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Abstract: We explore how entanglement and non-locality evolve between specific spectral
components of two-mode squeezed states in thermal environments. These spectral components
are extracted from output modes using filters that are frequently utilized in optomechanical
systems. We consider two distinct thermalization scenarios: one occurring in the vacuum state
prior to entering the nonlinear crystal for squeezing and another after the generation of the
two-mode squeezed vacuum but before passing through filters and detectors. Entanglement and
non-locality generally remain at their peak when identical filters are applied throughout. In
the first scenario, higher initial squeezing causes the entanglement dissipation to slow down
at the beginning of the time evolution, followed by a progressive acceleration of entanglement
dissipation over time. However, the dissipation rate of non-locality, even though it changes over
time it moreover remains the same irrespective of the initial degree of squeezing. In the second
scenario, greater squeezing results in a more rapid loss of both entanglement and non-locality.
We identify the evolution of specific boundaries for entanglement and non-locality and the
conditions for their optimization. Finally, for all the cases, increasing the thermal population of
the environment enhances the rate of dissipation, whereas stronger interaction slows dissipation
in a normalized dimensionless time scale.

© 2025 Optica Publishing Group under the terms of the Optica Open Access Publishing Agreement

1. Introduction

Entanglement is a fundamental aspect of quantum mechanics that plays a key role in the
establishment of the next generation technological advancements such as quantum computation
[1] and teleportation [2], quantum information processing [3] and quantum meteorology which
includes gravitational wave (GW) detection [4]. The entanglement represents a bipartite
correlation between two systems. A popular method to generate a continuous-variable entangled
state between signal and idler beams through spontaneous parametric down-conversion process
(PDC) in non-linear crystals [5], which in turn produces two-mode squeezed vacuum (TMSV)
states. If the systems interact with their surrounding environments, it becomes necessary to know
the influence of the environment on the dynamic behavior.

The dissipation dynamics of TMSV and its impact on entanglement due to its coupling to
thermal reservoirs have already been studied before, both for amplitude and phase damping
[6]. In fact, thermal decoherence before [7] and after PDC [7,8], both the cases have already
been discussed before, investigating the conditions and limitations of entanglement. Along with
that, [8] shows the thermalization dynamics of TMSV coupled to a common thermal reservoir.
However, the impact of filters on their dynamics has not been studied so far. Even though,
we investigated the steady states of the filtered output of two-mode squeezed (TMS) thermally
decohered field before in [9], the dynamical behavior of entanglement has not been studied
before, which therefore, becomes important to us to be focused on.
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The measurement of an observable ensures the state to be changed. In the case of a TMS
state, if it is performed on one of the two parties, it also impacts the state of the other party
due to entanglement. In general, local realism on a hybrid system becomes a profound feature
of quantum measurement, which played a key role in solving the Einstine-Podolsky-Rosen
(EPR) measurement paradox [10,11]. The test of quantum non-locality on two-party entangled
continuous-variable states remains highly important and has always been of interest in the field of
quantum information science, which is still a gray area to explore. One way to test non-locality is
determining the violation of Bell’s inequality which is considered to be an essential condition that
accounts for all local hidden variables [12–14]. In this context, a few types of Bell’s inequalities
have been explored so far while performing homodyne measurements to test quantum nonlocality
[13,14]. The non-locality in the case of TMS states is examined through violation of Bell’s
inequality [15,16]. Such type of inequality was first discussed by Clauser, Horne, Shimony, and
Holt, and therefore called CHSH inequality [17], which was further expressed in phase space
using quasiprobability functions [18]. In all cases, the two-body correlation function appears as
the key element, determined from the two specially separated distant measurements.

In this spirit, we investigate the test of the CHSH inequality on filtered TMS states. The time
evolution of nonlocality of a TMS state interacting with a thermal environment has already been
well investigated before in [12]. The thermal decoherence ensures to loss of non-local behavior
of TMS states. However, the impact of the filter, applied on their output modes, on the dissipation
dynamics of non-locality has never been tested so far, even though its steady-state behavior was
investigated before [9]. Therefore, in this article, we study how filters impact on TMS state while
losing its non-locality under thermal decoherence.

