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SUMMARY
Generalization theories traditionally overlook how our mental representations dynamically change in the pro-
cess of transferring learned knowledge to new contexts. We integrated perceptual and generalization the-
ories into a computational model using data from 80 participants who underwent Pavlovian fear conditioning
experiments. The model analyzed continuous measures of perception and fear generalization to understand
their relationship. Our findings revealed large individual variations in perceptual processes that directly influ-
ence generalization patterns. By examining how perceptual and generalization mechanisms work together,
we uncovered their combined role in producing generalization behavior. This research illuminates the prob-
abilistic perceptual foundations underlying individual differences in generalization, emphasizing the crucial
integration between perceptual and generalization processes. Understanding this relationship enhances
our knowledge of generalization behavior and has potential implications for various cognitive domains
including categorization, motor learning, language processing, and face recognition—all of which rely on
generalization as a fundamental cognitive process.
INTRODUCTION

Humans possess a remarkable ability to extrapolate past

learning to new situations, a cognitive process known as gener-

alization.1 This adaptive mechanism allows individuals to trans-

fer knowledge efficiently, avoiding the need to relearn in similar

contexts. Generalization relies heavily on the concept of similar-

ity: the more alike two situations are, themore readily knowledge

is transferred between them.2 However, humans do not interact

with a physical reality directly. Instead, we perceive the world

throughmental representations shaped by our sensory systems.

These mental representations form the foundation for assessing

similarity and guiding generalization. Crucially, these representa-

tions vary both between individuals and within the same individ-

ual across different instances, leading to idiosyncratic patterns in

how similarity is assessed and generalization occurs.3

However, a prevalent trend in generalization research is the

tendency to conflate the mental with the physical, often treating

these dimensions as synonymous entities.1,4 While some re-

searchers have acknowledged the inherent noise in the percep-

tual process5 or recognized that the mental representation may

deviate from the physical reality (Figure 1A),2 they often over-

looked three critical aspects of perception: the variability across

individuals, the changes within individuals over time, and how

learning processes themselves can modify perception.6
iScience 28, 112228, A
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As organisms, we perceive the physical world indirectly

through sensory inputs across various modalities.7 These inputs

undergo complex mental processing to form perceptual judg-

ments.8,9 The predictive coding framework10,11 within Bayesian

brain theory12–14 provides a compelling explanation for this pro-

cess: the brain functions as an inference system that generates

predictions based on environmental expectations. When

encountering new information, perception involves integrating

these new experiences with past predictions. The degree of up-

dating depends on the relative uncertainty – greater updating oc-

curs when sensory evidence is more certain or prior knowledge

is uncertain. While debate continues about whether human

perception optimally follows Bayes’ rule,15,16 substantial evi-

dence supports that past experiences shape current percep-

tion.17–20 Consequently, mental representations of stimuli exist

not as fixed points but as evolving probability distributions,

with individual differences in how sensory input and expecta-

tions combine.21

In generalization research, probability distributions have been

used to explain how overlapping features of stimuli influence

generalization.22–24 For instance, when two stimuli share similar

features, their representational distributions overlap, leading to a

higher likelihood of generalization. However, all traditional the-

ories assume the mental representation of a stimulus has a fixed

shape and spread that remains constant over time and is
pril 18, 2025 ª 2025 The Author(s). Published by Elsevier Inc. 1
CC BY license (http://creativecommons.org/licenses/by/4.0/).
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Figure 1. From physical world to mental space

(A) The mental distance between two contexts is determined by a one-to-one mapping between physical to perceptual quantity. (B) The mental distance has a

temporal dynamic that shifts over time. (C) The mental distance has a dynamic and stochastic nature.
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identical across different people (Figure 1A). This traditional

approach faces a fundamental limitation: by constructing distri-

butions solely from generalization behavior, it becomes impos-

sible to disentangle the distinct cognitive components that

shape generalization. This creates a critical theoretical inference

problem, as researchers cannot determine whether observed

generalization patterns stem from perceptual or memory pro-

cessing differences. Given that overgeneralization has been

consistently linked to anxiety-related disorders,25–27 this theoret-

ical limitation has profound clinical implications. Without the abil-

ity to isolate specific cognitive components driving generaliza-

tion, interventions designed to modify generalization patterns

may fail if they target the wrong cognitive component. For

instance, a treatment approach focused on modifying response

tendenciesmight prove ineffective if the patient’s anxiety-related

overgeneralization primarily stems from altered perceptual pro-

cessing28. Previous research provided evidence for this percep-

tual account by showing that anxiety patients exhibited overgen-

eralization partly due to altered sensory representations.29

Recent empirical studies have begun addressing these

limitations by revealing two keymechanisms underlying general-

ization behavior: perceptual processing30–34 and memory

operations.35–38 These findings demonstrate the inadequacy of

traditional generalization theories by showing how individuals

may perceive the same physical features differently, and how

their memories of these perceptions can shift over time

(Figures 1B and 1C). For example, Zaman et al. (2023)36 found

large individual differences in how people perceive colors and

identify previously learned stimuli, with these idiosyncratic pat-

terns strongly predicting their generalization behavior. This dy-

namic variability suggests that to truly understand generalization

and develop effective treatments, we need methodologies that

can separately measure and model the distinct contributions of
2 iScience 28, 112228, April 18, 2025
perceptual processing and memory mechanisms, rather than

conflating them within a single distribution derived from behav-

ioral outcomes alone.

Recently, we introduced a computational model3 that made a

first attempt to explicitly include perception into the generative

process underlying fear generalization (Figure 2). It departs,

like most generalization theories, from an error-driven learning

process39 that captures how organisms adapt their behavior

based on experience. When an outcome differs from what was

expected, learners update their predictions tominimize future er-

rors – larger surprises lead to bigger adjustments in their expec-

tations. Generalization of these learned expectations follows an

exponential decay principle:2 the more different two situations

are, the less likely learningwill transfer between them. This decay

occurs within a mental space where stimuli are represented

based on their perceptual features. In traditional theories, this

mental space is assumed to be static and uniform – stimuli

occupy fixed positions that remain constant over time and are

identical across individuals. Our model departs from this

assumption by using trial-by-trial perceptual data to track how

individuals’ mental representations of stimuli change over

time.3 This allows stimulus positions in mental space to shift

dynamically and differ between individuals. Consequently, the

similarity between any two stimuli, which is derived from their

distances in this space, becomes dynamic rather than fixed.

This enables themodel to account for variations in generalization

patterns based on how individuals uniquely represent stimuli in

their mental space. Crucially, unlike previous approaches that in-

ferred these representations from generalization behavior itself,

our model derives them independently from trial-by-trial percep-

tual data, avoiding the circularity inherent in earlier theories.

While this model successfully accounts for individual differ-

ences in generalization behavior,3 it nevertheless implements a



Figure 2. Model framework overview

The computational framework integrates a state-

space model that processes perceptual data in a

Bayesian-like manner, generating perceptual and

CS memory distributions. These distributions

inform a model-based similarity metric, which

feeds into the generalization model alongside

learned values from the learning model. This new

approach contrasts with the previous point-based

perceptual representation for similarity-based

generalization.
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reductionist approach to perception that warrants further refine-

ment. The model’s representation of perception as discrete

points in mental space fails to capture two critical aspects of

perceptual processing. First, it overlooks the inherent uncer-

tainty in sensory processing, where each percept exists not as

a singular value but as a probability distribution reflecting the

brain’s confidence in its interpretations.13,14,20 Second, it does

not account for the cumulative nature of perceptual experience,

whereby current perceptions are actively shaped by the integra-

tion of past perceptual encounters with incoming sensory infor-

mation.17–20 This simplified conceptualization of perception,

while enabling initial insights into individual differences in gener-

alization, ultimately constrains our ability to fully elucidate the

fundamental perceptual mechanisms that underlie generaliza-

tion behavior and their dynamic interaction with learning

processes.

