific non-fatal CVD and T2DM, within those 
EPIC-NL participants who did not have any documented history of these 
diseases at the time of study enrollment. Outcomes were defined using 
the ninth revision of the International Classification of Diseases, clinical 
modification (ICD-9) and grouped according to general diagnoses, 
including any (i.e., total) CVD, AMI, CHD, and HF, as well as T2DM. The 
ICD-9 codes associated with these outcomes are available in Supple
mentary Table S1.

EPIC-NL participants were followed for the occurrence of non-fatal 
cardiovascular events by linkage with several local and national medi
cal registries. Information on vital status was obtained through linkage 
with municipal population registries. Morbidity data were provided by 
the Dutch Hospital Discharge Register (HDR). These linkages were 
conducted based on a validated, probabilistic method, using birth date, 
sex, postal code and general practitioner records (Herings et al., 1992; 
Struijk et al., 2014). Complete data on endpoints were available until 
December 31, 2010 and the validity of diagnoses from these sources has 
been assessed and reported previously (Merry et al., 2009a).

Three sources of ascertaining incident T2DM were used in this study: 
self-report, linkages with HDR, and urinary glucose strip test (Prospect 
participants only) (Beulens et al., 2005, 2009; Scheffers et al., 2020). 
Verification of potential T2DM cases detected by any of these methods 
was carried out with information from participants’ general practitioner 
or pharmacist. Verification information was available for 89 % of the 
potential diabetes cases, and 72 % of these cases were verified as T2DM 
and subsequently used for the analysis, as previously described by Sluijs 
et al. (2010).

2.3. Exposure assessment

2.3.1. Air pollution
The measurements and linkage of air pollution exposure measures, 

including conventional air pollutants and UFP to EPIC-NL participants 
have been described in detail previously (Downward et al., 2018). 
Ambient concentrations of conventional air pollutants (in μg/m3), 
including particulate matter with diameters <2.5 μm (PM2.5), <10 μm 
(PM10), nitrogen oxides (NOx), and nitrogen dioxide (NO2), were pre
dicted using land use regression (LUR) models. These models were 
originally developed as part of the European Study of Cohorts for Air 
Pollution Effects (ESCAPE) project, which is a multicenter study across 
Europe, designed to investigate the impact of air pollution exposure on 
health by utilizing data from existing cohorts studies (Beelen et al., 
2015). Briefly, air pollutant measurements were conducted at 40 sites 
for PM and 80 sites for nitrogen oxides, accompanied by the use of 
Geographic Information Systems to evaluate potential predictors of 
spatial variation, across Belgium and the Netherlands during three 
14-day periods (per site) in 2009 (Eeftens et al., 2012; Beelen et al., 
2013). These models were then used to estimate annual average ambient 
pollutant concentrations at participants’ baseline addresses. The median 
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variance explained by these models was 67 % for PM2.5, 68 % for PM10, 
86 % for NO2, and 87 % for NOx (Eeftens et al., 2012; Beelen et al., 
2013).

Exposure concentration of UFP (in particles/cm3) was assessed using 
LUR models developed during a monitoring campaign between January 
2014 and February 2015 by Van Nunen et al. (2017). Measurements of 
UFP were collected for 30-min periods at 242 sites in Amsterdam, 
Maastricht, and Utrecht, covering the major metropolitan areas 
contributing to the EPIC-NL cohort. Each monitoring site was visited 
thrice to account for seasonal variation, and the predictors used included 
traffic, population, industry, sea, airports, restaurants, and green spaces. 
With a median spatial variation of 50 %, these models were subse
quently used to predict ambient UFP concentrations at the baseline 
addresses of participants (Downward et al., 2018).

2.4. Assessment of dietary antioxidants

2.4.1. Individual dietary antioxidants
The validated semi-quantitative Dutch EPIC food frequency ques

tionnaire (FFQ) was used to assess the food consumption of 77 main food 
categories enabling estimation of 178 food items during the year pre
ceding study enrolment in both cohorts of EPIC-NL (Beulens et al., 2009; 
Ocké et al., 1997a, 1997b). The individual daily dietary intake of six 
primary antioxidants, including retinol, beta-carotene, selenium 
(measured as μg/day), and vitamins C, E, and zinc (measured as 

mg/day) was estimated based on the average daily consumption among 
the study participants (Beulens et al., 2009).