Optical filters are used to select a preferable mode that has a particular frequency and a range
of bandwidth. Here, we choose two different types e.g. step and exponential filters. The step
filter has been in use before to determine the quantum correlation between output modes of
optomechanical systems [19,20]. The exponential filters were applied for the time-dependent
evolution of the spectrum of light [21] and also in feedback-controlled nanoscale optomechanical
systems [22].

In this article, we study the dynamics of entanglement and non-locality of the filtered output
of thermally decohereted TMS states. We consider two cases of thermalization. The first one is
wideband vacuum lights are being thermalized before entering into the non-linear crystal for the
PDC process, i.e. two-mode squeezed thermally decohered field (TMSTDF). The second one is
the thermal decoherence occurring after the PDC process, which therefore generates a thermally
decohereted two-mode squeezed vacuum (TDTMSV). In the following section, we establish
the theory of thermalization dynamics of TMSTDF and study its impact on entanglement and
non-locality. Afterward, we follow similar studies for TDTMSV, with a comparative discussion.

2. FILTER on TMSTDF

2.1. Input TMS states

Entangled TMS states are produced through PDC process in non-linear optical crystals (z) shown
in Fig. 1. The figure also shows the interaction of the input vacuum to its corresponding reservoirs
before entering into the non-linear crystal. The squeezing through the PDC process can be
represented by the Bogliubov modes as⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣
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where r is the amplitude of the squeezing parameter and the arbitrary phase of squeezing is
fixed to π/2. The Bogoliubov modes of the transformation matrix are given in Appendix A.
Xz

I,S(t) =
1√
2

(︂
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I,S(t) + az
I,S

†
(t)
)︂

and Yz
I,S(t) = −i 1√
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†
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represents the amplitude and
phase quadratures of wideband bosonic modes, respectively, which are directed to the non-linear
crystal (z) as inputs of the idler (I) and signal (S) modes. az

I,S and az
I,S

† represent corresponding
annihilation and creation operators. The outputs of the non-linear crystal generate a TMS state
of amplitude and phase quadratures Xout
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Hamiltonian that describes the interaction of input vacuum modes to their corresponding thermal
reservoir is

Hz
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∫ ∞

−∞

ηz
I,S(ω)

(︂
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I,Sbz
I,S(ω) + h.c.
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where bz
I,S(ω) represents the mode of the corresponding reservior, and ηz

I,S(ω) is the coupling

strength for the corresponding mode. Under wide band limit approximation ηz
I,S(ω) =

√︂
κinI,S/π,

which determines rate of thermalization.

Fig. 1. Block diagram of the detection of filtered TMSTDF. The thermally decohered input
vacuum goes through the parametric down-conversion (PDC) process. Optical filters are
applied on two-mode squeezed output before being detected at D.

2.2. Filtered output modes

Since the field is continuous, we can extract independent optical modes for different time intervals,
as expressed in Fig. 1:

aK,L
I,S (t) =

∫ t

−∞

dt′hK,L(t − t′)aout
I,S (t

′) (3)

where hK,L(t) are the filter functions of the K, Lth output modes of the parties I and S, re-
spectively. Before applying the filter, the regular output field obeys the correlation function:
[aout

k (t), aout
k

†
(t′)] = δ(t − t′) where k ∈ {I, S}. Equivalently, the commutation relation continues

to be followed for a generic set of output modes, even after applying a filter: [aM
k , aN

k
†
] = δMN .
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This is ensured only when the orthonormality between modes is followed, which is∫ ∞

0
hi(t)h∗j (t) dt = δij (4)

The filtered output modes, given in Eq. (3), can be transformed into the frequency domain,
which also satisfies orthogonality relations.