In this study, we introduce a fundamental shift in understand-

ing how perception shapes generalization by resolving a critical

limitation in existing theories. While early theories assumed

direct access to physical stimulus properties (Figure 1A), later

approaches acknowledged uncertainty through probability dis-

tributions but could only infer these distributions from general-

ization behavior itself - creating a circular explanation. Our previ-

ous work3 began addressing this circularity by incorporating
direct perceptual measurements, but

treated each perception as a precise

point rather than an uncertain estimate

(Figure 1B). We now present a framework

that captures two fundamental aspects

of human perception: its inherent un-

certainty and its continuous evolution

through experience (Figure 1C). By mo-

deling perceptual representations as dy-

namic probability distributions derived

from trial-by-trial perceptual judgments

(Figure 2), we allow similarity to emerge

naturally from the overlap between un-

certain perceptual representations rather

than inferring it from behavior or physical

properties. To ensure rigorous compari-

son between probabilistic and traditional

approaches, we implement a two-step

analysis: first modeling perceptual uncer-

tainty using only perceptual data, then

using these pre-computed similarities in
our generalization model. This separation prevents our probabi-

listic assumptions from biasing model comparison while still

capturing how both immediate perception and accumulated

experience shape generalization behavior.

To investigate these new assumptions, we re-analyzed data

from two published fear conditioning experiments (total N =

80)3 where participants rated the size of circular stimuli and their

expectancy of receiving an electrocutaneous stimulus. In Exper-

iment 1, participants underwent simple conditioning with one re-

inforced circle (CS+) paired with shock. In Experiment 2, differ-

ential conditioning was used with both a reinforced (CS+) and

non-reinforced (CS�) circle. During generalization testing, par-

ticipants rated their shock expectancy for new circles of varying

sizes. Both experiments provided continuous measures of

perception (size ratings) and fear learning (shock expectancy)

throughout conditioning and generalization phases.

RESULTS

We contrasted two computational approaches that differed on

their operationalization of the mental representation of stimuli.

The first approach presumed stimuli as points with their coordi-

nates directly derived from the perceptual judgment data (Fig-

ure 1B), replicating the methodology established in the previous
iScience 28, 112228, April 18, 2025 3
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study.3 The second approach conceptualized stimuli as probabi-

listic perceptual distributions that are the result of a Bayesian

perception process that integrates past perceptual experiences

and sensory input (Figure 1C).

In the following sections, we will first explore the inter- and

intra-individual patterns observed in perceptual judgment data

using the Bayesian perceptual model. Subsequently, we will

explore how these perceptual patterns can be effectively used

to predict generalization patterns.

Perception
Our investigation into perception centered on two key aspects:

(1) understanding how individuals uniquely transform physical

stimuli into subjective perceptual experiences through person-

alized sensory mappings (perceptual likelihood), and (2)

examining the role of individual differences in accumulated

perceptual history (perceptual prior) in shaping subsequent

judgments. To model human perception, we employed a

state-space framework using a Kalman filter—a mathematical

model that captures how individuals integrate prior experiences

with incoming sensory information. In essence, this approach

reflects how the brain not only processes raw sensory input

but dynamically combines it with past perceptions to form

coherent judgments. The Kalman filter quantitatively accounts

for the relative reliability of new sensory evidence and pre-ex-

isting perceptual beliefs, providing a principled mechanism to

model this interplay (for detailed explanations, refer to section

perceptual model).

Before delving into modeling the data collected from actual

experiments, we initiated a simulation study where we generated

perceptual responses for 300 synthetic participants. This simula-

tion allowed us to explore parameter recovery and determine if

themodel could accurately identify parameter values. Encourag-

ingly, the simulation results indicated successful recovery of all

critical parameters within themodels (Method S1: Parameter Re-

covery and Figure S1).

The architecture of the model centers on several key param-

eters that capture individual differences and temporal dynamics

in perception. At the core are three participant-specific param-

eters: the scaling parameters (b0;i and b1;i) define how physical

stimulus properties are transformed into mental representations

through a sigmoid function, with b0;i determining the baseline

perceptual magnitude and b1;i controlling the steepness of

the transformation. This initial transformation includes inherent

sensory mapping uncertainty (sS;i), reflecting how consistently

an individual perceives the same physical stimulus. The result-

ing perceptual distributions are characterized by their mean

(mj;ij) and uncertainty (sj;ij), which evolve over time. The rate

of this evolution is controlled by the process noise decay

parameter (ui), which determines how quickly perceptual un-

certainty diminishes with repeated exposure to stimuli. A higher

value of ui indicates a rapid decrease in uncertainty, leading to

more precise perception over time, while a lower value main-

tains higher perceptual uncertainty throughout the experimental

session. Together, these parameters provide a comprehensive

account of both stable individual differences in perception and

how perceptual precision dynamically evolves through experi-

ence (see Figure 3).
4 iScience 28, 112228, April 18, 2025
Sensory mapping

In Figure 4, we compared the perceptual responses observed in

the experimental data with the replicated data generated from

the posterior distribution of the parameter space. This compari-

son aimed to gauge the extent to which the perceptual model

could accurately mimic the observed perceptual responses. As

shown in Figure 4, the replicated data closely follows the pat-

terns of actual perceptual responses, exhibiting consistency

across different statistical quantiles.

With a multilevel structure, the model is capable of estimating

these three perceptual parameters both at the group and individ-

ual levels, as illustrated in Figure 5. The parameters mb0
(mean of

population-level b0) and mb1
(mean of population-level b1) encap-

sulate the group-level information regarding sensorymapping. In

Experiment 1 and 2, mb0
displayed a 95% credible interval of

[�3.31, �2.79] and [-2.99, �2.61], along with median values of

�3.05 and �2.80. On the other hand, mb1
, in two experiments,

displayed a 95% credible interval of [0.021, 0.026] and [0.018,

0.022], and the median values of 0.023 and 0.020. This param-

eter governs the overall steepness of the sensory mapping func-

tion. A larger value leads to a more pronounced and rapid

change in the mapping process, making the function steeper

around the midpoint of the logistic curve.

In the panel b of Figure 6, a diverse range of inter-individual

variations becomes evident through the broad spectrum of b0;i
and b1;i estimations. These variations give rise to unique patterns

in how participants map physical stimuli to mental representa-

tions, as shown in Figure 6. Across both experiments, certain

participants exhibit lower sensitivity to alterations in physical

quantity, resulting in perceptual responses that are generally

quite similar across different stimuli. Consequently, these partic-

ipants are more likely to encounter confusion between different

stimuli, given that minor perpetual uncertainties can already

lead to overlapping mental representations. Conversely, another

group of participants demonstrates heightened sensitivity to

shifts in physical quantity, leading them to respond more

distinctly to different stimuli and necessitating a greater degree

of perceptual uncertainty to induce overlapping perceptual

distributions.

Dynamic perception

Within each trial, prior perceptual expectations are combined

with new sensory input to form the current perception. This

integration is governed by the Kalman gain (af), which deter-

mines the relative importance of prior expectations versus

new sensory information. In essence, the Kalman gain adjusts

the balance between relying on past experiences and incorpo-

rating fresh evidence. A low Kalman gain means prior expecta-

tions dominate perception when new sensory input is less reli-

able. Conversely, a high Kalman gain gives more weight to new

input, shaping perception accordingly. This dynamic adjust-

ment balances past and present information based on their

relative reliability.