2.4.2. Composite Dietary Antioxidant Index
The cumulative intake of the six individual dietary antioxidants was 

assessed using the Composite Dietary Antioxidant Index (CDAI). This 
study employed a modified version of the CDAI, developed originally by 
Wright et al. (2004), to examine the synergistic effects of six antioxi
dants (Maugeri et al., 2019). This formula incorporates the six antioxi
dants mainly associated with oxidative processes and has been validated 
previously in a prospective cohort study by using anti-inflammatory 
markers (Luu et al., 2015). The CDAI was estimated by standardizing 
the values of the dietary antioxidants. This involved subtracting the 
mean from the individual dietary intake of each antioxidant and 
dividing by the standard deviation. The standardized intake values were 
then summed using the following formula: 

CDAI=
∑6

i=1

(
xi − μi

Si

)

In this formula, xi represents the individual daily intake of dietary an
tioxidants (i.e., retinol, beta-carotene, vitamins C and E, zinc and sele
nium), and μi and Si represent the mean and standard deviation values of 
antioxidant i for the study population, respectively.

Fig. 1. Flow diagram presenting the selection of study participants.
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2.5. Description of covariates

In the present study, the analyses were adjusted for various cova
riates whose selection was informed by existing literature and meth
odologies adopted by comparable studies (Li et al., 2022; Downward 
et al., 2018; Colizzi et al., 2023). Baseline data on demographic char
acteristics, lifestyle, presence of chronic diseases and/or potential risk 
factors were collected using a general questionnaire (Beulens et al., 
2009). These included age at recruitment (in years), sex (male or fe
male), level of education (low, middle or high), smoking status (current, 
former, or never), alcohol consumption (>1 drink/week, <1 drink/
week, quit or never consumed), and physical activity. Physical activity 
was determined by the calculation of the Cambridge Physical Activity 
Index which has been previously validated (Haftenberger et al., 2002; 
Wareham et al., 2003). This index combined occupational activity along 
with outdoor activities during summer (including cycling and walking) 
and was divided into four categories: inactive, moderately inactive, 
moderately active and active. Quality of diet, indicated by total dietary 
fiber intake (in grams) and total dietary energy intake (in kilocalories), 
was assessed via the FFQ (Ocké et al., 1997b). Additionally, participants 
underwent physical assessments, including height and weight mea
surements. Body Mass Index (BMI) was calculated in kg/m2 for each 
participant by dividing their weight by height squared.

In addition to these individual-level covariates, the analyses in the 
present study were also adjusted for area-level socioeconomic infor
mation, as indicated by the percentage of low-income individuals living 
in the participants’ neighborhood (Downward et al., 2018).

2.6. Statistical analysis

Characteristics of the study sample and the area-level exposure 
measures were presented using descriptive statistics. Multivariable Cox 
proportional hazard regression models were used to examine the asso
ciations of ambient air pollution exposure concentrations with the 
incidence of any non-fatal CVD events, including specific non-fatal CVD 
events, (i.e., AMI, CHD and HF) as well as the first diagnosis of T2DM, 
for the duration of the study follow-up. In line with previous research, 
these associations are presented for a 5 μg/m3 increment in concentra
tions of PM2.5, 10 μg/m3 increments of PM10, and NO2, a 20 μg/m3 

increment of NOx, and per 10,000 particles/cm3 for UFP exposures 
(Downward et al., 2018). Air pollution exposure was analyzed as a 
continuous variable and the survival time scale was defined as the 
number of years until December 31, 2010, for the occurrence of a first 
non-fatal CVD event. The associations of individual dietary antioxidant 
intake and CDAI with the incidence of each of the five outcomes were 
also determined similarly and are presented per 1 unit increase in di
etary antioxidant intake.

Next, effect modifications by dietary intake of each of the six anti
oxidants were investigated by introducing interaction terms to the Cox 
proportional hazard regression models. These interaction terms 
included each of the five air pollutants along with an indicator of dietary 
antioxidant intake, first assessed individually, then cumulatively. Each 
of the six antioxidants was split at its median to compare the effects 
between high and low antioxidant intake groups of participants. The 
CDAI scores were divided into tertiles, with using the lowest tertile as 
reference category.

All statistical explorations followed the same level of increasing 
adjustments for relevant covariates and potential confounders. Model 1 
adjusted for demographic factors, including age at recruitment, sex and 
educational level. Model 2 additionally adjusted for lifestyle factors, 
including alcohol consumption, smoking status, physical activity, diet 
quality and BMI. Finally, Model 3 additionally adjusted for area-level 
socioeconomic information. Each interaction term, together with its 
two main terms, were statistically tested in a fully adjusted model. P- 
values <0.05 were considered statistically significant in all statistical 
analyses. Furthermore, the Bonferroni correction was applied while 

testing interaction terms to account for the risk of Type 1 errors due to 
multiple comparisons and ensure the reliability and robustness of any 
significant interactions observed. A total of 175 interaction terms (i.e., 5 
air pollution measures x 7 dietary antioxidant intake measures x 5 CMD 
outcome measures) were tested additionally at a corrected significance 
level of p < 0.0003 (i.e., 0.05/175 = 0.0003). No additional corrections 
were applied when assessing the associations between air pollution, 
dietary antioxidant intake, and CMD outcomes, as these analyses were 
hypothesis-driven rather than exploratory. Statistical analyses were 
conducted with the statistical software IBM SPSS Statistics for Windows, 
version 28.0 (IBM Corp., Armonk, New York, United States of America).