Here, we pick up explicit sets of two different types of filter functions that follow such
orthogonality. The type-I is a step filter function, given by

hK,L(t) =
Θ(t) − Θ(t − τI,S)

√
τI,S

e−iΩK,Lt (5)

Θ(t) is the Hevisite step function. The filter function offers a set of independent optical modes,
which are located around the central frequencies (ΩK,L). τI,S defines filtering time duration
applying on corresponding systems I and S, which therefore gives the spectral width τ−1

I,S , which
defines separation between mode frequencies as

ΩK −ΩK±n = ±n
2π
τI

and ΩL −ΩL±n = ±n
2π
τS

, n integer (6)

Such functions were used before in [19,20] to filter the output modes of optomechanical
systems.

We also consider another type of filter (type-II) which is based upon an exponential function:

hK,L(t) =
e−(1/τI,S+iΩK,L)t√︁
τI,S/2

Θ(t), (7)

which has the same periodicity as Eq. (6). Exponential filters have been used before in
optomechanical systems [21,22] for the analysis of the time-dependent spectrum of light.

2.3. Time-dependent correlation matrix

We first determine the generalized expression for the filtered output, which further determines the
correlation matrix. For both the step and exponential filters, one can obtain an infinite number of
mutually independent filtered output quadratures, by selecting their frequencies and bandwidths.
The filtered TMS quadratures are⎡⎢⎢⎢⎢⎣
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dimensionless amplitude and phase filtered quadrature operators. ℜ(hK,L) and ℑ(hK,L) represent
real and imaginary parts of the filter function hK,L(t), respectively. The elements of the correlation
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matrix of V(r) are defined by

Vij(r) =
1
2
⟨vout

i vout
j + vout

j vout
i ⟩ (10)

where
vout = [XK

I (r; t), YK
I (r; t), XL

S (r; t), YL
S (r; t)]T (11)

Selecting the elements for the squeezing factor +r from (8), we build up the correlation matrix

as V(r; t) =
⎡⎢⎢⎢⎢⎣

VI VT
corr

Vcorr VS

⎤⎥⎥⎥⎥⎦ , where

VI(t) =
1
2

Diag[DI , DI], (12a)

VS(t) =
1
2

Diag[DS, DS] and (12b)

Vcorr(t) =
1
2

⎡⎢⎢⎢⎢⎣
C11 C12

C21 C22

⎤⎥⎥⎥⎥⎦ , (12c)

The elements of the steady-state correlation matrix for each mode of the filtered output of the
bipartite system are

DI =
(︂
ℑ(h2

K) +ℜ(h2
K)
)︂
⋆ [(pI + pS) cosh(2r) + pI − pS] (13a)

DS =
(︂
ℑ(h2

L) +ℜ(h2
L)
)︂
⋆ [(pI + pS) cosh(2r) − pI + pS)] (13b)

C11 = (ℑ(hK)ℑ(hL) +ℜ(hK)ℜ(hL))⋆ [pI + pS] sinh(2r) (13c)

C12 = (ℑ(hK)ℜ(hL) − ℑ(hL)ℜ(hK))⋆ [pI − pS] sinh(2r) (13d)

C22 = −C11; C21 = C12 (13e)

where
pI(t) = nIΘ(t)

(︂
1 − e−2κI t

)︂
+

1
2

(14a)

pS(t) = nSΘ(t)
(︂
1 − e−2κSt

)︂
+

1
2

(14b)

and A⋆ B =
∫ t
−∞

dt′A(t − t′)B(t′) is the convolution between two entities. Θ(t) indicates the time
when the interaction with the environment is switched on. nI and nS represent thermal quanta of
their corresponding reservoir for the systems I and S. One can check the elements and compare
with [7] when no filter is applied. The elements of the correlation matrix in Eq. (13a) can be
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solved to

DI = nI
[︁
II(0) − e−2κI tII(κI)

]︁
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[︁
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for filter-I where τ = min[t, τI , τS], and in case of filter-II
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II,S(κ) =
e2κτ − 1
2κτI,S

where τ = min[t, τI,S]for filter-I (18a)

II,S(κ) =
1
τI,S

⎡⎢⎢⎢⎢⎣
e2(κ− 1

τI,S
)t
− 1

(κ − 1
τI,S

)

⎤⎥⎥⎥⎥⎦ for filter-II, (18b)

and
Kf =

sin[τ(ΩK −ΩL)]
√
τIτS(ΩK −ΩL)

where τ = min[τI , τS] for filter-I (19a)

Kf =
2

√
τIτS

[︄
( 1
τI
+ 1

τS
)

( 1
τI
+ 1

τS
)2 + (ΩK −ΩL) 2

]︄
for filter-II (19b)

Kf is unit valued when the filters are identical and it drops down when they are non-identical,
i.e. ΩK ≠ ΩL and τI ≠ τS, for both the types of filters.