The model captures how perceptual uncertainty evolves

dynamically over time through two key parameters. The first is

a decay rate ui that governs how quickly an individual’s percep-

tual uncertainty changeswith repeated stimulus exposure. At the

population level, this decay rate mu showed similar estimates

across both experiments, with 95% credible intervals of



Figure 3. Patterns in perceptual model

(A) The combination of the two scaling parameters b0;i and b1;i in the sigmoid function can generate different patterns of perceptual mappings. (B) The deter-

mination of the perceptual mean at each time point involves a weighted combination of the mean values from the perceptual prior and the mean values from the

perceptual likelihood (sensorymapping). The perception at a given time point is more influenced by the perceptual prior when the Kalman gain remains below 0.5,

while it tends to be more heavily shaped by the perceptual likelihood as the Kalman gain surpasses 0.5. The effectiveness of this transition is intricately tied to the

process noise forgetting rate denoted as u, which essentially determines the pace at which the Kalman gain decreases with increasing perceptual instances.
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[0.001,0.003] and [0.001,0.004] in Experiments 1 and 2 respec-

tively, both having median values of 0.002. The second param-

eter h represents the initial magnitude of perceptual uncertainty

at the group level, with 95% credible intervals of [10.63, 11.46]

and [11.03, 12.34] for the two experiments, and median values

of 11.04 and 11.68 respectively. Figure 7 illustrates how this

perceptual uncertainty evolves throughout the experiments.

Most participants showed a gradual decrease in uncertainty

over time, indicating that repeated exposure to stimuli leads to

more precise and stable perceptual representations.

The model also includes a sensory mapping uncertainty

parameter sS;i that captures individual differences in how consis-
tently people perceive physical stimuli. This parameter reflects

the stability of an individual’s perceptual system - a lower value

indicates more consistent perception of the same physical stim-

ulus across repeated presentations. The majority of participants

in both experiments demonstrated relatively stable perception

with sS;i values below 1. This perceptual stability influenced

how individuals weighted new sensory information versus their

prior perceptual experience, as measured by the Kalman gain

which remained above 0.5 for most participants throughout the

experiments (Method S2: Kalman Gain Analysis and Figure S2).

The consistently high Kalman gain suggests that participants

maintained more sensory-based perception of the stimuli,
iScience 28, 112228, April 18, 2025 5
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Figure 4. Posterior predictive checks of model-based perception

Comparisons are drawn between posterior predictive samples and actual perceptual response data in both simple conditioning (A) and differential conditioning

(B) experiments. The black curve represents the mean as well as the quantiles at 10%, 30%, 50%, 70%, and 90% across diverse stimuli for observed perceptual

responses. In comparison, the orange curve illustrates the mean along with corresponding quantiles at 10%, 30%, 50%, 70%, and 90% for 5000 replicated data

across various stimuli.
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integrating some influence from past perceptual experiences

without converging on them too much.

Generalization
Upon scrutinizing the perceptual patterns evident in both ex-

periments using the state-space perceptual model, our focus

shifted to assessing how these different mental stimulus repre-

sentations contributed to the observed generalization behavior.

To accomplish this, we ran the computational model of gener-

alization3 twice. One run utilized a point-based approach

where stimuli are considered as points in a mental space

with their coordinates directly derived from perceptual data

(Figure 1B). Here, stimulus similarity is derived by the Euclidean

distance between coordinates, thereby ignoring the influence

of perceptual uncertainty. In the new model, stimuli are repre-

sented as probability distributions that emerged from a

Bayesian perception process, with now stimulus similarity be-

ing reflected in the overlap between two stimulus distributions

(Figure 1C).

The generalization model integrates error-driven learning39

and similarity-based generalization processes.2 Through

repeated exposures to the learned stimulus, stimulus-outcome

associations are updated and decay exponentially with
6 iScience 28, 112228, April 18, 2025
decreasing stimulus similarity. Depending on the model, this

similarity is derived from point distances or by the overlap in

perceptual distributions. To capture distinct patterns of general-

ization behavior, the model employs amixture structure with four

pathways: Non-Learners and Overgeneralizers represent mal-

adaptive generalization patterns characterized by learning

deficits or excessive generalization, respectively. Physical Gen-

eralizers and Perceptual Generalizers differentiate whether

perceptual variability impacts generalization patterns (Percep-

tual Generalizers; Figures 1B and 1C) or not (Physical General-

izers; Figure 1A).

Model comparison

To assess the relative data fit, we integrated the two perceptual

assumptions into a single model (referred to as a super model).

Within this framework, we estimated the model selection param-

eter bM, which provides information on which sub-assumption

(model) better fits the data, and computed the Bayes factor

based on the estimations of bM.

Examining the posterior samples of bM as depicted in

Figure 8 and computed Bayes factors, we observe a distinct

preference direction in Experiment 1. The data strongly

favored the perceptual distributions model. In Experiment 1,

the posterior distribution of bM exhibited a 95% confidence
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Figure 5. Perceptual model parameter estimates

Parameter estimates with 95% credible interval of the three important parameters in the perceptual model. (A) Posterior distributions of the group mean for the

scaling parameter b0, b1, andu. (B) Posterior distributions of the individual scaling parameter b0;i , b1;i, andui (ordered by the 50%quantile of the perceptual slope

parameter b1;i ).
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interval of [0.59, 0.87], with a median value of 0.74 and a

BF = 18.833. On the other hand, in Experiment 2, the data

did not show a clear preference for either perceptual

assumption, suggesting a more balanced performance be-

tween the model with two distinct perceptual assumptions

in that context (i.e., the posterior distribution of bM had a

95% confidence interval of [0.35, 0.65], with a median value

of 0.50 and a BF = 0.197).
Latent group allocation

Next, we compared if the latent group allocation was affected by

the different ways of stimulus representations. In Figure 9, it is

shown that the use of stimulus distribution resulted in higher

probability of having Perceptual Generalizers in both experi-

ments (Experiment 1: 95% CI[0.28,0.63], median = 0.45; Exper-

iment 2: 95% CI[0.51,0.80], median = 0.66) compared to the

adoption of perceptual distance based on point estimates
iScience 28, 112228, April 18, 2025 7
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Figure 6. The sensory mapping patterns

For each physical stimulus, individual participants demonstrate a distinct mapping from physical to perceptual quantities. The mental representation of each

experimental stimulus is calculated with the sensory mapping scaling parameters b0 and b1 (50th quantile from theMCMC samples, ordered by the 50% quantile

of the perceptual slope parameter b1;i ). (A) and (B) display the mapping patterns for Experiment 1 (simple conditioning) and Experiment 2 (differential condi-

tioning), respectively.
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(Experiment 1: 95% CI[0.07,0.33], median = 0.17; Experiment 2:

95% CI[0.32,0.62], median = 0.47). An opposite pattern can be

observed for the probability of Physical Generalizers allocation,

with lower posterior probability in the new model (Experiment

1: 95% CI[0.02,0.24], median = 0.09; Experiment 2: 95% CI

[0.03,0.23], median = 0.11) compared with the point-based

approach (Experiment 1: 95% CI[0.23,0.56], median = 0.39;

Experiment 2: 95%CI[0.18,0.46], median = 0.31). As to the prob-

ability of Non-Learners and Overgeneralizers allocation, as ex-

pected, it remains nearly identical regardless of the particular

perceptual assumption (Method S3: Group Allocation Patterns

and Figures S3 and S4).

DISCUSSION

The current study presents a framework for comparing two

distinct approaches to modeling how humans mentally repre-

sent stimuli and its impact on fear generalization responding.

The first approach, established in previous research,3 acknowl-

edges that perception deviates from physical reality but repre-

sents these perceptual differences as discrete points in mental

space. Our new approach extends this by conceptualizing

perception as probability distributions that emerge from the

continuous interaction between sensory evidence and prior ex-

pectations. This shift from point-based (Figure 1B) to distribu-

tion-based (Figure 1C) representations captures additional com-
8 iScience 28, 112228, April 18, 2025
plexities of human perception: the inherent uncertainty in

perceptual processing, the individual difference in perceptual

processing, and the dynamic evolution of distributional percep-

tion over time. By comparing these approaches, we demonstrate

how incorporating probabilistic representations provides new in-

sights into how perceptual processes shape fear generalization

behavior.