3. Results

The baseline characteristics of the study population are presented in 
Table 1. The mean age of the included participants was 50.1 years with a 

Table 1 
Baseline characteristics of the study sample (n = 30,519) and area-level expo
sure measures.

Characteristics Mean ± SD or n (%)

Age in years at recruitment 50.1 ± 11.3
Sex

Male 7293 (23.9)
Female 23,226 (76.1)

Level of education
Low 18,173 (59.5)
Medium 6331 (20.7)
High 6015 (19.8)

Smoking status
Current 9222 (30.2)
Never 11,574 (37.9)
Former 9723 (31.9)

Alcohol consumption
Never 2017 (6.6)
Quit 317 (1.0)
Yes, <1 drink/week 9159 (30.1)
Yes, >1 drink/week 19,026 (62.3)

Physical activityb

Inactive 2197 (7.2)
Moderately inactive 7533 (24.7)
Moderately active 7912 (25.9)
Active 12,877 (42.2)

Total dietary fiber intake (g) 23.4 ± 4.8
Total dietary energy intake (kcal) 2040.2 ± 626.4
BMI (kg/m2) 25.7 ± 4.0
Percentage of individuals with low income in the 

neighborhood
38.9 ± 7.9

Estimated annual pollutant exposure at baselinec

PM2.5 16.9 ± 0.6
PM10 25.4 ± 1.5
NO2 25.3 ± 6.2
NOx 38.1 ± 11.4
UFP (particles/cm3) 11,215 ± 2356

Individual antioxidants intake (mg)
Retinol 0.7 ± 0.5
Beta-carotene 1.6 ± 0.6
Vitamin C 109.9 ± 45.4
Vitamin E 12.2 ± 3.3
Zinc 10.0 ± 1.7
Selenium 0.04 ± 0.007

CDAI
T1 (− 15.45 to − 1.31) 10,163 (33.3)
T2 (− 1.30 to 1.29) 10,163 (33.3)
T3 (1.30–26.92) 10,193 (33.4)

aAbbreviations: BMI= Body Mass Index, CDAI= Composite Dietary Antioxidant 
Index, cm = Centimeter, g = Gram, kcal = Kilocalories, kg = Kilogram, m =
Kilometer, m = Meter, mg = Milligram, NO2= Nitrogen dioxide, NOx = Nitrogen 
oxides, n = number, PM2.5 = Particulate matter with diameter <2.5 μm, PM10 =

Particulate matter with diameter <10 μm, SD= Standard deviation, UFP= Ul
trafine particles.
bCategorized according to the Cambridge Physical Activity Index.
cMeasurements are in μg/m3 unless specified otherwise.
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standard deviation of 11.3. Females formed the majority of the study 
population (76.1 %), attributable to the fact that the Prospect cohort 
exclusively comprised females. Of the total study population without 
any prevalent CMDs, 3386 (11.1 %) had an incident CVD event (any) 
while 787 (2.6 %) developed T2DM. Among the participants who had an 
incident CVD event, the largest number of cases were recorded for CHD 
(n = 1904) followed by AMI (n = 527) and HF (n = 259) (Supplementary 
Table S2).

3.1. Associations between air pollution exposure and incident 
cardiometabolic diseases

Fig. 2 shows the associations of air pollution exposures with total 
incident CVD. After adjustment for all covariates (Table 2, Model 3), it 
was found that ambient NO2 and UFP exposure were positively associ
ated with HF incidence (Hazard Ratio (HR) (95 % CI): 1.24 (1.00, 1.54) 
and 1.69 (1.04, 2.76), respectively). No other statistically significant 
associations were observed between air pollution exposures and the 
incidence of CMDs in the fully adjusted models (Table 2, Model 3).

3.2. Associations between dietary antioxidant intake and incident 
cardiometabolic diseases

Table 3 shows the associations of dietary antioxidant intake with 
incident CMDs. In the fully adjusted models (Table 3, Model 3), beta- 
carotene was significantly associated with a reduced incidence of total 
CVDs and incident CHD (HR (95 % CI): 0.94 (0.89, 0.99) and 0.92 (0.84, 
0.99), respectively. The fully adjusted models did not indicate signifi
cant associations between other dietary antioxidants or CDAI and AMI 
or HF incidence. Dietary retinol, vitamin E, zinc, and selenium, as well as 
CDAI, were significantly positively associated with the incidence of 
T2DM (HR (95 % CI): 1.13 (1.03, 1.23), 1.03 (1.01, 1.04), 1.07 (1.03, 
1.10), 1.02 (1.01, 1.03), and 1.05 (1.03, 1.07), respectively) (Table 3, 
Model 3).