2.4. Two-Mode Entanglement- Logarithmic Negativity

The entanglement between two parties can be witnessed by determining the quantity [23]

EN = max[0,− ln 2ν−], (20)

where

ν−=

√︄
Σ(V) +

√︁
Σ(V)2 − 4 det(V)

2
(21)

where Σ(V) = (det VI + det VS − 2 det Vcorr).
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The entanglement is ultimately influenced by the system and filter parameters. In Fig. 2,
we illustrate the dissipation dynamics of entanglement plotted in a normalized time scale
(T(t) = 1 − exp(−κt)), and discuss how it varies with different filter settings. As discussed earlier
in [9] the steady-state entanglement reaches its maximum when the filters are identical (ΩK = ΩL
and τI = τS); the thermal decoherence of entanglement does not show any exemption here.
Following the steady-state pattern, entanglement decreases uniformly throughout the evolution
when the central frequencies differ (ΩK ≠ ΩL) by the same amount, regardless of the filter type,
as shown in Fig. 2(a). In contrast, Fig. 2(b) illustrates that when bandwidths are mismatched
(τI ≠ τS), the reduction in entanglement does not remain consistent for equal deviations.

Fig. 2. Entanglement between filtered outputs for the variation of parameters of (a) central
frequencies for τI = τS = 0.2Ω−1

K (b) filter linewidths for ΩL = ΩK and τI = 0.2Ω−1
K , for (I)

step filter and (II) exponential filters. Fixed parameters are r = 1, nI = nS = 0.6, κinI = κ
in
S =

κ = 0.07ΩK .

The most significant feature of non-uniformly filtered two-mode squeezed (TMS) states is the
decrease in entanglement with further increases in the input degree of squeezing (r), following an
initial rise, which forms a bell-shaped pattern [9]. Interestingly, this reduction in entanglement
with increasing r may not persist throughout the entire thermalization period of the input vacuum.
Exceptions to this are seen in Fig. 3(a), where both types of filters demonstrate that entanglement
can become more resilient at higher values of r during thermal decoherence, even though
the initial and steady-state entanglement is weaker. For higher r values, the dissipation of
entanglement begins at a slower pace but progressively accelerates over time. This occurs because
the filtering interval covers a much longer period than the period of thermalization towards the
beginning. This phenomenon leads to another event which is explained in Fig. 3(b), which shows
that the initial degree of squeezing at which entanglement reaches its maximum (rEN

max) rises
initially during the early stages of time evolution and declines further. Additionally, we observe
that the lower (rEN

lcf ) and upper cutoff limits (rEN
ucf ) of the initial degree of squeezing (for which

EN(rEN
lcf ≤ r ≤ rEN

ucf )>0) are narrowing the range where entanglement is sustained.
The dissipation of entanglement is enhanced with the increment of the thermal population

of the reservoir and the coupling strength. Figure 3(c) ensures the phenomenon for both types
of filters, anticipating the steady-state entanglement to reduce for higher thermal population
[9]. Note that, even though increasing the coupling constant increases the rate of dissipation,
the entanglement decays slower w.r.t. the dimensionless rescaled time: T(t) = 1 − exp(−κt)
(Fig. 3(d)). This happens due to the fact that the coupling constant changes the time scale, which
eventually rescales the central frequency and the linewidths of the filter. Reduction of coupling
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Fig. 3. Entanglement between filtered outputs for the variation of (a) r, (c) nI = nS = n and
(d) κinI = κ

in
S = κ for (I) step filter and (II) exponential filters. In (b): maximal entanglement

and its cutoff limits. Fixed parameters are ΩL = 1.02ΩK , τI = 0.2Ω−1
K , τS = 0.208Ω−1

K , r =
1, nI = nS = 0.6, κinI = κ

in
S = 0.07ΩK ..

constant effectively makes the filters more non-identical, i.e. it rescales their effective linewidths
which increases discrepancy between them.