Through a comparative analysis of the same generalization

model utilizing distinct stimulus representations, we contrasted

two fundamental approaches to quantifying perceptual similar-

ity. Our model comparison revealed distinct patterns across

the two experiments. In Experiment 1, we found strong evidence

favoring the distribution-based over point-based perceptual

similarity (BF = 18:833). Importantly, both approaches substan-

tially outperformed models assuming veridical stimulus percep-

tion (Physical Generalizers). In Experiment 2, while the model

comparison showed no clear preference between point-based

and distribution-based approaches (BF = 0:197), both again

proved superior to veridical perception models. The distribu-

tion-based approach led to a marked increase in the proportion

of participants classified as Perceptual Generalizers in both ex-

periments - from a median of 17%–45% in Experiment 1, and

from 47% to 66% in Experiment 2. Correspondingly, we

observed a decrease in Physical Generalizers (Experiment 1:

from 39% to 9%; Experiment 2: from 31% to 11%). This consis-

tent shift in group allocation across experiments, even when
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Figure 7. Perceptual uncertainty

The two panels illustrate the mean of perceptual

uncertainty (from 50th quantile of MCMC samples)

for every 20 trials in Experiment 1 (A) and Experi-

ment 2 (B).
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overall model performance was equivalent, suggests that

modeling perceptual uncertainty reveals important individual dif-

ferences in how perception shapes generalization. The different

patterns of model preference between experiments might be

attributed to several factors: the increased attention demands

of differential conditioning could have led to more consistent

perceptual responses, reducing the importance of modeling un-

certainty, or participants might have exhibited greater variability

in how they approached the differential conditioning task. Future

research should systematically investigate these potential expla-

nations to better understand how task demands shape the rela-

tionship between perceptual processes and generalization

behavior, particularly focusing on when and why explicitly

modeling perceptual uncertainty becomes crucial for under-

standing generalization patterns.

In the process of transitioning from learning associations

within a specific context to applying that learning in new situa-

tions, humans continually engage with physical inputs. Yet, the

findings within the realm of perception,17–20 in conjunction with

our current findings, make it evident that humans do not possess

flawless perception. Instead, human perception operates

through a non-linear sensory mapping, and individuals perceive

the physical reality through the lens of inherent perceptual uncer-

tainties. Regrettably, current theories of stimulus representation

in learning and generalization, such as elemental representation

models22,23 or neural network models,24 all presume that stim-
ulus representation maps solely to the

physical dimension. This assumption

suggests that more similar physical fea-

tures result in greater overlaps in the dis-

tribution of stimulus representations, ulti-

mately falling short in capturing the

idiosyncratic and dynamic nature of

physical-to-perception mappings. The

multidimensional scaling method,2 while

acknowledging the mapping from phys-

ical to perceptual space, assumes that

perception for a stimulus is a fixed point

in mental space, remaining invariant

over time or individuals. This perspective,

treating perception as a deterministic

system, overlooks the inferential and pro-

babilistic nature inherent in perception.

In this work, we advance the under-

standing of generalization by modeling

perception as dynamic probability distri-

butions rather than fixed points in mental

space. These distributions capture three

fundamental aspects of human percep-

tion: how individuals process incoming
sensory information, how they integrate this information with

past experiences, and how confident they are in their percep-

tions. When determining whether learning should transfer be-

tween stimuli, our framework examines the overlap between

their perceptual distributions - a high degree of overlap suggests

strong similarity, while minimal overlap indicates distinct per-

cepts. This probabilistic approach reveals subtle but important

phenomena that point-based models miss. For instance, two

stimuli might be perceived quite similarly on average, yet rarely

trigger generalization if people perceive themwith high certainty,

creating narrow distributions with minimal overlap. Conversely,

even when average perceptions differ moderately, uncertain

perception of both stimuli can create a focused region of distri-

butional overlap, promoting consistent generalization. By

capturing both the content of perception (where distributions

are centered) and its quality (how precise they are), our frame-

work provides new insights into why the same physical similar-

ities between stimuli can lead to markedly different patterns of

generalization across individuals and contexts.

Generalization holds a significant theoretical foundation not

only within other cognitive domains such as learning40,41 and

memory,42,43 it constitutes a foundational cognitive process

that underpins a range of behaviors, including but not limited

to categorization,44 motor learning,45 language processing,46

and face recognition.47 This serves to accentuate its pivotal

role within the domain of cognitive science. While the
iScience 28, 112228, April 18, 2025 9
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Figure 8. Posterior distributions of the model selection parameter

The two models, each based on different assumptions about perceptual dis-

tances, are combined into a single super model. The likelihoods of both

models are integrated in a linear manner, with a model selection parameter

denoted as bM. The prior distribution for bM is specified as Uniformð1;1Þ. The
figure displays the posterior distribution of bM, each comprising 120,000

samples. Values greater than 0.5 are indicated with the red color, suggesting

that the observed data show a preference for the model-based perceptual

assumption. Conversely, values less than 0.5 are shown in blue color, indi-

cating that the observed data exhibit a preference toward the descriptive

perceptual assumption.

iScience
Article

ll
OPEN ACCESS
significance of variability in the context of learning and general-

ization has been extensively deliberated,48 the bulk of this

discourse has predominantly centered around the physical

domain. Yet, the exploration of variability within the human

perceptual system and its consequential impact on relevant

behavior remains relatively understudied. The increased propor-

tion of individuals allocated to the Perceptual Generalizer group

through the probabilistic perceptual similarity underscores the

role of internal variability within the perceptual system in shaping

observed generalization behavior.

The importance of perceptual variability, or more broadly, the

intricacies of the perceptual process, also extends beyond theo-

retical implications to encompass clinical perspectives. Aberrant

generalization has garnered empirical attention as a potential

driving factor in anxiety disorders.25–27 Moreover, evidence indi-

cates that individuals with anxiety disorders exhibit poorer stim-

ulus identification abilities compared to their healthy counter-

parts.29 However, the causal direction between anxiety

disorder symptoms and stimulus identification remains an

open empirical question. Furthermore, the association between

dynamic and probabilistic perceptual processes and clinical dis-

order symptoms remains largely unexplored, although there are

emerging reports of altered perceptual inference processes in

certain patient populations or personality traits.21 In this context,

the utilization of the current computational model not only pro-

vides insights into the associations between the generalization

behavior of an individual and the underlying perceptual process

but also into the dynamics through which the perceptual process

engenders such behavior. For instance, individuals exhibiting a

gradual decrease in Kalman gain over time tend to display an
10 iScience 28, 112228, April 18, 2025
increasing bias toward previous perceptual experiences, a phe-

nomenonwith a profound impact observed in several mental dis-

orders, contributing significantly to the overall shaping of

perceptual patterns.49–51

Additionally, the perceptual sensitivity to different stimulus

might also provide valuable insights, an example for this can be

found in a recent study in which stimulus-based auditory percep-

tual plasticity is found to explain the overgeneralization behavior

of the generalized anxiety disorder (GAD) patients.29 Examining

howdiverseperceptual processes shapegeneralizationbehavior

can provide clinicians with valuable insights not only into the

extent towhich problematic generalization behavior is influenced

by biased perception but also into the workings of inherent

perceptual processes that contribute to the eventual manifesta-

tion of such behavior. In sum, the knowledge of inherent percep-

tual process may offer clinicians a deeper understanding of the

underlying mechanisms involved in anxiety disorders and aid in

developing more targeted therapeutic interventions.52

Limitations of the study
Currently, there is no unified and coherent assumption rega-

rding the optimality of human perception within the Bayesian

framework.15 Moreover, a consensus theory on how perceptual

prior should be formulated remains elusive. Some studies have

adopted a fixed perceptual prior distribution to represent a

macro belief about the physical world,17,19 while others have

embraced a more experience-driven perceptual prior distribu-

tion.18,53 In our study, we adopted a simple assumption for

formulating the perceptual prior, considering past perceptual

experiences as the sole prior for the current perceptual system.