3.3. Modifying effects of dietary antioxidants in the association between 
air pollution and cardiometabolic diseases

Interaction terms between the five air pollutants, six dietary anti
oxidants, and the CDAI were tested for effect modification across five 
cardiometabolic outcomes, both at a significance threshold of 0.05 and a 
corrected threshold of 0.0003. None of the antioxidants interacted 
significantly with any air pollutant under the Bonferroni correction (i.e., 
adjusted significance threshold: p < 0.0003), indicating that the 

associations of air pollution with incident CMD do not differ by dietary 
antioxidant intake.

At the uncorrected 0.05 level, a few significant interactions were 
observed. Results from the exploratory stratified analyses for the asso
ciation between air pollution exposure and incident CMDs are presented 
in Supplementary Table S2 and Supplementary Fig. S1. Stratified ana
lyses revealed that for total CVD incidence, higher PM2.5 exposure was 
non-significantly associated with increased risk in individuals with low 
zinc intake (HR (95 % CI): 1.10 (0.79, 1.53)), in comparison to those 
with higher zinc intake (HR (95 % CI): 0.70 (0.49, 1.02)). In terms of HF, 
significant interactions were observed between PM and nitrogen oxides 
and dietary vitamins C and E. Specifically, at low vitamin C intake, PM2.5 
exposure was linked to a markedly lower HF risk (HR (95 % CI): 0.09 
(0.01, 0.59)), while no significant positive association was observed at 
higher vitamin C intake (HR (95 % CI): 1.18 (0.26, 5.38)). This trend was 
reversed for vitamin E, wherein for PM10 exposure, low intake was 
associated with a significantly higher HF risk (HR (95 % CI): 4.24 (1.37, 
13.15)), while no significant protective effect was seen in individuals 
with higher vitamin E intake (HR (95 % CI): 0.69 (0.17, 2.74)). Addi
tionally, for NO2 exposure, significantly higher HF risk was observed in 
individuals with low vitamin E intake (HR (95 % CI): 1.56 (1.18, 2.08)), 
with a non-significant reduction in risk for those with high intake (HR 
(95 % CI): 0.93 (0.67, 1.29)). Similarly, NOx exposure showed signifi
cantly higher HF risk at low vitamin E intake (HR (95 % CI): 1.41 (1.06, 
1.88)) and a reduced, non-significant trend for high intake (HR (95 % 
CI): 0.85 (0.60, 1.21)). Conversely, and albeit non-significantly, trends 
for T2DM indicated that low vitamin E intake was associated with a 
reduced risk following UFP exposures (HR (95 % CI): 0.72 (0.50, 10.4)), 
whereas high vitamin E intake appeared to increase T2DM risk (HR (95 
% CI): 1.23 (0.90, 1.70)).

4. Discussion

This study examined the role of dietary antioxidants in modifying the 
occurrence of CMDs in response to air pollution exposure within the 
general adult population in the Netherlands. The analyses revealed that 
higher ambient NO2 and UFP exposure was associated with increased HF 
incidence. Dietary intake of beta-carotene was linked to a reduced 
incidence of total CVD, particularly CHD incidence. Conversely, higher 
antioxidant intake was positively associated with T2DM incidence. After 
correcting for multiple testing, no significant interactions were observed 
between the air pollutants and antioxidants, suggesting the absence of 
any effect modification on cardiometabolic risk.

The main strengths of this study are its large sample size, prospective 

Fig. 2. Associations between exposure to the five air pollutants and total cardiovascular disease incidence. a-b 

a Abbreviations: CVD= Cardiovascular diseases (including cardiac arrest, cerebrovascular disease, coronary heart disease, heart failure, peripheral vascular diseases, 
pulmonary embolism, and diseases of arteries, arterioles and capillaries); PM10 = Particulate matter with diameter <10 μm, PM2.5 = Particulate matter with diameter 
<2.5 μm, NO2= Nitrogen dioxide, NOx = Nitrogen oxides, UFP= Ultrafine particles. 
b The presented associations are adjusted for age at recruitment, sex, educational level, smoking status, alcohol consumption, physical activity, total dietary fiber 
intake, total dietary energy intake, Body Mass Index, and area-level socioeconomic information.
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design, and the added value of a long follow-up period of over twelve 
years. Notably, it is the first epidemiological endeavor to assess both the 
individual and collective impacts of six primary antioxidants on CMD 
risk in a sizable study population exposed to air pollution. This is also the 
first study to examine the associations between CDAI scores and the 
incidence of T2DM in the general population. Moreover, all CVD out
comes were ascertained via linkage to national registries, ensuring valid 
and reliable outcome classification and completeness of follow-up data 
(Colizzi et al., 2023; Merry et al., 2009b). Finally, adjustment for 
area-level socioeconomic information allowed for the control of residual 
confounding factors that could influence individuals’ exposure to air 
pollution and dietary patterns (van den Brekel et al., 2024; Hulshof 
et al., 2003).