2.5. Quantum non-locality

The non-locality of the filtered TMS state even though has been studied before in [9], the
thermalization dynamics has not been discussed yet. In the cases of pure states, the entanglement
defines nonlocality. However, as the thermalization makes the state mixed, the entanglement
therefore becomes necessary, but not sufficient for non-locality. The violation of Bell’s inequality
which justifies non-locality, is measured from the maximum value of the Bell’s function (|B|max).
One can express it in terms of Wigner functions as [12,15]

B =
π2

4
[︁
W(u00

M ) +W(u01
M )W(u10

M ) − W(u11
M )

]︁
(22)
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Fig. 4. The maximal value of the Bell function for the variation of (a) central frequencies
for τI = τS = 0.2Ω−1

K (b) filter linewidths for ΩL = ΩK and τI = 0.2Ω−1
K , for (I) step filter

and (II) exponential filters. Fixed parameters are r = 0.4, nI = nS = 0.1, κinI = κ
in
S = 0.1ΩK .

where
W(umn

M ) =
1

π2
√︁

det[V(r)]
exp

[︃
−

1
2

umn
M

TV(r)−1umn
M

]︃
(23)

represents the Wigner function for umn
M = [Qm

I , Pm
I , Qn

S, Pn
S]

T is a vector in phase space. The
quantum mechanical description of a field to be nonlocal when condition |B|max ≤ 2 violates.
Larger |B|max indicates non-locality to be stronger. Here, we provide a numerical estimation of
|B|max which shows the impact of non-identical filters on the thermalization dynamics of the
TMSTDF.

The Bell function decays down throughout the thermalization process of the TMS field,
which eventually did not change even after applying the filter. Likewise, entanglement, the
reduction of Bell function occurs uniformly with the mismatch of filter frequencies (Fig. 4(a))
and non-uniformly for the mismatch of filter linewidths, throughout the period of thermalization
and irrespective of the type of filters. We noticed before in [9] that the Bell function increases
initially and further drops down with the initial degree of squeezing (r). Figure 5(a) shows that the
phenomenon remains unchanged throughout the evolution. Therefore, unlike entanglement, the
input degree of squeezing for which the Bell function becomes maximum (rB

max) remains moreover
steady throughout the evolution (Fig. 5(b)). As anticipated, the lower and upper cutoff limits
(|B|max(rlcf ≤ r ≤ rucf )>2) shows the region of nonlocality squeezes during evolution. Besides,
likewise entanglement, the Bell function also dissipates faster for higher thermal population
(Fig. 5(c)) and slower for stronger coupling with the environment (Fig. 5(d)) w.r.t. dimensionless
rescaled time, for both the filters.

Moreover, the non-locality appears to be within the region of entanglement, which has been
justified before from the mixedness of states [9,24].
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Fig. 5. The maximal value of Bell function for the variation of (a) r, (c) nI = nS = n and
(d) κinI = κ

in
S = κ for (I) step filter and (II) exponential filters. In (b): maximal non-locality

and its cutoff limits. Fixed parameters are ΩL = 1.01ΩK , τI = 0.2Ω−1
K , τS = 0.205Ω−1

K , r =
0.4, nI = nS = 0.1, κI = κS = 0.1ΩK .

3. FILTERED TDTMSV

3.1. Time-dependent correlation matrix of filtered output modes

We consider another situation where a TMSV suffers decoherence due to continuous interaction
with its thermal reservoir. The basic block diagram is shown in Fig. 6 where we see a TMSV field
is thermally decorated after PDC before being filtered and detected. The interaction Hamiltonian
between each mode of TMSV to its corresponding thermal reservoir is

Hout
I,S =

∫ ∞

−∞

ηout
I,S (ω)

(︂
aout

I,S bout
I,S (ω) + h.c.