However, future research can delve deeper into the formulation

of perceptual priors. For instance, in the context of fear gener-

alization, the conditioned stimulus often carries more salient

experiences, such as fear or pain. A pertinent question arises

regarding whether these highly salient experiences contribute

to the formulation of a macro perceptual prior that governs

the dynamic updating process of perception. Further explora-

tion and refinement of perceptual prior formulations could offer

valuable insights into the complex interactions between

perceptual experiences and the updating of perceptual sys-

tems. By addressing these issues, we can advance our under-

standing of how human perception adapts to various contexts

and experiences, paving the way for more comprehensive

models of perceptual processes and their implications for

generalization behaviors. Moreover, delving deeper into the

investigation of the perceptual prior can also aid in compre-

hending the influence of fear learning on the modification of

the perceptual system,54 particularly considering the lack of

consistent empirical behavioral findings in this domain.55

Another limitation of the current study pertains to its exclusive

reliance on self-report responses to assess fear learning,

perceptual, and fear generalization processes. While there is

some evidence suggesting a strong correlation between self-

report responses and physiological or neuronal measures in

fear learning, an ongoing debate remains regarding the extent

to which we can achieve a consensus on fear-related beha-

vior56,57 through diverse response channels.58,59 This unsolved

debate can also apply to the field of perception.60 Therefore,
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The proportion of the posterior MCMC samples of the group allocation parameter in Experiment 1 (A) and 2 (B). The point distance distribution depicts the

posterior samples when the model adopts descriptive perceptual patterns. In this approach, the current perception is calculated as the absolute difference

between the current perceptual response and the cumulative average of the perceptual response to the conditioned stimulus. On the other hand, the modeled

distance distribution illustrates the posterior samples when the model incorporates model-based perceptual patterns, integrating probabilistic and dynamical

assumptions of perception.
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we may expect a more complicated relationship when we

attempt to investigate both processes at the same time. Previous

empirical studies have demonstrated the impact of perceptual

variability on generalization with startle eye-blink re-

sponses31—a physiological manifestation of the body’s auto-

matic reaction to sudden stimuli. The findings of our study hold

potential for broader generalizability with such a physiological

measure. Furthermore, there is a need for further exploration of

the generalizability of the modeling findings to different types

of learning paradigms, stimuli with elevated levels of complexity,

and multi-dimensional features.

In the present study, the determination of similarity between the

currently encountered stimulus and the previously learned stim-

ulus relies solely on perceptual data. However, this approach as-

sumesaprecise alignment between theperceptualmemory asso-

ciated with the learned stimulus and the perceptual encoding

capturedduring the initial encounter. Regrettably, this assumption

overlooks thepotential influenceofmemoryprocesses,whichcan

exert a significant impact on both the encoding and retrieval of

memories. Inter-individual and intra-individual differences during

encoding, retrieval, or mechanisms acting on these processes

may introduce substantial biases in memory that can deviate

considerably from the objective representation of stimuli.61,62

Consequently, the exclusive reliance on perceptual data to deter-

mine perceptual distancemay fall short in capturing the complex-

ities and variations introduced by memory processes. This situa-

tion calls for further investigation and consideration in the study

of generalization behaviors. In future studies, it is encouraged to
develop models that incorporate recent theories of human mem-

ory and collect memory data throughout generalization testing.63

This approach would provide a more accurate representation of

how individuals perceive and memorize the physical world,

thereby advancing our understanding of the intricate interplay be-

tween perceptual and memory processes and their combined

impact on human generalization behavior.

Conclusion
Human behavior is a multifaceted phenomenon frequently

involving multiple psychological processes and mechanisms.

Generalization, asonesuchbehavior,manifests observable traits

that can emerge from distinct mechanisms. The comprehension

of the congruent relationship between diverse cognitive mecha-

nisms and generalization behavior necessitates a deeper under-

standing. In this research, we formulate amodeling framework to

integrate perceptualmechanismscharacterizedby their probabi-

listic and dynamic nature into the process of generalization. This

framework enables us to perceive generalization behavior as an

outcome arising from the intricate interplay among learning,

perception, and generalizationmechanisms. Consequently, it af-

fords us amore profound insight into howhumans generalize, not

merely due to an inherent inclination to transfer previous learning

but also owing to the profound interaction between cognition and

perception of physical reality. Ultimately, this integrated

approach may contribute to the refinement of generalization the-

ories and advance our knowledge of the fundamental mecha-

nisms that shape human generalization behavior.
iScience 28, 112228, April 18, 2025 11
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Materials availability
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org/10.17605/OSF.IO/SXJAK and are publicly available as of the date

of publication (see also Yu et al. (2023)3).

d Code: All original code, including the computational models (perceptual
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inference, and analysis (implemented in R 4.1.1 and JAGS 4.3.1), have
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details are available at the Open Science Framework repository as
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EXPERIMENTAL MODEL AND SUBJECT DETAILS

No new experimental data were collected for the current study. Instead, we conducted a re-analysis of two previously published da-

tasets fromYu et al. (2023).3 Below,we provide a summary of the original experimental procedures and participant details for context.

Human participants
The original study included a total of 80 healthy adult participants, with 40 participants in each of two experiments. Both experiments

included 40 participants (65% female, 35%male), withmean ages of 22.0 years (SD = 5.3) in Experiment 1 and 24.0 years (SD= 8.9) in

Experiment 2. All participants were recruited via KU Leuven’s online experiment management system and received either course

credits or monetary compensation (V12 for Experiment 1 andV16 for Experiment 2). The study was approved by KU Leuven’s Social

and Societal Ethics Committee (Approval Reference: G-201610641) and all participants provided written informed consent prior to

participation. While the current study did not examine potential sex or gender effects on fear generalization, a recent investigation

using a comparable experimental paradigm found no gender differences in fear generalization behavior and underlying processes.34

In the original study, sample size was determined based on previous studies investigating fear generalization. In Experiment 1 (sim-

ple conditioning paradigm), all participants underwent the same experimental procedure. In Experiment 2 (differential conditioning

paradigm), participants were counterbalanced in their assignment of CS+ and CS-, where half of the participants received the small-

est circle (S1; 50.8mm) as CS+ and the largest circle (S10; 119.42mm) as CS-, while the other half received the opposite assignment.

The original experimental procedures received ethical approval from the Social and Societal Ethics Committee at KU Leuven

(Approval Reference: G-201610641).

METHOD DETAILS

This study presents a computational reanalysis of previously published experimental datasets3 using a two-step modeling approach

that separates perceptual and generalization processes. First, we applied principles from Bayesian perception theory to model par-

ticipants’ trial-by-trial perceptual judgments, capturing howphysical stimuli are transformed intoprobabilisticmental representations.

From this perceptual model, we derived a new perceptual distance metric based on distribution overlaps, which was then incorpo-

rated into our previously established generalization model3 to predict fear learning responses. This approach allowed us to evaluate

how different assumptions about perception influence generalization behavior while maintaining a tractable modeling framework.

Importantly, we did not model generalization itself as a Bayesian process; instead, we applied Bayesian principles only to model

perceptual processes, and then used the outputs from this perceptual model to derive distances that served as inputs to our estab-

lished generalization model.3 This two-step approach allowed us to compare how different perceptual assumptions shaped gener-

alization behavior while maintaining a consistent generalization framework. By separating the perceptual modeling from the gener-

alization process, we ensured that the probabilistic nature of our perceptual model did not inadvertently bias our comparison of

different perceptual assumptions.

For complete experimental details of the original data collection, see Yu et al. (2023).3

Experiments
The datasets used in this reanalysis came from two experiments that each comprised 40 participants. In both original experiments,

participants underwent an acquisition phase, where they learned the associations between conditioned stimuli (CSs) and an uncon-

ditioned stimulus (US), followed by a generalization phase where test stimuli (TSs) were presented. The CSs and TSs were repre-

sented by circles with white outlines against a black background. The unconditioned stimulus used in both experiments was a

noxious electrocutaneous stimulus.
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The overall stimulus set of CSs and TSs comprised ten circles, labelled as S1 to S10, with diameters ranging from 50.80 to

119.42 mm, increasing by 7.624 mm between each step. In Experiment 1, which employed a simple conditioning paradigm, a subset

of seven circles (S4 to S10) was utilized. The middle circle (S7; 96.54 mm) served as the CS+, while the remaining six stimuli were

designated as TSs. In Experiment 2, a differential conditioning paradigm was employed, utilizing the entire stimulus set (S1 to

S10). The assignment of theCS+ andCS-was counterbalanced among participants. The smallest circle (S1; 50.8mm) and the largest

circle (S10; 119.42 mm) alternated between being the CS+ or CS-. The remaining eight stimuli exclusively served as TSs and were

solely presented during the generalization phase.