Overall, non-significant associations emerged between exposures to 
the five air pollutants and CMD incidence, with expected associations 
observed only in the case of HF incidence for NO2 and UFP exposures. 

These associations were consistent with the findings previously shown 
by Downward et al. (2018) in the same population, who also reported 
some similar unexpected directions and non-significant associations. 
While these observations were unanticipated, considering that air 
pollution exposure is generally an established risk factor for CVD, pre
vious studies have also reported variances in the associations between 
varying levels of these air pollutants and the incidence of acute CVD 
events in European countries (Cesaroni et al., 2014). The other 
non-significant, almost close to unity observations were consistent with 
previous findings from a large English cohort, where positive associa
tions were also indicated only for HF incidence due to exposure to air 
pollution (Atkinson et al., 2013). Additionally, an analysis of 22 Euro
pean cohorts revealed close to unity associations between conventional 

Table 2 
Associations of annual air pollution exposure with incidence of cardiovascular 
disease events and Type 2 Diabetes Mellitus in single pollutant models.a-d.

Model 1 Model 2 Model 3

HR (95 % CI) HR (95 % CI) HR (95 % CI)

Total CVD*
PM2.5 0.87 (0.64, 1.17) 0.81 (0.60, 1.10) 0.81 (0.60, 1.10)
PM10 1.02 (0.80, 1.30) 0.87 (0.68, 1.11) 0.90 (0.70, 1.15)
NO2 1.03 (0.98, 1.10) 1.01 (0.94, 1.06) 1.01 (0.95, 1.07)
NOx 1.01 (0.95, 1.07) 0.98 (0.92, 1.04) 0.99 (0.93, 1.05)
UFP 1.14 (0.99, 1.32) 1.03 (0.89, 1.19) 1.03 (0.89, 1.20)
AMI
PM2.5 0.68 (0.31, 1.49) 0.63 (0.29, 1.38) 0.62 (0.28, 1.36)
PM10 1.13 (0.63, 2.04) 0.88 (0.48, 1.59) 0.94 (0.51, 1.72)
NO2 1.13 (0.98, 1.29) 1.06 (0.93, 1.22) 1.09 (0.95, 1.25)
NOx 1.09 (0.94, 1.26) 1.04 (0.89, 1.21) 1.05 (0.90, 1.23)
UFP 1.36 (0.96, 1.92) 1.15 (0.81, 1.64) 1.16 (0.81, 1.66)
CHD
PM2.5 0.74 (0.49, 1.12) 0.70 (0.46, 1.06) 0.70 (0.46, 1.05)
PM10 0.95 (0.69, 1.31) 0.84 (0.60, 1.16) 0.89 (0.64, 1.23)
NO2 1.03 (0.96, 1.11) 1.00 (0.93, 1.08) 1.02 (0.95, 1.10)
NOx 1.00 (0.92, 1.09) 0.98 (0.90, 1.06) 0.99 (0.91, 1.07)
UFP 1.09 (0.90, 1.32) 0.99 (0.82, 1.20) 1.00 (0.82, 1.21)
HF
PM2.5 0.38 (0.11, 1.27) 0.38 (0.11, 1.26) 0.38 (0.11, 1.26)
PM10 1.93 (0.82, 4.52) 1.87 (0.79, 4.41) 1.97 (0.83, 4.70)
NO2 1.21 (0.98, 1.49) 1.22 (0.99, 1.50) 1.24 (1.00, 1.54)
NOx 1.12 (0.90, 1.39) 1.12 (0.90, 1.40) 1.14 (0.91, 1.42)
UFP 1.75 (1.08, 2.82) 1.70 (1.05, 2.77) 1.69 (1.04, 2.76)
T2DM
PM2.5 0.64 (0.39, 1.06) 0.63 (0.38, 1.05) 0.63 (0.38, 1.05)
PM10 0.91 (0.61, 1.36) 0.87 (0.58, 1.31) 0.89 (0.59, 1.33)
NO2 1.05 (0.95, 1.15) 1.05 (0.96, 1.16) 1.06 (0.96, 1.17)
NOx 1.01 (0.92, 1.12) 1.01 (0.91, 1.12) 1.01 (0.92, 1.12)
UFP 1.02 (0.81, 1.29) 0.98 (0.77, 1.24) 0.98 (0.77, 1.24)

a Abbreviations: AMI= Acute Myocardial Infarct, CHD= Coronary Heart 
Disease, CI= Confidence interval, CVD= Cardiovascular diseases, HF= Heart 
failure, HR= Hazard Ratio, PM10 = Particulate matter with diameter <10 μm, 
PM2.5 = Particulate matter with diameter <2.5 μm, NO2= Nitrogen dioxide, 
NOx = Nitrogen oxides, T2DM = Type 2 Diabetes Mellitus, UFP= Ultrafine 
particles.

b The associations in Model 1 are adjusted for age, sex, and educational level. 
The associations in Model 2 are additionally adjusted for smoking status, alcohol 
consumption, physical activity, total dietary fiber intake, total dietary energy 
intake, and Body Mass Index. The associations in Model 3 are additionally 
adjusted for area-level socioeconomic information.

c The associations presented in bold are statistically significant (i.e. p- 
value<0.05).

d Associations for PM2.5 are presented for a 5 μg/m3 increment, PM10 and NO2 
for a 10 μg/m3 increment, NOx for a 20 μg/m3 increment, and UFP are presented 
for a 10,000 particles/cm3 increment.