)︂
dω (24)

where bout
I,S (ω) are the modes of the corresponding reservior, and ηout

I,S (ω) are the coupling strengths
for the corresponding mode. For a wide band TMS state, the rate of thermalizations is determined
by ηout

I,S (ω) =
√︂
κout

I,S /π. The system in Fig. 6, therefore estimates the correlation matrix elements
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Fig. 6. Block diagram of the detection of filtered TDTMSV. TMSV is generated using the
parametric down-conversion (PDC) process, and the thermalization happens afterwards.
Optical filters are applied on two-mode squeezed output before being detected at D.

Fig. 7. Entanglement between filtered outputs for the variation of parameters of (a) central
frequencies for τI = τS = 0.2Ω−1

K (b) filter linewidths for ΩL = ΩK and τI = 0.2Ω−1
K , for (I)

step filter and (II) exponential filters. All other fixed parameters remains same with Fig. 2.

mentioned in Eq. (12) as

DI =
(︂
ℑ(hK)

2 +ℜ(hK)
2
)︂
⋆
(︂
Θ(t)(2nI + 1)

(︂
1 − e−2κI t

)︂
+ (Θ(−t) + Θ(t)e−2κI t) cosh(2r)

)︂
(25a)

DS =
(︂
ℑ(hL)

2 +ℜ(hL)
2
)︂
⋆
(︂
Θ(t)(2nS + 1)

(︂
1 − e−2κSt

)︂
+ (Θ(−t) + Θ(t)e−2κSt) cosh(2r)

)︂
(25b)

C11 = −C22 = (ℑ(hK)ℑ(hL) +ℜ(hK)ℜ(hL))⋆ (Θ(−t) + Θ(t)e−t(κI+κS)) sinh(2r) (25c)

C12 = 0 = C21 (25d)
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Fig. 8. Entanglement between filtered outputs for the variation of (a) r, (c) nI = nS = n and
(d) κout

I = κout
S = κ for (I)step filter and (II) exponential filters. In (b) maximal entanglement

and its cutoff limits. All other fixed parameters remain the same with Fig. 3.

which solves to

DI = (2nI + 1)
(︂
II(0) − e−2κI tII(κI)

)︂
+ (1 − II(0) + e−2κI tII(κI)) cosh(2r)

DS = (2nS + 1)
(︂
IS(0) − e−2κStIS(κS)

)︂
+ (1 − IS(0) + e−2κStIS(κS)) cosh(2r)

C11 = −C22 =
(︂
Kf − Jc(0) + e−(κI+κS)tJc((κI + κS)/2)

)︂
sinh(2r)

C12 = 0 = C21

Furthermore, using Eq. (20) and Eq. (22), we determine the entanglement and non-locality
between the filtered modes.

3.2. Entanglement

The dissipation of entanglement of TMSV over time, and the impact of filter frequencies and
linewidths on it, are plotted in Fig. 7 in a normalized time scale. We vary the filter frequencies,
fixing their bandwidths in Fig. 7(a)) for both the types of filters, and realized that the entanglement
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Fig. 9. The maximal value of the Bell function for the variation of (a) central frequencies
for τI = τS = 0.2Ω−1

K (b) filter linewidths for ΩL = ΩK and τI = 0.2Ω−1
K , for (I) step filter

and (II) exponential filters. All other fixed parameters remain the same with Fig. 4.

reduces uniformly with the mismatch of frequencies, throughout evolution. The phenomenon
remains unchanged as it is seen during the evolution of TMSTDF in Fig. 2(a). In Fig. 7(b),
we changed the filter linewidths, fixing the central frequencies of both parties, and noticed that
even though the mismatch of linewidths can eventually reduce entanglement, it does not remain
consistent throughout the evolution. Increment of linewidth eventually reduces the effective rate
of dissipation.