In each trial of both experiments, participants were required to provide ratings on two scales. Firstly, they rated the diameter of the

stimulus using a size Visual Analogue Scale (VAS), which ranged from 0 to 200 millimeters. Responses on this task show large inter-

individual differences but high across-days reliability within individuals.35 Secondly, they rated their expectancy of experiencing an

unconditioned stimulus (US) after observing the presented circle using an expectancy VAS, with ratings ranging from ‘no shock’ (1) to

‘definitely a shock’ (10).

In Experiment 1, the acquisition phase consisted of 14CS+ trials, where theCS+was pairedwith the unconditioned stimulus (US) in

7 trials, resulting in a reinforcement rate of 50%. In Experiment 2, the acquisition phase included 12 CS+ trials and 12 CS- trials.

Notably, 83% of the CS+ trials were paired with the US, while the CS- trials were never paired with the US. The generalization phase

in Experiment 1 encompassed four blocks, whereas Experiment 2 comprised three blocks, with each block being separated by a

3-minute break. Importantly, the US was never paired with the CS- or the TS trials; it was exclusively associated with the CS+ trials

in both experiments. Each block in Experiment 1 consisted of 22 CS+ trials and 24 TS trials, and to prevent the extinction of the condi-

tioned response, each block was always initiated with ten consecutive CS+ trials, known as re-acquisition. On the other hand, Exper-

iment 2 incorporated 14 CS+ trials, 8 CS- trials, and 32 TS trials in each block, with each block commencing with six consecutive CS+

trials. Past research successfully used CS+ re-acquisition and large number of stimulus repetitions within a context of fear

generalization.35,55

Computational model of generalization
Our computational framework advances the quantification of perceptual influences on fear generalization in two key ways (see Fig-

ure S5 for the Directed Acyclic Graph). First, we modeled how individuals perceive stimuli using a state-space model that captures

both the probabilistic and dynamic nature of perception. Second, we introduced a new method for calculating stimulus distances

based on the overlap between perceptual distributions, replacing our previous approach that relied on direct differences between

mental coordinates (based on perceptual ratings).3 Throughout our modeling, we employed weakly to non-informative priors given

the current uncertainty about underlying processes (Method S4: Prior Specifications for Computational Models and Tables S1 and

S2). A prior sensitivity analysis conducted for both the perceptual and generalization models demonstrates that our results are robust

to a range of plausible prior choices (Method S5: Sensitivity Analysis of Model Priors and Figures S6 and S7). The following sections

detail first the generalization model’s core elements, then our new approach to computing perceptual distances.

Model architecture
The computational model incorporates a mixture structure, enabling the generation of four distinct theoretically or clinically relevant

behavior paths. The first group, Non-Learners, is characterized by a learning rate of 0, indicating that the error-driven learning pro-

cess has not occurred, and consequently, there is no expectation to be generalized. The second group, Overgeneralizers, exhibits a

very high generalization tendency (indicated by a low value for the generalization rate). This propensity ensures that the similarity re-

mains consistently higher than 70%, even when encountering the most distant stimuli in the experiment, thereby maintaining the US

expectation above 70% of the expectation to the learned stimulus regardless of the encountered stimulus.

The remaining two groups, Physical Generalizers and Perceptual Generalizers, presume that individuals have learned the associ-

ations between the CS and US to some extent and subsequently generalize these associations to other stimuli (TS) based on sim-

ilarity. The distinction between these groups lies in the dimension of generalization - physical or perceptual. Physical Generalizers

assume no perceptual variability or that perceptual variability does not influence generalization behavior, while Perceptual General-

izers posit a link between perceptual variability and generalization behavior.

The fundamental assumption of the generalization model posits that at each time point, every participant (indexed by i = 1;.;n)

holds certain expectations regarding US onset denoted as vij for the conditioned stimulus on each trial (j = 1;.;k) in the learning

process. In each conditioned stimulus (CS) trial, the associative strengths of the CS(s) and the unconditioned stimulus (US) for indi-

vidual i and trial j are updated based on the prediction error, which represents the difference between the current outcome and ex-

pectancy, and the individual learning rate (ai).
39 Concurrently, the generalization process formulates the extend of US expectancy

transfer (li) to another stimulus sij by considering mental stimulus distances (dij)
2 with stimulus coordinates corresponding to either

physical stimulus features or perceived stimulus features. Mathematically, this relationship can be expressed in Equations 1 and 2:

vij+1 = vij +aiðrij � vijÞkij; (Equation 1)

and

gij = vije
� lidij : (Equation 2)
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where vij represents the associative strength of the CS(s) in trial j for participant i, reflecting the time-dependent learned expectation of

the CS(s) - US association. In the differential learning experiment, we will distinguish further between v+ij and v�ij . Specifically, v
+
ij ˛

½0;1� denotes the associative strength for the CS+ (the excitatory reinforced CS) in the context of the differential learning experiment,

while v�ij ˛ ½�1;0� pertains to the CS- (the inhibitory reinforced CS). The dummy variable kij is used to control the occurrence of up-

dating, where kij ˛ f0; 1g with 1 indicating updating and 0 otherwise. Its role is to ensure that learning only happens during CS trials.

The variable rij corresponds to the trial outcomes (rij ˛ f0;1g for the CS+ and rij ˛ f � 1; 0g for the CS-). The parameter ai represents

the learning rate, regulating the amount of value learning adaptation for individual i (ai ˛ ½0;1�), with higher values indicating more

learning from the prediction error. The parameter li is the generalization rate, signifying the rate of decay that ensues at a given fixed

value of stimulus distance dij. It concurrently functions as a discriminative factor in identifying Overgeneralizers. An individual is allo-

cated within the Overgeneralizers group if their acquired expectations vij demonstrate a decay exceeding 70%, even in the presence

of the largest stimulus distance.

The mental stimulus distance between the currently encountered stimulus (TS) and the CS(s) is determined by stimulus coordi-

nates, which may correspond to either the physical stimulus features (Physical Generalizers) or the perceived stimulus features

(Perceptual Generalizers). Defined as follows:

dij =
���xCS � xTSj

���; (Equation 3)

where xCS represents the coordinate of the CS, and xTSj signifies the coordinate of the TS on trial j, both situated within the physical

dimension. In contrast, for Perceptual Generalizers:

dij =
���~xCSi;1;.;j � ~xTSij

���: (Equation 4)

with ~xCSi; 1;.; j refers to the cumulativemean derived from the repeated presentations of the CS, capturing the perceived features of

the CS up to trial j, while ~xTSij specifically denotes the perceived features of the TS at trial j.

The integration of learning and generalization processes yields an generalized associative strength, denoted as gij. In the context of

differential conditioning, gij is constrained within the range of [-1, 1], gij = v+ij e
� lid

+
ij +gijv

�
ij e

� lid
�
ij ,64 while for simple conditioning, it is

limited to [0, 1], gij = vije
� lidij . Notably, the magnitude of gij reflects the strength of generalized responses - smaller values result in

lower generalized responses, while larger values lead to more potent responses. However, it is important to acknowledge that the

scale of gij does not directly align with the scale of observed behavior, which operates on a 1-10 range. This discrepancy necessitates

a scale transformation to establish a meaningful relationship between the two. To address this, we adopted a non-linear sigmoid

function, which takes into account both the base rate response and scaling parameters. This sigmoid function effectively bridges

the gap, mapping the latent generalized associative strength to the observed response in a manner that aligns with the observed

behavioral scale. This can be seen in Equation 5:

qij = A+
K � A

1+e�ðw0i
+w1i

gijÞ ; (Equation 5)

The sigmoid function parameters, A and K, define the lower and upper limits, ensuring that qij aligns with the measurement scale

qij ˛ ½1; 10� yij ˛ ½1; 10� used in this study. Hence, we set A = 1 and K = 10.w0i represents the baseline response parameter, dictating

the response in the absence of CS associative strengths. On the other hand, w1i serves as the scaling parameter, determining the

relationship between latent and observed responses.