* Including cardiac arrest, cerebrovascular disease, CHD, HF, peripheral 
vascular diseases, pulmonary embolism, and diseases of arteries, arterioles and 
capillaries.

Table 3 
Associations of dietary antioxidants with incidence of cardiovascular disease 
events and Type 2 Diabetes Mellitus.a-c.

Model 1 Model 2 Model 3

HR (95 % CI) HR (95 % CI) HR (95 % CI)

Total CVD*
Retinol 1.10 (1.03, 1.16) 1.02 (0.96, 1.09) 1.02 (0.96, 1.09)
Beta-carotene 0.90 (0.85, 0.96) 0.94 (0.88, 1.00) 0.94 (0.89, 0.99)
Vitamin C 1.00 (1.00, 1.00) 1.00 (1.00, 1.00) 1.00 (1.00, 1.00)
Vitamin E 1.00 (0.99, 1.01) 1.00 (0.99, 1.01) 1.00 (0.99, 1.01)
Zinc 1.00 (0.98, 1.02) 1.00 (0.98, 1.02) 1.00 (0.98, 1.02)
Selenium 1.00 (1.00, 1.01) 1.00 (1.00, 1.00) 1.00 (1.00, 1.01)
CDAI 0.99 (0.98, 1.00) 1.00 (0.99, 1.01) 1.00 (0.99, 1.01)
AMI
Retinol 1.11 (0.95, 1.28) 1.00 (0.85, 1.17) 1.00 (0.85, 1.17)
Beta-carotene 0.82 (0.70, 0.96) 0.86 (0.73, 1.01) 0.87 (0.73, 1.02)
Vitamin C 1.00 (1.00, 1.00) 1.00 (1.00, 1.00) 1.00 (1.00, 1.00)
Vitamin E 1.01 (0.98, 1.03) 1.01 (0.99, 1.04) 1.01 (0.99, 1.04)
Zinc 0.99 (0.94, 1.04) 1.00 (0.95, 1.05) 1.01 (0.95, 1.05)
Selenium 1.01 (1.00, 1.02) 1.00 (0.99, 1.02) 1.00 (0.99, 1.02)
CDAI 0.99 (0.97, 1.02) 1.00 (0.97, 1.03) 1.00 (0.97, 1.03)
CHD
Retinol 1.09 (1.01, 1.18) 1.03 (0.95, 1.12) 1.03 (0.95, 1.12)
Beta-carotene 0.90 (0.83, 0.97) 0.91 (0.84, 0.99) 0.92 (0.84, 0.99)
Vitamin C 0.99 (0.98, 1.00) 1.00 (1.00, 1.00) 1.00 (1.00, 1.00)
Vitamin E 1.01 (0.99, 1.03) 1.01 (1.00, 1.03) 1.00 (1.01, 1.00)
Zinc 1.02 (0.99, 1.05) 1.02 (0.99, 1.05) 1.02 (0.99, 1.05)
Selenium 1.01 (1.00, 1.01) 1.00 (1.00, 1.01) 1.00 (1.00, 1.01)
CDAI 1.01 (0.99, 1.02) 1.01 (0.99, 1.02) 1.01 (0.99, 1.02)
HF
Retinol 1.13 (0.91, 1.40) 1.03 (0.82, 1.30) 1.03 (0.81, 1.30)
Beta-carotene 1.02 (0.84, 1.24) 1.04 (0.85, 1.28) 1.05 (0.86, 1.29)
Vitamin C 1.00 (1.00, 1.00) 1.00 (0.99, 1.00) 1.00 (0.99, 1.00)
Vitamin E 1.00 (0.96, 1.03) 0.99 (0.96, 1.03) 1.00 (0.96, 1.03)
Zinc 1.02 (0.95, 1.10) 1.01 (0.94, 1.09) 1.01 (0.94, 1.09)
Selenium 1.02 (1.01, 1.04) 1.02 (0.99, 1.03) 1.02 (1.00, 1.03)
CDAI 1.02 (0.98, 1.06) 1.01 (0.97, 1.05) 1.01 (0.97, 1.05)
T2DM
Retinol 1.24 (1.15, 1.35) 1.13 (1.03, 1.23) 1.13 (1.03, 1.23)
Beta-carotene 1.05 (0.97, 1.14) 1.05 (0.96, 1.15) 1.05 (0.96, 1.15)
Vitamin C 1.00 (1.00, 1.00) 1.00 (1.00, 1.00) 1.00 (1.00, 1.00)
Vitamin E 1.03 (1.01, 1.04) 1.03 (1.01, 1.04) 1.03 (1.01, 1.04)
Zinc 1.12 (1.09 1.16) 1.07 (1.03, 1.10) 1.07 (1.03, 1.10)
Selenium 1.03 (1.03, 1.04) 1.02 (1.01, 1.03) 1.02 (1.01, 1.03)
CDAI 1.07 (1.06, 1.09) 1.05 (1.03, 1.07) 1.05 (1.03, 1.07)