Furthermore, Fig. 8(a) shows how the entanglement dissipates for different degrees of squeezing.
Unlike as observed in the case of TMSTDF, interestingly, we notice that the entanglement degrades
faster for a higher degree of squeezing, for both types of filters. The phenomenon has already
been noticed before in [8] where no filter was applied on TMSV suffering thermalization. This
concludes that the application of a filter does not make any significant change in this situation.
This ensures rEN

max to be reduced consistently throughout the evolution (Fig. 8(b)). Besides, as
anticipated, the cutoff limits (rEN

lcf and rEN
ucf ) shrink the area of entanglement. Furthermore, likewise

TMSTDF, we also notice that thermal dissipation of entanglement enhances for increasing thermal
population (Fig. 8(c)) and for reducing the rate of dissipation (Fig. 8(d)), in the normalized time
scale.

3.3. Non-locality

Figure 9 shows |B|max decreases when time passes by, and after reaching the minimum, |B|max
increases to a value when it stabilizes. The dissipation of quantum non-locality of filtered TMSV,
moreover follows the same profile of unfiltered TMSV, as it is observed in [12]. Following
entanglement, the non-locality changes uniformly with the mismatch of filter frequencies
throughout evolution (Fig. 9(a)), and non-uniformly with the mismatch of filter linewidth
(Fig. 9(b)).

We also determined non-locality with the variation of the degree of squeezing in Fig. 10(a),
and noticed that the dissipation goes faster for higher r, for both the filters. The phenomenon
has been witnessed and justified before for TMSV under thermalization in [12], where no filter
was applied. It was proven that for higher r, the superposition of two coherent states can easily
be destroyed. The phenomenon remains unchanged even after applying filters. This leads to
observing the input squeezing for maximal non-locality (rB

max) to go down with time in Fig. 10(b),
and both the cutoff limits (rB

lcf and rB
ucf ) show the region of non-locality to shrink with time.
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Fig. 10. The maximal value of Bell function for the variation of (a) r, (c) nI = nS = n and
(d) κout

I = κout
S = κ for (I)step filter and (II) exponential filters. In (b): maximal non-locality

and its cutoff limits. All other fixed parameters remain the same with Fig. 5.

Finally, Fig. 10(c,d) shows, in a normalized dimensionless time scale, the dissipation of the Bell
function increases with the increment of thermal population and the reduction of coupling with
the environment, irrespective of the type of filter.

4. Conclusion

We investigated the effects of filters on the dynamics of entanglement and the non-locality of
thermally decorated two-mode squeezed (TMS) states. Both types of thermal decoherence –
TMSTDF and TDTMSV - were considered before applying the filter and detector. The system
was analyzed using two distinct types of filters – step and exponential. Our findings reveal
that entanglement and Bell measurement remain maximized when identical filters are used,
with reductions in entanglement and non-locality displaying symmetric behavior as the central
frequencies of the filters mismatch, remaining consistent with previous observations in steady
states in [9]. However, when there is a mismatch in the linewidths of the filters, the reduction no
longer remains symmetric.
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It is anticipated that, after an initial increase, entanglement and Bell measurements are
expected to decline as the input squeezing degree increases, forming a bell-shaped pattern [9].
However, in the case of TMSTDF, this behavior does not remain consistent throughout the
evolution. Interestingly, the entanglement becomes more robust for higher r, during the period of
thermal dissipation, even though initial and final entanglement remains weaker. For higher r the
dissipation starts slower and gets faster over time. However, the non-locality moreover decays at
the same rate, regardless of the initial degree of squeezing; even though the rate of dissipation
may vary over time. In the case of TDTMSV, dissipation of both entanglement and non-locality
intensifies for higher values of r [8,12]. The trend persists even after applying the filter. This
therefore makes the region of entanglement and non-locality to shrink down which is indicated
by their cutoff limits. Furthermore, in all cases, the rate of dissipation increases with a higher
thermal population but decreases as coupling strength increases on a normalized, dimensionless
time scale.

Notably, in mixed states, while entanglement is necessary for non-locality, it is not always
sufficient. The application of non-identical filters ensures the state is mixed [9]. Justifying that,
we notice that the region of non-locality remains within the region of entanglement. The rapid
degradation of entanglement and non-locality with higher degrees of input squeezing raises
concerns about the practicality of generating highly squeezed TMS states for use in quantum
optical experiments, particularly those intended for quantum communication or gravitational
wave metrology [1–4].