The final generalization response is assumed to follow a normal distribution with qij being the mean of the distribution:

yij � N
�
qij;s

2
�
: (Equation 6)

The parameter s plays a crucial role in regulating the level of response noise, which, in turn, is dependent on the specific

group. A defining characteristic of the Non-Learners group is that their final responses are entirely random and unrelated to

any learning or generalization processes. To accommodate this behavior, a distinct prior parameterized by s has been as-

signed specifically for Non-Learners (mi = 1), setting it apart from the prior applied to the other three latent groups (mi =

2; 3; 4).

In the comparison between the generalization model incorporating the point-based perceptual assumption3 and the current

work’s model-based assumption, it is noteworthy that no changes were anticipated within the Non-Learners and Overgeneral-

izers groups. These groups inherently exhibit generalization patterns independent of stimulus distance. However, discernable

variations were expected within the Physical Generalizers and Perceptual Generalizers groups. The estimates within these

groups assess the extent to which generalized responses align more with perceptual stimulus distance than with physical stim-

ulus distance. Should the new perceptual distance variable result in a closer alignment of generalization responses with percep-

tual distance compared to the perceptual distance in the previous work,3 an increase in the number of Perceptual Generalizers

and a corresponding decrease in the number of Physical Generalizers are expected. Conversely, if the alignment with percep-

tual distance is less pronounced, an increase in Physical Generalizers and a decrease in Perceptual Generalizers would be

observed.
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New perceptual stimulus distance
When computing perceptual distance in the generalization process, our previous study3 calculated mental inter-stimulus distance dij

as the absolute difference between two point values: the current perceptual response and a memory representation of the CS

(computed as the running average of past CS perceptual responses). While computationally straightforward, this approach treated

perceptual responses as precise, fixed points in mental space, overlooking two fundamental aspects of human perception: (1) the

uncertainty inherent in transforming physical stimuli into mental representations, and (2) the dynamic nature of how current sensory

input integrates with prior experiences.

Here, we introduced a theoretically-grounded approach that explicitly incorporates these perceptual processes into distance cal-

culations. With the new operationalization in this current work, distance equates to the amount of distribution overlap (rather than an

absolute difference), with CS memory now also conceptualized as a probability distribution. The overlap coefficient provides a

method to quantify probabilistic distributions into a deterministic metric, enabling direct comparison with other non-probabilistic as-

sumptions about perceptual distance. This approach not only acknowledges the inherent uncertainty in perception but also allows for

a fair and consistent comparison across competing theoretical frameworks. Because the current experimental design does not have

information on the memory representation, we postulate that the memory distribution is faithfully encoded during the preceding CS

trial and accurately decoded during the subsequent trial. The mean and the standard deviation of perception mj;ij and sj;ij and

perceptual memory mCS
j;ij� 1 and sCSj;ij� 1 are derived from a perceptual model with the perceptual data.

Crucially, while the concept of response distributions arising from feature overlap has been explored in prior generalization the-

ories,22,23,64 these frameworkswere unable to distinguishwhether these distributions stemmed fromperceptual uncertainty, memory

imprecision, or the generalization process itself. Our current framework addresses this limitation by specifically isolating perceptual

processes: we compute distances between stimuli by analyzing the overlap between two distinct distributions - the perceptual dis-

tribution of the currently encountered stimulus and the memory distribution of the conditioned stimulus (CS).

The perceptual distance, dij, is calculated using the overlap between two probability densities: f1ðxÞ, representing how the current

stimulus is being perceived, and f2ðxÞ, representing how the CS is remembered:

dij = 1 �
Z

minðf1ðxÞ; f2ðxÞÞ dx; (Equation 7)

where

f1ðxÞ =
1

sj;ij

ffiffiffiffiffiffi
2p

p exp

 
�
�
x � mj;ij

�2
2s2

j;ij

!
; (Equation 8)

and

f2ðxÞ =
1

sCS
j;ij� 1

ffiffiffiffiffiffi
2p

p exp

0B@�
�
x � mCS

j;ij� 1

�2
2
�
sCS
j;ij� 1

�2
1CA: (Equation 9)

This overlap-based approach offers several advantages. First, it accounts for the probabilistic nature of human perception,

acknowledging that perceptual responses are not fixed but arise from distributions with inherent variability. Second, it provides a

more comprehensive measure of similarity by incorporating both the central tendencies and uncertainties of the perceptual and

memory distributions. When the two distributions perfectly align (i.e., maximal overlap), the perceptual distance is dij = 0, indicating

high similarity. Conversely, minimal overlap results in dij approaching 1, signifying low similarity. By adopting this method, we ensure

that perceptual uncertainty is explicitly considered, enabling a more nuanced understanding of generalization processes. Moreover,

this metric bridges probabilistic and deterministic frameworks, facilitating direct comparison with traditional, non-probabilistic

assumptions.

The determination of overlapping regions between the perceptual (N ðmj;ij;s
2
j;ijÞ) and memory (N ðmCS

j;ij� 1;s
CS2

j;ij� 1Þ) distributions in-

volves calculating the integral that captures the minimum of their respective probability density functions (PDFs) across the entire

range, as shown in Equations 7, 8, and 9. To numerically approximate this integral, we employed the Monte Carlo method. By gener-

ating a set of random points within the defined range, we estimated the proportion of points that fell within the overlapping region,

thereby approximating the corresponding area.

The Monte Carlo implementation involved sampling points uniformly within the range of interest. Specifically, for each randomly

generated point, its y-coordinate was drawn from a uniform distribution between zero and the maximum value of the corresponding

PDF. By comparing the y-coordinate of each point with the PDF values, we identified the points residing within the overlapping region

and estimated the overlap area.

To avoid increasing the complexity of the generalization model, we adopted a two-step approach. First, we used the perceptual

model to fit the size estimation data, yielding perception estimates grounded in the model. Next, we calculated the trial-by-trial

perceptual distances using these estimates, resulting in a distance matrix bdij. These values were then integrated into the generaliza-

tion model. This two-step methodology provides several advantages. It enables a direct comparison of generalization models with
e4 iScience 28, 112228, April 18, 2025
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different perceptual assumptions while maintaining a consistent model structure. Additionally, it minimizes the risk of one process

(i.e., perception or generalization) being mis-specified and subsequently influencing the inference of the other process, ensuring a

more robust and interpretable modeling framework.

Perceptual model
Our perceptual model captures how humans transform physical stimuli into mental representations through a dynamic process that

combines current sensory input with past experiences. We implemented this using a one-dimensional state-space model based on

Bayesian principles, where perception emerges from the continuous interaction between incoming sensory evidence and prior ex-

pectations. The model’s updating mechanism follows Kalman filter dynamics,65 which provides a mathematically principled way to

integrate new information with existing beliefs while accounting for their respective uncertainties. This approach has been imple-

mented before to investigate the dynamic patterns of human perception.20 The model architecture comprises three fundamental

components:

(1) Sensory input processing:

First, physical stimuli are transformed into initial perceptual estimates through a flexible sigmoid mapping function:

mSij
=

U

1+e�ðb0;i+b1;i xs½ij�Þ ; (Equation 10)

jS;ij � N
�
mS;ij; s

2
S;i

�
: (Equation 11)

where U = 200 represents our rating scale’s upper limit, and b0;i and b1;i are individual-specific parameters capturing personal

differences in the perceptual response. Crucially, this initial mapping produces not a single value but a probability distribution,

reflecting inherent sensory uncertainty. The sigmoid function offers distinct advantages over traditional psychophysical func-

tions like Weber’s law or Stevens’ power law for our modeling purposes. While traditional psychophysical functions are derived

from averaged data and presuppose uniform perception across individuals, the sigmoid function’s mathematical properties

afford greater flexibility in capturing individual differences. The dual scaling parameters enable the accommodation of diverse

perceptual mapping patterns (Figure 3A), making it particularly suitable for modeling inter-individual variability in stimulus

perception.