a Abbreviations: AMI= Acute Myocardial Infarct, CDAI= Composite Dietary 
Antioxidant Index, CHD= Coronary Heart Disease, CI= Confidence interval, 
CVD= Cardiovascular diseases, HF= Heart failure, HR= Hazard Ratio, T2DM =
Type 2 Diabetes Mellitus.

b The associations in Model 1 are adjusted for age, sex, and educational level. 
The associations in Model 2 are additionally adjusted for smoking status, alcohol 
consumption, physical activity, total dietary fiber intake, total dietary energy 
intake, and Body Mass Index. The associations in Model 3 are additionally 
adjusted for area-level socioeconomic information.

c The associations presented in bold are statistically significant (i.e. p- 
value<0.05).

* Including cardiac arrest, cerebrovascular disease, CHD, HF, peripheral 
vascular diseases, pulmonary embolism, and diseases of arteries, arterioles and 
capillaries.
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air pollutants and mortality from overall as well as specific CVDs (Beelen 
et al., 2014). However, despite isolated instances of such variability in 
the associations between air pollution exposure and cardiovascular 
outcomes, the majority of evidence firmly establishes air pollution as a 
significant risk factor for cardiovascular morbidity and mortality (Chen 
and Hoek, 2020; Liu et al., 2023). Our findings regarding T2DM inci
dence aligned with those reported by Park et al. (2015) who also found 
no significant impact of long-term exposure to PM and nitrogen oxides 
on T2DM incidence. This adds to the complexity of existing epidemio
logical evidence and challenges the prevailing notion that air pollution 
may act as an independent risk factor for T2DM development (Park and 
Wang, 2014; Rajagopalan and Brook, 2012). A potential limitation ari
ses here from the usage of historical exposure data, measured and 
modeled decades after their period of assignment. While using currently 
derived models to predict exposures 10 years prior may still be efficient, 
validation of the pertinent period between exposures and outcomes re
mains challenging (Downward et al., 2018; Montagne et al., 2015).

Next, the associations between individual dietary antioxidants and 
incident CVD events were found to be generally non-significant and 
close to unity. Contrary to recent suggestions, we found no significant 
associations between CDAI and any incident CVD events (Zhang et al., 
2023; Yang et al., 2023; Wang and Yi, 2022; Ma et al., 2023). These 
findings second the results from the meta-analyses conducted by Aune 
et al. (2018) who also reported no evidence for the protective effects of 
antioxidants on overall CVD. Additionally, retinol, vitamin E, zinc, se
lenium and CDAI were shown to increase the risk of T2DM development 
in the study population. The overall positive trend in associations be
tween dietary antioxidants and T2DM incidence was consistent with 
observations of Zhang et al. (2024) and Liao et al. (2020) who found that 
serum concentrations of selenium were positively associated with T2DM 
risk in their study populations. Previously, serum concentrations of 
retinol have also been shown to be positively associated with impaired 
glucose tolerance by Tavridou et al. (1997). So far, meta-analytical ev
idence regarding the associations between antioxidants and car
diometabolic health indicators and outcomes remains heterogenous and 
scant (Ye and Song, 2008; Seung-Kwon et al., 2013; Vivekananthan 
et al., 2003; Jayedi et al., 2019).

However, an important consideration here is that antioxidant intake 
was assessed from dietary data obtained via a single FFQ administered at 
baseline. Although found to be reasonably adequate for estimating 
overall intake of various food groups and nutrients, the FFQ demon
strated lower relative validity of vegetables and fish intake; which may 
have diluted some associations since these foods are considered rich 
sources of beta-carotene and vitamin E45. Furthermore, while the FFQ 
was found to be adequate for estimating dietary retinol among EPIC-NL 
participants, results for other micronutrients indicated poor reliability, 
especially for beta-carotene and vitamin C for men and vitamin E for 
women (Ocké et al., 1997b). Additionally, potential changes in partici
pants’ diets following recruitment pose uncertainty regarding the effects 
on study outcomes.