A. Bogoliubov modes of TMSV

The generalized Bogoliubov modes of TMSV is given by⎡⎢⎢⎢⎢⎣
aout

I

aout
S

†

⎤⎥⎥⎥⎥⎦ =
⎡⎢⎢⎢⎢⎣

cosh r −e2iθ sinh r

−e−2iθ sinh r cosh r

⎤⎥⎥⎥⎥⎦
⎡⎢⎢⎢⎢⎣

az
I

az
S
†

⎤⎥⎥⎥⎥⎦ (26a)

⎡⎢⎢⎢⎢⎣
aout

S

aout
I

†

⎤⎥⎥⎥⎥⎦ =
⎡⎢⎢⎢⎢⎣

cosh r −e2iθ sinh r

−e−2iθ sinh r cosh r

⎤⎥⎥⎥⎥⎦
⎡⎢⎢⎢⎢⎣
az

S

az
I
†

⎤⎥⎥⎥⎥⎦ (26b)

where θ is the phase angle of squeezing. This calculates the quadratures as⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

Xout
I

Yout
I

Xout
S

Yout
S

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
=

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

cosh r 0 − cos(2θ) sinh r − sin(2θ) sinh r

0 cosh r − sin(2θ) sinh r cos(2θ) sinh r

− cos(2θ) sinh r − sin(2θ) sinh r cosh r 0

− sin(2θ) sinh r cos(2θ) sinh r 0 cosh r

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

Xz
I

Yz
I

Xz
S

Yz
S

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
(27)

Fixing θ = π/2, we obtain Eq. (1)
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B. Determination of correlation matrix elements

B.1. Filter type - I

The elements of the matrix V(r; t) can be determined in the time domain by solving the following
integrals.∫ t

−∞

[ℜ(hK(t − s))ℑ(hL(t − s)) − ℑ(hK(t − s))ℜ(hL(t − s))] nΘ(t) exp(−2κs) ds

=
1

√
τIτS

∫ t

t−τ
sin [(t − s) (ΩK −ΩL)] n exp(−2κs) ds

= ne−2κtJs(κ)∫ t

−∞

[ℜ(hK(t − s))ℜ(hL(t − s)) + ℑ(hK(t − s))ℑ(hL(t − s))] nΘ(t) exp(−2κs) ds

=
1

√
τIτS

∫ t

t−τ
cos [(t − s) (ΩK −ΩL)] n exp(−2κs) ds

= ne−2κtJc(κ)

where τ = min[t, τI , τS]. When both the filters become identical, i.e. ΩK = ΩL and τI = τS;
Jc determines the integrals Jc = II or Jc = IS. Also, one can check that Kf = Jc(0) when
t>max[τI , τS].

B.2. Filter type - II

The integrals can be determined for the filter of type-II as∫ t

−∞

(ℜ(hk)ℑ(hs)(t − s) − ℑ(hk)ℜ(hs)(t − s))
(︂
nΘ(t)(e(−2κs))

)︂
ds∫ t

−∞

e−(t−s)/τI e−(t−s)/τS√︁
τIτS/4

sin [(t − s)(ΩK −ΩL)]
(︂
nΘ(t)(e(−2κs))

)︂
ds

= ne−2κtJs(κ)∫ t

−∞

(ℜ(hk)ℜ(hs)(t − s) + ℑ(hk)ℑ(hs)(t − s))
(︂
nΘ(t)(e(−2κs))

)︂
ds∫ t

−∞

e−(t−s)/τI e−(t−s)/τS√︁
τIτS/4

cos [(t − s)(ΩK −ΩL)]
(︂
nΘ(t)(e(−2κs))

)︂
ds

= ne−2κtJc(κ)

Similar to filter-I, when both the filters become identical, i.e. ΩK = ΩL and τI = τS; Jc
determines the integrals Jc = II or Jc = IS. In this case Kf = Jc(0) when t → ∞.
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