(2) Dynamic integration:

The heart of our model is a Kalman filter mechanism that governs how current sensory input is integrated with prior perceptual

expectations. This integration process unfolds continuously over time, with eachmoment requiring the brain to combine new sensory

evidence with accumulated prior expectations. At any given time point (j + 1), the brain receives fresh sensory evidence (mS;ij+1) about

the current stimulus while maintaining its prior expectation (mj;ij) from previous experiences. The Kalman filter determines the optimal

way to combine these information sources based on their relative uncertainties. The updated perception is computed through a

weighted averaging process:

mj;ij+1 = mj;ij +aj;ij+1

�
mS;ij+1 � mj;ij

�
; (Equation 12)

This equation illustrates how perception is updated in response to new perceptual experiences. Specifically, it reflects the differ-

ence between the expected perception (mj;ij) and the actual sensory input (mS;ij+1). The extent of this adjustment is governed by the

Kalman gain (aj;ij+1), which is defined as:

aj;ij+1 =
sj;ij

sj;ij+sS;i

; (Equation 13)

The Kalman gain serves as a dynamic arbiter between new sensory information and prior expectations. When uncertainty in prior

expectations (sj;ij) is high relative to sensory uncertainty (sS;i), the gain approaches 1, causing perception to rely more heavily on new

sensory input. Conversely, when prior uncertainty is low relative to sensory uncertainty, the gain approaches 0, leading to greater

reliance on prior expectations. This adaptive weighting ensures optimal integration based on the reliability of each information

source. Consider how this plays out in practice: When someone has developed very stable prior expectations through repeated

exposure to similar stimuli, their prior uncertainty (sj;ij) becomes relatively low. If they then encounter these stimuli in a noisy environ-

ment (high sS;i), the Kalman gain will be small, causing them to rely more on their well-established prior expectations than on the un-

certain sensory input. However, if they encounter something unexpected that challenges their prior expectations, or if the sensory

evidence is particularly clear and reliable, the weighting will shift to favor the new information.

(3) Uncertainty evolution:
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The evolution of perceptual uncertainty represents another crucial dynamic aspect of our model. As individuals accumulate

perceptual experiences, the precision of their perceptual estimates changes systematically. This evolution follows a principled up-

dating rule:

sj;ij+1 = ð1 � aj;ij+1Þsj;ij + he�ui$j: (Equation 14)

The first term, ð1 � aj;ij+1Þsj;ij, reflects how uncertainty naturally decreases as we gain more experience with a stimulus. However,

perception typically maintains some degree of flexibility rather than becoming entirely rigid or deterministic. The second term, he�ui$j,

introduces process noise that decays over time at an individual-specific rate ui. This decay term allows for individual differences in

how people balance stability with flexibility in their perceptual systems. The parameter h sets the initial magnitude of this uncertainty,

while ui determines how quickly an individual’s perceptual system stabilizes (Figure 3B).

In summary, our perceptual model captures how sensory information is processed and integrated over time. At each temporal in-

terval, the sensory system transforms physical stimuli into an initial distribution N ðmS;ij+1;s
2
S;iÞ. This sensory information is then inte-

grated with prior expectations based on previous experiences, represented byN ðmj;ij;s
2
j;ijÞ, to generate the current perceptual dis-

tribution N ðmj;ij+1; s
2
j;ij+1Þ. The integration process reflects both immediate sensory transformations and accumulated perceptual

history, with the relative influence of each determined by the Kalman gain aj;ij.

This formulation naturally accommodates individual differences in perceptual processing. For some individuals, the weight given to

prior perceptual experiences strengthens over time,manifested through a decreasing trajectory of aj;ij as experiences accumulate. In

contrast, others maintain a more flexible perceptual system where current sensory information continues to play a prominent role,

evidenced by sustained high levels of aj;ij across time. These individual-specific dynamics emerge from the interaction between

the Kalman gain mechanism and person-specific parameters governing uncertainty evolution.

QUANTIFICATION AND STATISTICAL ANALYSIS

The statistical inference was carried out using Markov Chain Monte Carlo (MCMC) with the Gibbs sampling method implemented

through JAGS.66 The analysis was conducted in the statistical computing language R,67 utilizing the R package jagsUI.68 To ensure

robust results, four MCMC chains were executed for the two models - the perceptual and the generalization model, each comprising

100,000 iterations. A burn-in period of 75,000 iterations was implemented to discard initial samples, and a thinning factor of 10 was

applied, resulting in a total of 10,000 (ð100;000� 75;000Þ
10 3 4) retained samples per parameter. Convergence of the MCMC chains was

assessed using the bR statistic based onGelman andRubin diagnostics.69,70 The chains were considered to have reached a stabilized

state and attained the target distribution when the bR value value approached, or was close to, 1.

For the comparison of two models with different assumptions about perceptual distances, we further ran the super model which

encompasses both model assumptions and estimated the model selection parameter bM with the following MCMC rules: Four

MCMC chains with 250,000 iterations each. A burn-in period of 100,000 iterations and a thinning factor of 5, resulting in a total

of 120,000 (ð250;000� 100;000Þ
10 3 4) retained samples for the model selection parameter bM. It is crucial to emphasize that the two

models being compared share identical model structures, encompassing the same parameters, variables, and likelihood func-

tions. The sole distinction lies in the application of different inter-stimulus distance metrics—point differences versus overlap in

distributions.

The construction of a super model and the estimation of the model selection parameter bM aim to evaluate whether the model’s

performance is enhanced when employing a probabilistic perceptual model compared to the previous descriptive approach. To

investigate this, we created a nested structure, wherein two models with different perceptual distance assumptions were incorpo-

rated into a single model (i.e., a super model), and subsequently, we combined the likelihoods of these two model assumptions in a

linear manner.71 Specifically, considering the parameter vectors q1 and q2 corresponding to the model utilizing the model-based

perceptual distance assumption, denoted asM1, and themodel employing the descriptive perceptual distance assumption, denoted

as M2, we thoroughly examined the likelihood function of the observed data D:

PðDjbM;M1;M2Þ = bMPðDjq1;M1Þ+ ð1 � bMÞPðDjq2;M2Þ: (Equation 15)

where bM � Betað1;1Þ, and bM > 0:5 infers that M1 outperforms M2 and vice versa.

With the properly nested model, we can then compute the Bayes factor72,73 with the Savage-Dickey method74,75 based on the

parameter bM to determine to what extent the performance of the twomodels are different. For this, we computed Bayes factor given

H0 having bM fixed to 0.5 and H1 having bM deviated from 0.5:

PðDjH0Þ
PðDjH1Þ =

PðbM = 0:5jD;H1Þ
PðbM = 0:5jH1Þ : (Equation 16)

This implies that to compute the Bayes factor, we only need to consider the ratio between the posterior of the parameter bM under

the more intricate assumption H1 , given the observed data D, and the prior of bM under H1 (see Method S6: Savage-Dickey Density

Ratio for the proof). When the Bayes factor is greater than 1, it signifies that there is stronger evidence suggesting that bM deviates
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from 0.5, indicating that modelsM1 andM2 exhibit distinct performance. Conversely, if the Bayes factor is less than 1, it indicates that

the evidence favours bM being close to 0.5, suggesting that models M1 and M2 have similar performance.

Once a determination has been made regarding the presence of enough evidence indicating the superior performance of one

model over another, our attention turns to examining the distribution of posterior samples of the model selection parameter bM to

determine whether the data favors model M1 or M2.
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