After applying Bonferroni correction for multiple comparisons, none 
of the interaction terms for CDAI and individual antioxidants with the 
air pollutants remained below the adjusted significance threshold, sug
gesting no modifying effects of dietary antioxidants on the impact of air 
pollution on CMD risk. In contrast, the uncorrected analyses revealed a 
few statistically significant interactions and further stratification 
revealed mixed, sometimes contradictory associations. In these uncor
rected stratified analyses, higher zinc and vitamin E intake seemed to 
mitigate the adverse effects of PM and nitrogen oxides on total CVD and 
HF risk. These findings contrasted with the associations observed in the 
context of UFP and PM2.5 exposures where higher vitamin E and C intake 
was linked with elevated T2DM and HF risk respectively. Only one 
previous study has examined the modifying effect of individuals’ Med
iterranean Diet scores (aMED) (considered to be enriched with antiox
idant compounds) on the associations of exposure to PM2.5 and NO2 with 
cardiovascular-related mortality risk (Lim et al., 2019). The study found 

that participants with higher aMED quintiles had a reduced risk of 
cardiovascular-related mortality due to air pollution exposure (Lim 
et al., 2019). So far, no other studies have examined the potential in
teractions between general dietary patterns and air pollution exposures 
in the context of cardiovascular outcomes, while only two have explored 
this in the context of T2DM. One study compared the impact of resi
dential PM2.5, PM10, NO2, and NOx exposures on T2DM incidence be
tween individuals with sufficient and insufficient intake of dietary 
antioxidant vitamins (based on the British adult recommended nutrient 
intake reference values) and concluded that sufficient intake of vitamins 
C and E could mitigate the adverse effects of air pollution on diabetes 
development (Li et al., 2022). A more recent study indicated no signif
icant interactions between exposure to PM2.5 and 22 dietary nutrients in 
the context of T2DM incidence among Korean adults, but found stronger 
associations with NO2 exposures among participants with lower retinol 
intake (Shin and Kim, 2023). A limitation in this context is the temporal 
gap between dietary assessments and exposure estimates, which may 
introduce uncertainty in capturing the true interaction between nutrient 
intake and exposure to specific air pollutants.

In this study, it is also crucial to consider the risk of chance or inflated 
findings, particularly in uncorrected exploratory analyses where some 
associations may lack biological plausibility. While multiple testing 
corrections were not applied to the hypothesis-driven analyses, raising 
the possibility of Type I errors, applying stringent corrections in such 
cases could obscure true associations. The trade-off between statistical 
conservatism and hypothesis-driven approaches should be considered 
when evaluating the findings. Additionally, despite accounting for a 
wide range of covariates, the possibility of residual confounding from 
unmeasured variables (e.g., individual supplement use) cannot be ruled 
out, further reflecting underlying complexities in exposure-response 
relationships. This study underscores the need for future research to 
advance the current understanding of the intricate interplay between 
dietary antioxidants, air pollution exposure, and CMD incidence. Future 
studies could replicate and extend these findings in large, diverse 
population-based cohorts exposed to varying levels of air pollution and 
dietary patterns. This is important for generalizing and reproducing the 
study findings, as the present study population was predominantly fe
male and of Dutch descent. Longitudinal studies with frequent dietary 
assessments and more detailed and updated exposure measurements 
would provide valuable insights into the relationships between dietary 
antioxidants, air pollution exposure, and CMD incidence. Mechanistic 
studies are needed to further unravel the underlying biological mecha
nisms responsible for these findings. Additionally, comprehensive sys
tematic and meta-analytical research could offer further clarity on the 
nature of the relationship between dietary antioxidants and CMDs, 
particularly as existing studies have predominantly focused on the 
antioxidative potential of these micronutrients through interventions 
such as supplementation (Bjelakovic et al., 2007; Lonn et al., 2005; 
Miller et al., 2005). Finally, exploring the impact of supplementations 
alongside dietary changes on CMD risk in the context of air pollution 
exposure might inform preventive strategies tailored toward vulnerable 
populations.

5. Conclusion

This study highlights the complex and nuanced interplay between 
dietary antioxidants and air pollution exposure in relation to CMD 
incidence. Overall, the findings revealed largely non-significant associ
ations between air pollution and CMDs, with significant positive asso
ciations only observed for NO2 and UFP exposures with HF incidence. 
Beta-carotene was associated with a reduced risk of total CVD, while 
higher levels of antioxidant intake were generally linked to an increased 
incidence of T2DM. After accounting for multiple comparisons, no sta
tistically significant interactions between antioxidants and air pollutants 
emerged, indicating that the associations of air pollution with CMD 
outcomes do not differ by dietary antioxidant intake. Further research is 
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warranted to confirm the generalizability of these observations and 
provide further elucidations regarding the possible causal factors and 
mechanisms, particularly those driving the indicated positive associa
tions between dietary antioxidants and T2DM incidence. These findings 
could be of particular relevance in urban settings, where high air 
pollution exposure necessitates targeted policy measures for mitigating 
its adverse health impacts.
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